Exploratory data mining techniques (decision tree models) for examining the impact of internet-based cognitive behavioral therapy for tinnitus : machine learning approach

dc.contributor.authorRodrigo, Hansapani
dc.contributor.authorBeukes, Eldre W.
dc.contributor.authorAndersson, Gerhard
dc.contributor.authorManchaiah, Vinaya
dc.date.accessioned2022-09-02T04:25:50Z
dc.date.available2022-09-02T04:25:50Z
dc.date.issued2021-11
dc.description.abstractBACKGROUND : There is huge variability in the way that individuals with tinnitus respond to interventions. These experiential variations, together with a range of associated etiologies, contribute to tinnitus being a highly heterogeneous condition. Despite this heterogeneity, a “one size fits all” approach is taken when making management recommendations. Although there are various management approaches, not all are equally effective. Psychological approaches such as cognitive behavioral therapy have the most evidence base. Managing tinnitus is challenging due to the significant variations in tinnitus experiences and treatment successes. Tailored interventions based on individual tinnitus profiles may improve outcomes. Predictive models of treatment success are, however, lacking. OBJECTIVE : This study aimed to use exploratory data mining techniques (ie, decision tree models) to identify the variables associated with the treatment success of internet-based cognitive behavioral therapy (ICBT) for tinnitus. METHODS : Individuals (N=228) who underwent ICBT in 3 separate clinical trials were included in this analysis. The primary outcome variable was a reduction of 13 points in tinnitus severity, which was measured by using the Tinnitus Functional Index following the intervention. The predictor variables included demographic characteristics, tinnitus and hearing-related variables, and clinical factors (ie, anxiety, depression, insomnia, hyperacusis, hearing disability, cognitive function, and life satisfaction). Analyses were undertaken by using various exploratory machine learning algorithms to identify the most influencing variables. In total, 6 decision tree models were implemented, namely the classification and regression tree (CART), C5.0, GB, XGBoost, AdaBoost algorithm and random forest models. The Shapley additive explanations framework was applied to the two optimal decision tree models to determine relative predictor importance. RESULTS : Among the six decision tree models, the CART (accuracy: mean 70.7%, SD 2.4%; sensitivity: mean 74%, SD 5.5%; specificity: mean 64%, SD 3.7%; area under the receiver operating characteristic curve [AUC]: mean 0.69, SD 0.001) and gradient boosting (accuracy: mean 71.8%, SD 1.5%; sensitivity: mean 78.3%, SD 2.8%; specificity: 58.7%, SD 4.2%; AUC: mean 0.68, SD 0.02) models were found to be the best predictive models. Although the other models had acceptable accuracy (range 56.3%-66.7%) and sensitivity (range 68.6%-77.9%), they all had relatively weak specificity (range 31.1%-50%) and AUCs (range 0.52-0.62). A higher education level was the most influencing factor for ICBT outcomes. The CART decision tree model identified 3 participant groups who had at least an 85% success probability following the undertaking of ICBT. CONCLUSIONS : Decision tree models, especially the CART and gradient boosting models, appeared to be promising in predicting ICBT outcomes. Their predictive power may be improved by using larger sample sizes and including a wider range of predictive factors in future studies.en_US
dc.description.departmentSpeech-Language Pathology and Audiologyen_US
dc.description.librarianam2022en_US
dc.description.urihttp://www.jmir.orgen_US
dc.identifier.citationRodrigo, H., Beukes, E.W., Andersson, G. & Manchaiah, V. Exploratory Data Mining Techniques (Decision Tree Models) for Examining the Impact of Internet-Based Cognitive Behavioral Therapy for Tinnitus: Machine Learning Approach Journal of Medical Internet Research 2021;23(11):e28999, doi : 10.2196/28999.en_US
dc.identifier.issn1438-8871
dc.identifier.other10.2196/28999
dc.identifier.urihttps://repository.up.ac.za/handle/2263/87028
dc.language.isoenen_US
dc.publisherJMIR Publicationsen_US
dc.rights© Hansapani Rodrigo, Eldré W Beukes, Gerhard Andersson, Vinaya Manchaiah. This is an open-access article distributed under the terms of the Creative Commons Attribution License.en_US
dc.subjectTinnitusen_US
dc.subjectInternet interventionsen_US
dc.subjectDigital therapeuticsen_US
dc.subjectArtificial intelligenceen_US
dc.subjectMachine learningen_US
dc.subjectData miningen_US
dc.subjectDecision treeen_US
dc.subjectRandom foresten_US
dc.subjectInternet-based cognitive behavioral therapy (ICBT)en_US
dc.subjectClassification and regression tree (CART)en_US
dc.subjectCognitive behavioral therapy (CBT)en_US
dc.titleExploratory data mining techniques (decision tree models) for examining the impact of internet-based cognitive behavioral therapy for tinnitus : machine learning approachen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Rodrigo_Exploratory_2021.pdf
Size:
805.44 KB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Rodrigo_ExploratoryApp1_2021.docx
Size:
28.25 KB
Format:
Microsoft Word XML
Description:
Appendix 1
Loading...
Thumbnail Image
Name:
Rodrigo_Exploratory_App2_2021.docx
Size:
28.74 KB
Format:
Microsoft Word XML
Description:
Appendix 2
Loading...
Thumbnail Image
Name:
Rodrigo_ExploratoryApp3_2021.docx
Size:
24.52 KB
Format:
Microsoft Word XML
Description:
Appendix 3

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: