Plant–soil feedback responses of four dryland crop species under greenhouse conditions

Show simple item record

dc.contributor.author Mushonga, Knowledge
dc.contributor.author Steyn, J.M. (Joachim Marthinus), 1963-
dc.contributor.author Swart, Wijnand J.
dc.contributor.author Van der Waals, Jacqueline Elise
dc.date.accessioned 2021-07-27T08:01:34Z
dc.date.available 2021-07-27T08:01:34Z
dc.date.issued 2020-12
dc.description.abstract Plant–soil feedbacks (PSFs) give a mechanistic understanding on how soil properties established by previous plant species go on to influence the performance of the same or different species in monoculture, intercropping or crop rotation systems. We hypothesized that different dryland crops such as Zea mays L., Helianthus annuus L., Phaseolus vulgaris L., and Glycine max L. (Merr.) will have soil legacies that are related to the crop type. We used a two-phase experiment to test plant performance in soils previously cultivated with the same or different plant species under greenhouse conditions. The positive plant growth for all species in their own soil microbiota suggests that mutualists had a greater impact on plant performance than pathogens. The consistent positive soil–feedback results of P. vulgaris were strongly associated with their own beneficial soil microbiota, meaning that the conditioning phase legacy of mutualists and decomposers were more significant than pathogens under monoculture. Despite successful nodulation in sterilized and inoculated soils, G. max unexpectedly showed neutral and insignificant positive plant feedbacks, respectively. Helianthus annuus was superior to other crop species in creating active carbon stocks and an enzymatically active soil for the next crop. Microbial biomass results suggest that raising fungal relative to bacterial biomass can be achieved by increasing the frequency of H. annuus in rotation sequences. However, more studies are necessary to evaluate whether these elevated ratios promote or depress plant performance under field conditions. This study showed that relative to other dryland crops, H. annuus seems to have the potential of increasing fungal to bacterial ratios, raising legacies in active carbon stocks and soil microbial activity that may be crucial to successional planting in dryland systems. en_ZA
dc.description.department Forestry and Agricultural Biotechnology Institute (FABI) en_ZA
dc.description.department Plant Production and Soil Science en_ZA
dc.description.librarian hj2021 en_ZA
dc.description.sponsorship Potatoes South Africa en_ZA
dc.description.uri https://onlinelibrary.wiley.com/journal/25756265 en_ZA
dc.identifier.citation Mushonga, K., Steyn, J.M., Swart, W.J. et al. 2020, 'Plant–soil feedback responses of four dryland crop species under greenhouse conditions', Plant-Environment Interactions, vol. 1, no. 3, pp. 181-195. en_ZA
dc.identifier.issn 2575-6265 (online)
dc.identifier.other 10.1002/pei3.10035
dc.identifier.uri http://hdl.handle.net/2263/80985
dc.language.iso en en_ZA
dc.publisher Wiley Open Access en_ZA
dc.rights © 2020 The Authors. Journal of Plant-Environment Interactions Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License. en_ZA
dc.subject Crop rotation en_ZA
dc.subject Monoculture en_ZA
dc.subject Plant performance en_ZA
dc.subject Soil conditioning en_ZA
dc.subject Soil legacies en_ZA
dc.title Plant–soil feedback responses of four dryland crop species under greenhouse conditions en_ZA
dc.type Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record