A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data

Show simple item record

dc.contributor.author Mollentze, Nardus
dc.contributor.author Nel, Louis Hendrik
dc.contributor.author Townsend, Sunny E.
dc.contributor.author Le Roux, Kevin
dc.contributor.author Hampson, Katie
dc.contributor.author Haydon, Daniel Thomas
dc.contributor.author Soubeyrand, Samuel
dc.date.accessioned 2014-07-11T09:52:52Z
dc.date.available 2014-07-11T09:52:52Z
dc.date.issued 2014-05
dc.description.abstract We describe a statistical framework for reconstructing the sequence of transmission events between observed cases of an endemic infectious disease using genetic, temporal and spatial information. Previous approaches to reconstructing transmission trees have assumed all infections in the study area originated from a single introduction and that a large fraction of cases were observed. There are as yet no approaches appropriate for endemic situations in which a disease is already well established in a host population and in which there may be multiple origins of infection, or that can enumerate unobserved infections missing from the sample. Our proposed framework addresses these shortcomings, enabling reconstruction of partially observed transmission trees and estimating the number of cases missing from the sample. Analyses of simulated datasets show the method to be accurate in identifying direct transmissions, while introductions and transmissions via one or more unsampled intermediate cases could be identified at high to moderate levels of case detection. When applied to partial genome sequences of rabies virus sampled from an endemic region of South Africa, our method reveals several distinct transmission cycles with little contact between them, and direct transmission over long distances suggesting significant anthropogenic influence in the movement of infected dogs. en_US
dc.description.librarian hb2014 en_US
dc.description.uri http://rspb.royalsocietypublishing.org en_US
dc.identifier.citation Mollentze, N, Nel, LH, Townsend, SE, Le Roux, K, Hampson, K, Haydon, DT & Soubeyrand, S 2014, 'A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data', Proceedings of the Royal Society B : Biological Sciences, vol. 281, no.1782, pp. 1-8. en_US
dc.identifier.issn 0962-8452 (print)
dc.identifier.issn 1471-2954 (online)
dc.identifier.other 10.1098/rspb.2013.3251
dc.identifier.uri http://hdl.handle.net/2263/40736
dc.language.iso en en_US
dc.publisher The Royal Society en_US
dc.rights © 2014 The Author(s) Published by the Royal Society. All rights reserved. en_US
dc.subject Endemic disease en_US
dc.subject Rabies virus en_US
dc.subject Spatial epidemiology en_US
dc.subject Transmission trees en_US
dc.subject Surveillance en_US
dc.title A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record