A locally-integrated meshless (LIM) method applied to advection-diffusion problems

dc.contributor.authorDivo, E.A.
dc.contributor.authorKassab, A.J.
dc.date.accessioned2015-04-23T09:03:44Z
dc.date.available2015-04-23T09:03:44Z
dc.date.issued2014
dc.description.abstractPaper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.en_ZA
dc.description.abstractA new numerical solution scheme coined as the LIM (Locally-Integrated Meshless) method is formulated in this paper. As a Meshless formulation the LIM Method relies uniquely on a scattered non-ordered data point distribution within the domain of interest and does not require connectivity or polygonalization. In the LIM method formulation the field variable is approximated within localized overlapping regions containing a predetermined number of data points, as a linear combination of predefined expansion functions. These expansion functions are chosen in this study to be the wellknown Hardy Multiquadrics Radial-basis functions (RBF) with center at the data points within each localized region. A weighted-residual integration is applied on each region to minimize the difference between the approximated field and the exact one. In order to circumvent the integration of an unavailable exact field, the residual integral is decomposed into a collocation integral (weights are set to Dirac delta functions) and a fully-weighted integral, resulting in a formulation where the coefficients of the expansion can be expressed directly in terms of the values of the field variable at the data points. This approach allows mitigating the issues that arise when performing direct collocation where the resulting derivative fields are sensitive and inaccurate due to the ‘anchoring’ of the expansion to the data points. In contrast, the LIM yields derivative fields that are smooth and accurate as they are rendered from a ‘non-anchored’ expansion while providing the ability to express the expansion coefficients, and thus the derivative fields, directly in terms of the scattered data within each local region. This combination of features is critical for the implementation of the LIM method as a robust, stable, and accurate solution scheme of governing differential equations.en_ZA
dc.description.librariancf2015en_ZA
dc.format.mediumPDFen_ZA
dc.identifier.citationDivo, EA, Kassab, AJ 2014, 'A locally-integrated meshless (LIM) method applied to advection-diffusion problems', Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.en_ZA
dc.identifier.isbn97817759206873
dc.identifier.urihttp://hdl.handle.net/2263/44530
dc.publisherInternational Conference on Heat Transfer, Fluid Mechanics and Thermodynamicsen_ZA
dc.rights© 2014 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.en_ZA
dc.subjectAdvection-diffusionen_ZA
dc.subjectLocally-integrated meshless methoden_ZA
dc.subjectLocalized regionen_ZA
dc.subjectNon-anchored expansionen_ZA
dc.subjectExpansion coefficientsen_ZA
dc.subjectDerivative fieldsen_ZA
dc.subjectGoverning differential equationsen_ZA
dc.titleA locally-integrated meshless (LIM) method applied to advection-diffusion problemsen_ZA
dc.typePresentationen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Divo_Locallyintegrated_2014.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Presentation

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: