Risk modelling of heavy mobile equipment to determine optimum replacement ages

dc.contributor.authorKirstein, C.F.
dc.contributor.authorVisser, J.K. (Jacobus)
dc.contributor.emailkrige.visser@up.ac.zaen_ZA
dc.date.accessioned2018-08-01T12:51:07Z
dc.date.available2018-08-01T12:51:07Z
dc.date.issued2017-12-13
dc.description.abstractMaintenance and physical asset managers often have to decide when a major asset needs to be replaced. The main objective of this study was to develop a methodology to determine the optimum replacement age of heavy mobile equipment that is close to the end of its life. The study was conducted on an old electric rope shovel used at a surface coal mining operation. The failure impact and failure probability estimates of components were obtained from subject matter experts through Delphi analyses. A stochastic-and-parametric-estimation modelling solution was developed to perform quantitative risk analyses using their inputs. The solution calculated the expected loss of the rope shovel as a function of machine-age within a 90 per cent confidence interval. The study demonstrated that the optimum replacement age of heavy mobile equipment can be obtained by modelling the expected losses due to the failure of critical end-of-life components, taking into account the uncertainty in data obtained from subject matter experts.en_ZA
dc.description.abstractFisiese bate- en instandhoudingsbestuurders moet dikwels besluit wanneer om ’n groot bate te vervang. Die hoofdoel van hierdie studie was om ’n metodologie te ontwikkel om die optimale vervangtyd van swaar mobiele toerusting naby die einde van sy leeftyd te bepaal. Die studie was uitgevoer op ’n ou elektriese tougraaf wat by ’n oopgroef steenkool myn aangewend word. Die falings impak en falings waarskynlikhede van komponente is verkry vanaf onderwerpkenners deur middel van Delphi analises. ’n Stogastiese-en-parametriese-beraming modellering oplossing was ontwikkel om kwantitatiewe risiko analises met hul insette te doen. Die oplossing het die verwagte verliese van die tougraaf as ’n funksie van ouderdom bereken binne ’n 90 persent vertrouensinterval. Die studie het getoon dat die optimum vervangingsouderdom van swaar mobiele toerusting bepaal kan word deur die verwagte verliese as gevolg van falings van kritieke komponente naby die einde van hul leeftyd te modelleer, met inagname van die onsekerheid in data verkry vanaf onderwerpkenners.en_ZA
dc.description.departmentGraduate School of Technology Management (GSTM)en_ZA
dc.description.librarianam2018en_ZA
dc.description.urihttp://sajie.journals.ac.zaen_ZA
dc.identifier.citationKirstein, C.F. & Visser, J.K. 2017, 'Risk modelling of heavy mobile equipment to determine optimum replacement ages', South African Journal of Industrial Engineering, vol. 28, no. 4, pp. 66-79.en_ZA
dc.identifier.issn1012-277X (print)
dc.identifier.issn2224-7890 (online)
dc.identifier.other10.7166/28-4-1591
dc.identifier.urihttp://hdl.handle.net/2263/66051
dc.language.isoenen_ZA
dc.publisherSouthern African Institute for Industrial Engineeringen_ZA
dc.rights© 2017, South African Institute of Industrial Engineering. All rights reserved. This article is licensed under a Creative Commons Attribution 3.0 License.en_ZA
dc.subjectMethodologyen_ZA
dc.subjectDelphi analysesen_ZA
dc.subjectMaintenance manageren_ZA
dc.subjectPhysical asset manageren_ZA
dc.subjectUncertainty analysisen_ZA
dc.subjectSurface coal miningen_ZA
dc.subjectSubject matter expertsen_ZA
dc.subjectQuantitative risk analysisen_ZA
dc.subjectPhysical assetsen_ZA
dc.subjectParametric estimationen_ZA
dc.subjectMobile equipmentsen_ZA
dc.subjectProbabilityen_ZA
dc.subjectFailureen_ZA
dc.subjectConfidence intervalen_ZA
dc.subjectStochastic systemsen_ZA
dc.subjectShovelsen_ZA
dc.subjectRopeen_ZA
dc.subjectRisk perceptionen_ZA
dc.subjectRisk assessmenten_ZA
dc.subjectRisk analysisen_ZA
dc.subjectEquipmenten_ZA
dc.titleRisk modelling of heavy mobile equipment to determine optimum replacement agesen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kirstein_Risk_2017.pdf
Size:
671.38 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: