Density process of the minimal entropy martingale measure in a stochastic volatility market : a PDE approach

dc.contributor.authorKufakunesu, Rodwell
dc.contributor.emailrodwell.kufakunesu@up.ac.zaen_US
dc.date.accessioned2012-05-17T11:16:49Z
dc.date.available2012-05-17T11:16:49Z
dc.date.issued2011
dc.description.abstractIn a stochastic volatility market the Radon-Nikodym density of the minimal entropy martingale measure can be expressed in terms of the solution of a semilinear partial differential equation (PDE). This fact has been explored and illustrated for the time-homogeneous case in a recent paper by Benth and Karlsen. However, there are some cases which time-dependent parameters are required such as when it comes to calibration. This paper generalizes their model to the time-inhomogeneous case.en
dc.description.librariannf2012en
dc.description.urihttp://www.nisc.co.za/journals?id=7en_US
dc.identifier.citationKufakunesu, R 2011, 'The density process of the minimal entropy martingale measure in a stochastic volatility market : a PDE approach', Queastiones Mathematicae, vol. 34, pp. 147-174.en
dc.identifier.issn1607-3606 (print)
dc.identifier.other10.2989/16073606.2011.594229
dc.identifier.urihttp://hdl.handle.net/2263/18777
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2011 NISC Pty Ltd.en_US
dc.subjectUtility optimisationen
dc.subjectStochastic volatilityen
dc.subjectIncomplete marketen
dc.subjectMinimal entropyen
dc.subjectMartingale measureen
dc.subjectHamilton-Jacobi-Bellman equationen
dc.subject.lcshMartingales (Mathematics)en
dc.subject.lcshDifferential equations, Partialen
dc.titleDensity process of the minimal entropy martingale measure in a stochastic volatility market : a PDE approachen
dc.typePostprint Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kufakunesu_Density(2011).pdf
Size:
360.28 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: