Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes

dc.contributor.authorModekwe, Helen U.
dc.contributor.authorAkintola, A.T.
dc.contributor.authorAyeleru, O.O.
dc.contributor.authorMamo, Messai Adenew
dc.contributor.authorDaramola, Michael Olawale
dc.contributor.authorMoothi, Kapil
dc.date.accessioned2024-10-17T11:18:51Z
dc.date.available2024-10-17T11:18:51Z
dc.date.issued2025-03
dc.descriptionDATA AVAILABILITY : Data/Code is available for sharing.en_US
dc.description.abstractIn this study, an artificial neural network model using function fitting neural networks was developed to describe the yield and quality of multi-walled carbon nanotubes deposited over NiMo/CaTiO3 catalyst using waste polypropylene plastics as cheap hydrocarbon feedstock using a single-stage chemical vapour deposition technique. The experimental dataset was developed using a user-specific design with four numeric factors (input variable): synthesis temperature, furnace heating rate, residence time, and carrier gas (nitrogen) flow rate to control the performance (yield and quality) of produced carbon nanotubes. Levenberg–Marquardt algorithm was utilized in training, validating, and testing the experimental dataset. The predicted model gave a considerable correlation coefficient (R) value close to 1. The presented model would be of remarkable benefit to successfully describe and predict the performance of polypropylene-derived carbon nanotubes and show how the predictive variables could affect the response variables (quality and yield) of carbon nanotubes.en_US
dc.description.departmentChemical Engineeringen_US
dc.description.librarianhj2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sdgSDG-12:Responsible consumption and productionen_US
dc.description.sponsorshipThe University of Johannesburg (UJ), South Africa, under the Global Excellence Stature (GES) Fellowship 4.0. Open access funding provided by University of Johannesburg.en_US
dc.description.urihttps://link.springer.com/journal/13762en_US
dc.identifier.citationModekwe, H.U., Akintola, A.T., Ayeleru, O.O. et al. Artificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubes. International Journal of Environmental Science and Technology 22, 3749–3762 (2025). https://doi.org/10.1007/s13762-024-05868-2.en_US
dc.identifier.issn1735-1472 (print)
dc.identifier.issn1735-2630 (online)
dc.identifier.other10.1007/s13762-024-05868-2
dc.identifier.urihttp://hdl.handle.net/2263/98649
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s) 2024. This article is published under an open access license.en_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectModellingen_US
dc.subjectPlastic-derived carbon nanotubesen_US
dc.subjectQualityen_US
dc.subjectWaste polypropylene plasticsen_US
dc.subjectYielden_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectSDG-12: Responsible consumption and productionen_US
dc.titleArtificial neural network for predicting the performance of waste polypropylene plastic-derived carbon nanotubesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Modekwe_Artificial_2024.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description:
Online First Article
Loading...
Thumbnail Image
Name:
Modekwe_ArtificialSuppl_2024.docx
Size:
14.5 KB
Format:
Microsoft Word XML
Description:
Supplementary Material
Loading...
Thumbnail Image
Name:
Modekwe_Artificial_2025.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: