Modelling bimodal data using a multivariate triangular-linked distribution

dc.contributor.authorDe Waal, Daan
dc.contributor.authorHarris, Tristan
dc.contributor.authorDe Waal, Alta
dc.contributor.authorMazarura, Jocelyn Rangarirai
dc.contributor.emailu17056145@tuks.co.zaen_US
dc.date.accessioned2023-09-07T11:10:15Z
dc.date.available2023-09-07T11:10:15Z
dc.date.issued2022-07-06
dc.description.abstractBimodal distributions have rarely been studied although they appear frequently in datasets. We develop a novel bimodal distribution based on the triangular distribution and then expand it to the multivariate case using a Gaussian copula. To determine the goodness of fit of the univariate model, we use the Kolmogorov–Smirnov (KS) and Cramér–von Mises (CVM) tests. The contributions of this work are that a simplistic yet robust distribution was developed to deal with bimodality in data, a multivariate distribution was developed as a generalisation of this univariate distribution using a Gaussian copula, a comparison between parametric and semi-parametric approaches to modelling bimodality is given, and an R package called btld is developed from the workings of this paper.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2023en_US
dc.description.sponsorshipThe Centre for Artificial Intelligence Research (CAIR).en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationDe Waal, D.; Harris, T.; De Waal, A.; Mazarura, J. Modelling Bimodal Data Using a Multivariate Triangular-Linked Distribution. Mathematics 2022, 10, 2370. https://DOI.org/10.3390/math10142370.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math10142370
dc.identifier.urihttp://hdl.handle.net/2263/92243
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectBimodalityen_US
dc.subjectTriangular distributionsen_US
dc.subjectRandom generationen_US
dc.subjectCopulasen_US
dc.subjectMixture modelsen_US
dc.titleModelling bimodal data using a multivariate triangular-linked distributionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeWaal_Modelling_2022.pdf
Size:
859.01 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: