UPSpace will be temporarily unavailable tonight from 19:00 to 23:00 (South African Time) due to scheduled maintenance. We apologise for any inconvenience this may cause and appreciate your understanding
 

Modelling bimodal data using a multivariate triangular-linked distribution

Loading...
Thumbnail Image

Authors

De Waal, Daan
Harris, Tristan
De Waal, Alta
Mazarura, Jocelyn Rangarirai

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Bimodal distributions have rarely been studied although they appear frequently in datasets. We develop a novel bimodal distribution based on the triangular distribution and then expand it to the multivariate case using a Gaussian copula. To determine the goodness of fit of the univariate model, we use the Kolmogorov–Smirnov (KS) and Cramér–von Mises (CVM) tests. The contributions of this work are that a simplistic yet robust distribution was developed to deal with bimodality in data, a multivariate distribution was developed as a generalisation of this univariate distribution using a Gaussian copula, a comparison between parametric and semi-parametric approaches to modelling bimodality is given, and an R package called btld is developed from the workings of this paper.

Description

Keywords

Bimodality, Triangular distributions, Random generation, Copulas, Mixture models

Sustainable Development Goals

Citation

De Waal, D.; Harris, T.; De Waal, A.; Mazarura, J. Modelling Bimodal Data Using a Multivariate Triangular-Linked Distribution. Mathematics 2022, 10, 2370. https://DOI.org/10.3390/math10142370.