Do we need a global VAR model to forecast inflation and output in South Africa?

dc.contributor.authorDe Waal, Annari
dc.contributor.authorVan Eyden, Renee
dc.contributor.authorGupta, Rangan
dc.contributor.emailrangan.gupta@up.ac.zaen_ZA
dc.date.accessioned2015-05-19T12:38:43Z
dc.date.available2015-05-19T12:38:43Z
dc.date.issued2015
dc.description.abstractThis study determines whether the global vector autoregressive (GVAR) approach provides better forecasts of key South African variables than a vector error correction model (VECM) and a Bayesian vector autoregressive (BVAR) model augmented with foreign variables. The article considers both a small GVAR model and a large GVAR model in determining the most appropriate model for forecasting South African variables. We compare the recursive out-of-sample forecasts for South African GDP and inflation from six types of models: a general 33 country (large) GVAR, a customized small GVAR for South Africa, a VECM for South Africa with weakly exogenous foreign variables, a BVAR model, autoregressive (AR) models and random walk models. The results show that the forecast performance of the large GVAR is generally superior to the performance of the customized small GVAR for South Africa. The forecasts of both the GVAR models tend to be better than the forecasts of the augmented VECM, especially at longer forecast horizons. Importantly, however, on average, the BVAR model performs the best when it comes to forecasting output, while the AR(1) model outperforms all the other models in predicting inflation. We also conduct ex ante forecasts from the BVAR and AR(1) models over 2010:Q1–2013:Q4 to highlight their ability to track turning points in output and inflation, respectively.en_ZA
dc.description.embargo2016-08-31en_ZA
dc.description.librarianhb2015en_ZA
dc.description.sponsorshipCommonwealth Scholarship Commission in the UK and the Cambridge Commonwealth Trust.en_ZA
dc.description.urihttp://www.tandfonline.com/loi/raec20en_ZA
dc.identifier.citationAnnari De Waal, Reneé Van Eyden & Rangan Gupta (2015) Do we need a global VAR model to forecast inflation and output in South Africa?, Applied Economics, 47:25, 2649-2670, DOI:10.1080/00036846.2015.1008769en_ZA
dc.identifier.issn0003-6846 (print)
dc.identifier.issn1466-4283 (online)
dc.identifier.other10.1080/00036846.2015.1008769
dc.identifier.urihttp://hdl.handle.net/2263/45174
dc.language.isoenen_ZA
dc.publisherRoutledgeen_ZA
dc.rights© 2015 Taylor and Francis. This is an electronic version of an article published in Applied Economics, vol. 47, no. 25, pp. 2649-2670, 2015. doi : 10.1080/00036846.2015.1008769. Applied Economics is available online at : http://www.tandfonline.comloi/raec20en_ZA
dc.subjectGlobal vector autoregressive (GVAR) modelen_ZA
dc.subjectBayesian vector autoregressive (BVAR) modelen_ZA
dc.subjectForecastingen_ZA
dc.subjectSouth Africa (SA)en_ZA
dc.titleDo we need a global VAR model to forecast inflation and output in South Africa?en_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeWaal_Do_2015.pdf
Size:
762.75 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: