Do we need a global VAR model to forecast inflation and output in South Africa?

Loading...
Thumbnail Image

Date

Authors

De Waal, Annari
Van Eyden, Renee
Gupta, Rangan

Journal Title

Journal ISSN

Volume Title

Publisher

Routledge

Abstract

This study determines whether the global vector autoregressive (GVAR) approach provides better forecasts of key South African variables than a vector error correction model (VECM) and a Bayesian vector autoregressive (BVAR) model augmented with foreign variables. The article considers both a small GVAR model and a large GVAR model in determining the most appropriate model for forecasting South African variables. We compare the recursive out-of-sample forecasts for South African GDP and inflation from six types of models: a general 33 country (large) GVAR, a customized small GVAR for South Africa, a VECM for South Africa with weakly exogenous foreign variables, a BVAR model, autoregressive (AR) models and random walk models. The results show that the forecast performance of the large GVAR is generally superior to the performance of the customized small GVAR for South Africa. The forecasts of both the GVAR models tend to be better than the forecasts of the augmented VECM, especially at longer forecast horizons. Importantly, however, on average, the BVAR model performs the best when it comes to forecasting output, while the AR(1) model outperforms all the other models in predicting inflation. We also conduct ex ante forecasts from the BVAR and AR(1) models over 2010:Q1–2013:Q4 to highlight their ability to track turning points in output and inflation, respectively.

Description

Keywords

Global vector autoregressive (GVAR) model, Bayesian vector autoregressive (BVAR) model, Forecasting, South Africa (SA)

Sustainable Development Goals

Citation

Annari De Waal, Reneé Van Eyden & Rangan Gupta (2015) Do we need a global VAR model to forecast inflation and output in South Africa?, Applied Economics, 47:25, 2649-2670, DOI:10.1080/00036846.2015.1008769