An investigation into the normalisation of water and energy usage in the brewery industry

dc.contributor.authorKirstein, J.C.
dc.contributor.authorBrent, Alan Colin
dc.date.accessioned2018-07-04T10:32:41Z
dc.date.available2018-07-04T10:32:41Z
dc.date.issued2017-12-13
dc.description.abstractBenchmarks are often used to assist brewers in identifying improvement opportunities; but a comparison of water and energy performances in breweries is deficient without normalising for differences between facilities. The normalisation of water and energy use was subsequently investigated, using SABMiller breweries as a case study. Drivers of water, electricity, and thermal energy usage obtained from the literature were selected, rationalised, and ranked in a Delphi survey of industry experts, and correlated with data from 64 SABMiller sites. The main drivers identified, and the data from 58 SABMiller sites, were then used to develop multi-variable linear regression (MVLR) models. The models, tested with data from six separate SABMiller sites, were able to predict water, electrical, and thermal energy usage to within a seven per cent error. By eliminating the variability in drivers within the control of brewery staff, the MVLR models were used to normalise the performance indices, and enabled direct comparisons between plants.en_ZA
dc.description.abstractMaatstawwe word dikwels gebruik om brouers te help met die identifisering van geleenthede vir verbetering; maar ’n vergelyking van water en energie vertonings in brouerye is gebrekkig sonder normalisering vir verskille tussen fasiliteite. Die normalisering van water en energie gebruik is dienooreenkomstig ondersoek, deur die gebruik van SABMiller brouerye as ’n gevallestudie. Drywers van water, elektrisiteit en hitte-energie gebruik, verkry uit die literatuur, is gekies, gerasionaliseer en ingedeel in ’n Delphi-opname van kundiges in die bedryf, en gekorreleer met die data van 64 SABMiller fasiliteite. Die belangrikste drywers is geïdentifiseer, en data van 58 SABMiller fasiliteite, is toe aangewend om multi-veranderlike lineêre regressie (MVLR) modelle te ontwikkel. Die modelle, getoets met data vanaf ses aparte SABMiller fasiliteite, is in staat om water, elektrisiteit en hitte-energie gebruik te voorspel binne ’n sewe persent fout. Deur die uitskakeling van die variasie in drywers binne die beheer van brouery personeel, is die MVLR modelle gebruik om die prestasie-indekse te normaliseer, en is die direkte vergelykings tussen fasiliteite moontlik gemaak.en_ZA
dc.description.departmentGraduate School of Technology Management (GSTM)en_ZA
dc.description.librarianam2018en_ZA
dc.description.urihttp://sajie.journals.ac.zaen_ZA
dc.identifier.citationKirstein, J.C. & Brent, A.C. 2017, 'An investigation into the normalisation of water and energy usage in the brewery industry', South African Journal of Industrial Engineering, vol. 28, no. 4, pp. 14-31.en_ZA
dc.identifier.issn1012-277X (print)
dc.identifier.issn2224-7890 (online)
dc.identifier.other10.7166/28-4-1726
dc.identifier.urihttp://hdl.handle.net/2263/65298
dc.language.isoenen_ZA
dc.publisherSouthern African Institute for Industrial Engineeringen_ZA
dc.rights© 2017, South African Institute of Industrial Engineering. All rights reserved. This article is licensed under a Creative Commons Attribution 3.0 License.en_ZA
dc.subjectEnergy utilizationen_ZA
dc.subjectWater and energiesen_ZA
dc.subjectPerformance indicesen_ZA
dc.subjectNormalisationen_ZA
dc.subjectMulti-variable linear regressionen_ZA
dc.subjectIndustry expertsen_ZA
dc.subjectDelphi surveysen_ZA
dc.subjectThermal energyen_ZA
dc.subjectBreweriesen_ZA
dc.titleAn investigation into the normalisation of water and energy usage in the brewery industryen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kirstein_Investigation_2017.pdf
Size:
1.5 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: