The development of an action priority matrix and technology roadmap for the implementation of data-driven and machine-learning-based predictive maintenance in the South African railway industry

dc.contributor.authorNethamba, L.
dc.contributor.authorGrobbelaar, Schalk
dc.date.accessioned2024-03-28T08:48:06Z
dc.date.available2024-03-28T08:48:06Z
dc.date.issued2023-11-17
dc.descriptionPresented at the 2nd International Conference on Industrial Engineering, Systems Engineering and Engineering Management, held from 2 to 4 October 2023 in Somerset West, South Africa.en_US
dc.description.abstractIn improving railways for the future, artificial intelligence and machine learning were identified as top-priority technology systems that enable data-driven methods and predictive maintenance. A local survey using semi-structured interviews showed that the railway industry lags behind in adopting and implementing data-driven and machine-learning methods for predictive maintenance. Insights from international studies were found to be relevant in South Africa. Other implementation barriers were identified in the socio-economic and socio-political areas of South Africa. An action priority matrix and technology roadmap was developed to guide the South African railway industry towards the implementation of data-driven and machine learning-based predictive maintenance. The action priority matrix was developed by using a two-round Delphi technique to rank the prioritisation of the required activities. The research showed the importance of considering insights from both international studies and the local context when adopting and implementing technology systems to improve business objectives.en_US
dc.description.abstractIn die verbetering van spoorweë vir die toekoms, is kunsmatige intelligensie en masjienleer geïdentifiseer as top-prioriteit tegnologiestelsels wat data-gedrewe metodes en voorspellende instandhouding moontlik maak. 'n Plaaslike opname wat semi-gestruktureerde onderhoude gebruik het, het getoon dat die spoorwegbedryf agterbly met die aanvaarding en implementering van datagedrewe- en masjienleermetodes vir voorspellende instandhouding. Daar is gevind dat insigte uit internasionale studies relevant is in Suid-Afrika. Ander implementeringshindernisse is in die sosio-ekonomiese en sosio-politieke gebiede van Suid-Afrika geïdentifiseer. ’n Aksieprioriteitmatriks en tegnologie-padkaart is ontwikkel om die Suid-Afrikaanse spoorwegbedryf te lei tot die implementering van datagedrewe- en masjienleer-gebaseerde voorspellende instandhouding. Die aksieprioriteitmatriks is ontwikkel deur 'n twee-rondte Delphi-tegniek te gebruik om die prioritisering van die vereiste aktiwiteite te rangskik. Die navorsing het getoon hoe belangrik dit is om insigte uit beide internasionale studies en die plaaslike konteks in ag te neem wanneer tegnologiestelsels aangeneem en geïmplementeer word om besigheidsdoelwitte te verbeter.en_US
dc.description.departmentGraduate School of Technology Management (GSTM)en_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.urihttp://sajie.journals.ac.za/puben_US
dc.identifier.citationNethamba, L. & Grobbelaar, S. 2023, 'The development of an action priority matrix and technology roadmap for the implementation of data-driven and machine-learning-based predictive maintenance in the South African railway industry', South African Journal of Industrial Engineering, vol. 34, no. 3, pp. 318-335. http://dx.DOI.org//10.7166/34-3-2958.en_US
dc.identifier.issn1012-277X (print)
dc.identifier.issn2224-7890 (online)
dc.identifier.other10.7166/34-3-2958
dc.identifier.urihttp://hdl.handle.net/2263/95404
dc.language.isoenen_US
dc.publisherSouthern African Institute for Industrial Engineeringen_US
dc.rights© Southern African Institute for Industrial Engineering. This work is licensed under a Creative Commons Attribution 3.0 License.en_US
dc.subjectImprovingen_US
dc.subjectRailwaysen_US
dc.subjectData-driven methodsen_US
dc.subjectVerbeteringen_US
dc.subjectSpoorweeen_US
dc.subjectData-gedrewe metodesen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleThe development of an action priority matrix and technology roadmap for the implementation of data-driven and machine-learning-based predictive maintenance in the South African railway industryen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nethamba_Development_2023.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: