AI usefulness in systems modelling and simulation : GPT-4 application

dc.contributor.authorDu Plooy, C.
dc.contributor.authorOosthuizen, Rudolph
dc.date.accessioned2024-03-27T11:40:09Z
dc.date.available2024-03-27T11:40:09Z
dc.date.issued2023-11-17
dc.descriptionPresented at the 2nd International Conference on Industrial Engineering, Systems Engineering and Engineering Management, held from 2 to 4 October 2023 in Somerset West, South Africa.en_US
dc.description.abstractIn this study, we investigate the potential of artificial intelligence (AI), specifically Generative Pre-trained Transformer 4 (GPT-4), to accelerate the development of system dynamics simulations within the broader context of systems engineering. The research aims to uncover the opportunities and limitations of leveraging AI to assist humans in constructing and refining system dynamics models. Through a systematic iterative process, GPT-4 was engaged in tasks such as creating, expanding, and stabilising simulations, identifying errors, generating expansion ideas, and converting models to Python code. Our findings reveal that GPT-4, while not flawless, can significantly enhance the modelling process, reduce human error, and expedite learning. This paper critically examines the role of AI in model development, emphasising the continued importance of human expertise in the evaluation and testing of simulations. Ultimately, we argue for a symbiotic relationship between AI and human modellers, harnessing the power of GPT-4 to augment human capabilities and advance the fields of system dynamics and systems engineering.en_US
dc.description.abstractIn hierdie studie ondersoek ons die potensiaal van kunsmatige intelligensie (KI), spesifiek Generative Pre-trained Transformer 4 (GPT)-4), om die ontwikkeling van stelseldinamika-simulasies binne die breër konteks van stelselingenieurswese. Die navorsing het ten doel om die geleenthede en beperkings van die gebruik van KI te ontbloot om mense te help om stelseldinamika-modelle te konstrueer en te verfyn. Deur 'n sistematiese, iteratiewe proses was GPT-4 besig met take soos die skep, uitbreiding en stabilisering van simulasies, identifisering van foute, generering van uitbreidingsidees en omskakeling van modelle na Python-kode. Ons bevindinge toon dat GPT-4, hoewel dit nie foutloos is nie, die modelleringsproses aansienlik kan verbeter, menslike foute kan verminder en leer bespoedig. Hierdie artikel doen ‘n kritiese ondersoek na die rol van KI in modelontwikkeling, met die klem op die voortgesette belangrikheid van menslike kundigheid in die evaluering en toetsing van simulasies. Uiteindelik argumenteer ons vir 'n simbiotiese verhouding tussen KI en menslike modelleerders, wat die krag van GPT-4 benut om menslike vermoëns te verbeter en om die velde van stelseldinamika en stelselingenieurswese te bevorder.en_US
dc.description.departmentGraduate School of Technology Management (GSTM)en_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.urihttp://sajie.journals.ac.za/puben_US
dc.identifier.citationDu Plooy, C. & Oosthuizen, R. 2023, 'AI usefulness in systems modelling and simulation: GPT-4 application', South African Journal of Industrial Engineering, vol. 34, no. 3, pp. 286-303. http://dx.DOI.org//10.7166/34-3-2944.en_US
dc.identifier.issn1012-277X (print)
dc.identifier.issn2224-7890 (online)
dc.identifier.other10.7166/34-3-2944
dc.identifier.urihttp://hdl.handle.net/2263/95389
dc.language.isoenen_US
dc.publisherSouthern African Institute for Industrial Engineeringen_US
dc.rights© Southern African Institute for Industrial Engineering. This work is licensed under a Creative Commons Attribution 3.0 License.en_US
dc.subjectModelling processen_US
dc.subjectArtificial intelligence (AI)en_US
dc.subjectPython codeen_US
dc.subjectModelleringsprosesen_US
dc.subjectKunsmatige intelligensie (KI)en_US
dc.subjectPython-kodeen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleAI usefulness in systems modelling and simulation : GPT-4 applicationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DuPlooy_Usefulness_2023.pdf
Size:
677.35 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: