Optimal containment control of a quadrotor team with active leaders via reinforcement learning

dc.contributor.authorCheng, Ming
dc.contributor.authorLiu, Hao
dc.contributor.authorGao, Qing
dc.contributor.authorLu, Jinhu
dc.contributor.authorXia, Xiaohua
dc.date.accessioned2023-11-30T04:58:16Z
dc.date.available2023-11-30T04:58:16Z
dc.date.issued2024-08
dc.description.abstractThis article proposes an optimal controller for a team of underactuated quadrotors with multiple active leaders in containment control tasks. The quadrotor dynamics are underactuated, nonlinear, uncertain, and subject to external disturbances. The active team leaders have control inputs to enhance the maneuverability of the containment system. The proposed controller consists of a position control law to guarantee the achievement of position containment and an attitude control law to regulate the rotational motion, which are learned via off-policy reinforcement learning using historical data from quadrotor trajectories. The closed-loop system stability can be guaranteed by theoretical analysis. Simulation results of cooperative transportation missions with multiple active leaders demonstrate the effectiveness of the proposed controller.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipBeijing Natural Science Foundation, National Natural Science Foundation of China, Beijing Nova Program, National Science Foundation.en_US
dc.description.urihttps://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036en_US
dc.identifier.citationCheng, M., Liu, H., Gao, Q. et al. 2024, 'Optimal containment control of a quadrotor team with active leaders via reinforcement learning', IEEE Transactions on Cybernetics, vol. 54, no. 8, pp. 4502-4512, doi : 10.1109/TCYB.2023.3284648.en_US
dc.identifier.issn2168-2267 (print)
dc.identifier.issn2168-2275 (online)
dc.identifier.other10.1109/TCYB.2023.3284648
dc.identifier.urihttp://hdl.handle.net/2263/93550
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.en_US
dc.subjectReinforcement learning (RL)en_US
dc.subjectQuadrotoren_US
dc.subjectOptimal controlen_US
dc.subjectVehicle dynamicsen_US
dc.subjectCooperative controlen_US
dc.subjectMulti-agent systemsen_US
dc.subjectPosition controlen_US
dc.subjectProtocolsen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleOptimal containment control of a quadrotor team with active leaders via reinforcement learningen_US
dc.typePostprint Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cheng_Optimal_2024.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: