MOTA : a many-objective tuning algorithm specialized for tuning undermultiple objective function evaluation budgets

dc.contributor.authorDymond, Antoine Smith Dryden
dc.contributor.authorKok, Schalk
dc.contributor.authorHeyns, P.S. (Philippus Stephanus)
dc.date.accessioned2017-04-24T07:59:54Z
dc.date.issued2017-03
dc.description.abstractControl parameter studies assist practitioners to select optimization algorithm parameter values which are appropriate for the problem at hand. Parameters values are well-suited to a problem if they result in a search which is effective given that problem’s objective function(s), constraints and termination criteria. Given these considerations a many objective tuning algorithm named MOTA is presented. MOTA is specialized for tuning a stochastic optimization algorithm according to multiple performance measures each over a range of objective function evaluation budgets. MOTA’s specialization consist of four aspects; 1) a tuning problem formulation which consists of both a speed objective and a speed decision variable, 2) a control parameter tuple assessment procedure which utilizes information from a single assessment run’s history to gauge that tuple’s performance at multiple evaluation budgets, 3) a preemptively terminating resampling strategy for handling the noise present when tuning stochastic algorithms, and 4) the use of bi-objective decomposition to assist in many objective optimization. MOTA combines these aspects together with DE operators to search for effective control parameter values. Numerical experiments which consisted of tuning NSGA-II and MOEA/D demonstrate that MOTA is effective at many objective tuning.en_ZA
dc.description.departmentMechanical and Aeronautical Engineeringen_ZA
dc.description.embargo2017-06-30
dc.description.librarianhb2017en_ZA
dc.description.librarianmi2025en
dc.description.sdgSDG-09: Industry, innovation and infrastructureen
dc.description.sdgSDG-04: Quality educationen
dc.description.sdgSDG-08: Decent work and economic growthen
dc.description.sponsorshipThe National Research Foundation (NRF) of South Africa.en_ZA
dc.description.urihttp://www.mitpressjournals.orgloi/evcoen_ZA
dc.identifier.citationDymond, AS, Kok, S & Heyns, PS 2017, 'MOTA : a many-objective tuning algorithm specialized for tuning undermultiple objective function evaluation budgets', Evolutionary Computation, vol. 25, no. 1, pp. 113-141.en_ZA
dc.identifier.issn1063-6560 (print)
dc.identifier.issn1530-9304 (online)
dc.identifier.other10.1162/EVCO_a_00163
dc.identifier.urihttp://hdl.handle.net/2263/60014
dc.language.isoenen_ZA
dc.publisherMassachusetts Institute of Technology Pressen_ZA
dc.rights© 2017 The MIT Pressen_ZA
dc.subjectObjective function evaluation budgetsen_ZA
dc.subjectTuningen_ZA
dc.subjectMany-objective optimizationen_ZA
dc.subject.otherEngineering, built environment and information technology articles SDG-09
dc.subject.otherSDG-09: Industry, innovation and infrastructure
dc.subject.otherEngineering, built environment and information technology articles SDG-04
dc.subject.otherSDG-04: Quality education
dc.subject.otherEngineering, built environment and information technology articles SDG-08
dc.subject.otherSDG-08: Decent work and economic growth
dc.titleMOTA : a many-objective tuning algorithm specialized for tuning undermultiple objective function evaluation budgetsen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Dymond_MOTA_2017.pdf
Size:
344.71 KB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Dymond_MOTASuppl_2017.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: