Compositional data modeling through dirichlet innovations

dc.contributor.authorMakgai, Seitebaleng Littah
dc.contributor.authorBekker, Andriette, 1958-
dc.contributor.authorArashi, Mohammad
dc.contributor.emailandriette.bekker@up.ac.zaen_US
dc.date.accessioned2022-05-20T06:56:47Z
dc.date.available2022-05-20T06:56:47Z
dc.date.issued2021-10-03
dc.description.abstractThe Dirichlet distribution is a well-known candidate in modeling compositional data sets. However, in the presence of outliers, the Dirichlet distribution fails to model such data sets, making other model extensions necessary. In this paper, the Kummer–Dirichlet distribution and the gamma distribution are coupled, using the beta-generating technique. This development results in the proposal of the Kummer–Dirichlet gamma distribution, which presents greater flexibility in modeling compositional data sets. Some general properties, such as the probability density functions and the moments are presented for this new candidate. The method of maximum likelihood is applied in the estimation of the parameters. The usefulness of this model is demonstrated through the application of synthetic and real data sets, where outliers are present.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2022en_US
dc.description.sponsorshipThe Visiting professor programme, University of Pretoria and the National Research Foundation (NRF) of South Africa, SARChI Research Chair and Ferdowsi University of Mashhad.en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationMakgai, S.; Bekker, A.; Arashi, M. Compositional Data Modeling through Dirichlet Innovations. Mathematics 2021, 9, 2477. https://DOI.org/10.3390/math9192477.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math9192477
dc.identifier.urihttps://repository.up.ac.za/handle/2263/85594
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectBeta functionen_US
dc.subjectCompositional dataen_US
dc.subjectDirichlet distributionen_US
dc.subjectGamma distributionen_US
dc.subjectKummer– Dirichleten_US
dc.subjectOutliersen_US
dc.titleCompositional data modeling through dirichlet innovationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makgai_Compositional_2021.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: