Compositional data modeling through dirichlet innovations

Loading...
Thumbnail Image

Authors

Makgai, Seitebaleng Littah
Bekker, Andriette, 1958-
Arashi, Mohammad

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

The Dirichlet distribution is a well-known candidate in modeling compositional data sets. However, in the presence of outliers, the Dirichlet distribution fails to model such data sets, making other model extensions necessary. In this paper, the Kummer–Dirichlet distribution and the gamma distribution are coupled, using the beta-generating technique. This development results in the proposal of the Kummer–Dirichlet gamma distribution, which presents greater flexibility in modeling compositional data sets. Some general properties, such as the probability density functions and the moments are presented for this new candidate. The method of maximum likelihood is applied in the estimation of the parameters. The usefulness of this model is demonstrated through the application of synthetic and real data sets, where outliers are present.

Description

Keywords

Beta function, Compositional data, Dirichlet distribution, Gamma distribution, Kummer– Dirichlet, Outliers

Sustainable Development Goals

Citation

Makgai, S.; Bekker, A.; Arashi, M. Compositional Data Modeling through Dirichlet Innovations. Mathematics 2021, 9, 2477. https://DOI.org/10.3390/math9192477.