Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains

dc.contributor.authorManger, Paul R.
dc.contributor.authorPatzke, Nina
dc.contributor.authorSpocter, Muhammad A.
dc.contributor.authorBhagwandin, Adhil
dc.contributor.authorKarlsson, Karl Æ.
dc.contributor.authorBertelsen, Mads F.
dc.contributor.authorAlagaili, Abdulaziz N.
dc.contributor.authorBennett, Nigel Charles
dc.contributor.authorMohammed, Osama B.
dc.contributor.authorHerculano‑Houzel, Suzana
dc.contributor.authorHof, Patrick R.
dc.contributor.authorFuxe, Kjell
dc.date.accessioned2022-11-04T09:01:03Z
dc.date.available2022-11-04T09:01:03Z
dc.date.issued2021-03-09
dc.description.abstractTo elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These findings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans.en_US
dc.description.departmentZoology and Entomologyen_US
dc.description.librarianam2022en_US
dc.description.sponsorshipThe South African National Research Foundation, a fellowship within the Postdoctoral-Program of the German Academic Exchange Service, International Scientific Partnership Program at King Saud University, the James S. McDonnell Foundation and the Swedish Research Council.en_US
dc.description.urihttps://www.nature.com/srepen_US
dc.identifier.citationManger, P.R., Patzke, N., Spocter, M.A. et al. Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Scientific Reports 11, 5486 (2021). https://doi.org/10.1038/s41598-021-84762-0.en_US
dc.identifier.issn2045-2322 (online)
dc.identifier.other10.1038/s41598-021-84762-0
dc.identifier.urihttps://repository.up.ac.za/handle/2263/88149
dc.language.isoenen_US
dc.publisherNature Researchen_US
dc.rights© The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License.en_US
dc.subjectBrainsen_US
dc.subjectCetaceansen_US
dc.subjectCetartiodactyl speciesen_US
dc.subjectImmunohistochemical techniquesen_US
dc.subjectAnatomyen_US
dc.subjectEvolutionen_US
dc.subjectClimate sciencesen_US
dc.subjectNeuroscienceen_US
dc.subjectCognitive neuroscienceen_US
dc.subjectOcean sciencesen_US
dc.subjectEcologyen_US
dc.subjectPhysiologyen_US
dc.subjectUncoupling protein 1 (UCP1)en_US
dc.titleAmplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brainsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Manger_Amplification_2021.pdf
Size:
9.52 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Manger_AmplificationSuppl_2021.docx
Size:
3.32 MB
Format:
Microsoft Word XML
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: