Accounting for sampling weights in the analysis of spatial distributions of disease using health survey data, with an application to mapping child health in Malawi and Mozambique

Loading...
Thumbnail Image

Authors

Cassy, Sheyla Rodrigues
Manda, S.O.M. (Samuel)
Marques, Filipe
Martins, Maria do Rosario Oliveira

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Most analyses of spatial patterns of disease risk using health survey data fail to adequately account for the complex survey designs. Particularly, the survey sampling weights are often ignored in the analyses. Thus, the estimated spatial distribution of disease risk could be biased and may lead to erroneous policy decisions. This paper aimed to present recent statistical advances in disease-mapping methods that incorporate survey sampling in the estimation of the spatial distribution of disease risk. The methods were then applied to the estimation of the geographical distribution of child malnutrition in Malawi, and child fever and diarrhoea in Mozambique. The estimation of the spatial distributions of the child disease risk was done by Bayesian methods. Accounting for sampling weights resulted in smaller standard errors for the estimated spatial disease risk, which increased the confidence in the conclusions from the findings. The estimated geographical distributions of the child disease risk were similar between the methods. However, the fits of the models to the data, as measured by the deviance information criteria (DIC), were different.

Description

DATA AVAILABILITY STATEMENT : The datasets used in this study are publicly available and can be downloaded at https://dhsprogram.com/ (accessed on 21 July 2021).

Keywords

Bayesian spatial smoothing, Survey sampling weights, Disease mapping, Child malnutrition, Sub-Saharan Africa (SSA), Deviance information criteria (DIC), Malawi, Mozambique

Sustainable Development Goals

Citation

Cassy, S.R.; Manda, S.; Marques, F.; Martins, M.d.R.O. Accounting for Sampling Weights in the Analysis of Spatial Distributions of Disease Using Health Survey Data, with an Application to Mapping Child Health in Malawi and Mozambique. International Journal of Environmental Research and Public Health 2022, 19, 6319. https://doi.org/10.3390/ijerph19106319.