Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains

Show simple item record

dc.contributor.author Manger, Paul R.
dc.contributor.author Patzke, Nina
dc.contributor.author Spocter, Muhammad A.
dc.contributor.author Bhagwandin, Adhil
dc.contributor.author Karlsson, Karl Æ.
dc.contributor.author Bertelsen, Mads F.
dc.contributor.author Alagaili, Abdulaziz N.
dc.contributor.author Bennett, Nigel Charles
dc.contributor.author Mohammed, Osama B.
dc.contributor.author Herculano‑Houzel, Suzana
dc.contributor.author Hof, Patrick R.
dc.contributor.author Fuxe, Kjell
dc.date.accessioned 2022-11-04T09:01:03Z
dc.date.available 2022-11-04T09:01:03Z
dc.date.issued 2021-03-09
dc.description.abstract To elucidate factors underlying the evolution of large brains in cetaceans, we examined 16 brains from 14 cetartiodactyl species, with immunohistochemical techniques, for evidence of non-shivering thermogenesis. We show that, in comparison to the 11 artiodactyl brains studied (from 11 species), the 5 cetacean brains (from 3 species), exhibit an expanded expression of uncoupling protein 1 (UCP1, UCPs being mitochondrial inner membrane proteins that dissipate the proton gradient to generate heat) in cortical neurons, immunolocalization of UCP4 within a substantial proportion of glia throughout the brain, and an increased density of noradrenergic axonal boutons (noradrenaline functioning to control concentrations of and activate UCPs). Thus, cetacean brains studied possess multiple characteristics indicative of intensified thermogenetic functionality that can be related to their current and historical obligatory aquatic niche. These findings necessitate reassessment of our concepts regarding the reasons for large brain evolution and associated functional capacities in cetaceans. en_US
dc.description.department Zoology and Entomology en_US
dc.description.librarian am2022 en_US
dc.description.sponsorship The South African National Research Foundation, a fellowship within the Postdoctoral-Program of the German Academic Exchange Service, International Scientific Partnership Program at King Saud University, the James S. McDonnell Foundation and the Swedish Research Council. en_US
dc.description.uri https://www.nature.com/srep en_US
dc.identifier.citation Manger, P.R., Patzke, N., Spocter, M.A. et al. Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains. Scientific Reports 11, 5486 (2021). https://doi.org/10.1038/s41598-021-84762-0. en_US
dc.identifier.issn 2045-2322 (online)
dc.identifier.other 10.1038/s41598-021-84762-0
dc.identifier.uri https://repository.up.ac.za/handle/2263/88149
dc.language.iso en en_US
dc.publisher Nature Research en_US
dc.rights © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License. en_US
dc.subject Brains en_US
dc.subject Cetaceans en_US
dc.subject Cetartiodactyl species en_US
dc.subject Immunohistochemical techniques en_US
dc.subject Anatomy en_US
dc.subject Evolution en_US
dc.subject Climate sciences en_US
dc.subject Neuroscience en_US
dc.subject Cognitive neuroscience en_US
dc.subject Ocean sciences en_US
dc.subject Ecology en_US
dc.subject Physiology en_US
dc.subject Uncoupling protein 1 (UCP1) en_US
dc.title Amplification of potential thermogenetic mechanisms in cetacean brains compared to artiodactyl brains en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record