Ti- and Fe-related charge transition levels in beta-Ga2O3

Loading...
Thumbnail Image

Authors

Zimmermann, Christian
Frodason, Ymir Kalmann
Barnard, Abraham Willem
Varley, Joel Basile
Irmscher, Klaus
Galazka, Zbigniew
Karjalainen, Antti
Meyer, Walter Ernst
Auret, Francois Danie
Vines, Lasse

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics

Abstract

Deep-level transient spectroscopy measurements on b-Ga2O3 crystals reveal the presence of three defect signatures labeled E2a; E2b, and E3 with activation energies at around 0.66 eV, 0.73 eV, and 0.95 eV below the conduction band edge. Using secondary ion mass spectrometry, a correlation between the defect concentration associated with E3 and the Ti concentration present in the samples was found. Particularly, it is found that E3 is the dominant Ti-related defect in b-Ga2O3 and is associated with a single Ti atom. This finding is further corroborated by hybrid functional calculations that predict Ti substituting on an octahedral Ga site, denoted as TiGaII, to be a good candidate for E3. Moreover, the deep level transient spectroscopy results show that the level previously labeled E2 and attributed to Fe substituting on a gallium site (FeGa) consists of two overlapping signatures labeled E2a and E2b. We tentatively assign E2a and E2b to Fe substituting for Ga on a tetrahedral or an octahedral site, respectively.

Description

Keywords

Ti concentration, E3, Ti substituting, Ti atom, Deep-level transient spectroscopy (DLTS), Beta-Ga2O3

Sustainable Development Goals

Citation

Zimmermann, C., Frodason, Y.K., Barnard, A.W. et al. Ti- and Fe-related charge transition levels in beta-Ga2O3. Applied Physics Letters 116, 072101 (2020); https://DOI.org/10.1063/1.5139402.