Simplified HYMOD non-linear simulations of a full-scale multistory retrofitted RC structure that undergoes multiple cyclic excitations – an infill RC wall retrofitting study

Show simple item record

dc.contributor.author Markou, George
dc.contributor.author Mourlas, Christos
dc.contributor.author Bark, Hussein
dc.contributor.author Papadrakakis, Manolis
dc.date.accessioned 2018-10-17T09:00:46Z
dc.date.issued 2018-12
dc.description.abstract Having the ability to assess the earthquake resistance of retrofitted reinforced concrete (RC) structures through accurate and objective nonlinear cyclic analysis is of great importance for both scientists and professional Civil Engineers. Full-scale RC structure simulations under ultimate limit state cyclic loading conditions through the use of 3D detail modeling techniques, is currently one of the most challenging modeling tasks that any research or commercial software can undertake. The excessive computational demand and the numerical instabilities that occur when dealing with this type of cyclic nonlinear numerical analysis, make this modeling approach impractical. The simplified hybrid modeling (HYMOD) approach is adopted in this work, which overcomes the above numerical limitations and it is used herein to illustrate the capabilities of the method in capturing the experimental results of a full-scale 4-storey RC building that was retrofitted with RC infill walls and carbon fiber reinforced polymer jacketing. This work has the aim to investigate the importance of numerically accounting for the damage that has developed at the concrete and steel domains during the analysis of problems that foresee consecutive cyclic loading tests. Based on the numerical findings, it was concluded that the proposed modeling approach was able to accurately capture the experimental data and predict the capacity degradation of the building specimen. Furthermore, the proposed method was used to numerically investigate different retrofitting configurations that foresaw the use of infill RC walls. The numerical experiments performed in this work demonstrate that the proposed modeling approach provides with the ability to study the cyclic mechanical behavior of full-scale RC structures under ultimate limit state conditions, thus paves the way in performing additional parametric investigations in determining the optimum retrofitting design of RC structures by using different types of interventions. en_ZA
dc.description.department Civil Engineering en_ZA
dc.description.embargo 2019-12-01
dc.description.librarian hj2018 en_ZA
dc.description.sponsorship The European Research Council Advanced Grant “MASTER-Mastering the computational challenges in numerical modeling and optimum design of CNT reinforced composites” (ERC-2011-ADG 20110209). en_ZA
dc.description.uri http://www.elsevier.com/locate/engstruct en_ZA
dc.identifier.citation Markou, G., Mourlas, C., Bark, H. et al. 2018, 'Simplified HYMOD non-linear simulations of a full-scale multistory retrofitted RC structure that undergoes multiple cyclic excitations – An infill RC wall retrofitting study', Engineering Structures, vol. 176, pp. 892-916. en_ZA
dc.identifier.issn 0141-0296 (print)
dc.identifier.issn 1873-7323 (online)
dc.identifier.other 10.1016/j.engstruct.2018.08.002
dc.identifier.uri http://hdl.handle.net/2263/66922
dc.language.iso en en_ZA
dc.publisher Elsevier en_ZA
dc.rights © 2018 Published by Elsevier Ltd. Notice : this is the author’s version of a work that was accepted for publication in Engineering structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in Engineering structures, vol. 176, pp. 892-916, 2018. doi : 10.1016/j.engstruct.2018.08.002. en_ZA
dc.subject Reinforced concrete (RC) en_ZA
dc.subject Hybrid modeling (HYMOD) en_ZA
dc.subject Large-scale modeling en_ZA
dc.subject Hybrid finite elements en_ZA
dc.subject Cyclic loading en_ZA
dc.subject Retrofitting infill walls en_ZA
dc.subject CFRP jacketing en_ZA
dc.subject Carbon fiber reinforced polymer (CFRP) en_ZA
dc.subject Earthquake engineering en_ZA
dc.subject Fiber reinforced plastics en_ZA
dc.subject Numerical models en_ZA
dc.subject Parametric investigations en_ZA
dc.subject Nonlinear numerical analysis en_ZA
dc.subject Infill walls en_ZA
dc.subject Computational demands en_ZA
dc.subject Walls (structural partitions) en_ZA
dc.subject Infill drilling en_ZA
dc.title Simplified HYMOD non-linear simulations of a full-scale multistory retrofitted RC structure that undergoes multiple cyclic excitations – an infill RC wall retrofitting study en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record