Clifford A-algebras of quadratic A-modules
Loading...
Date
Authors
Ntumba, Patrice P.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
A Clifford A-algebra of a quadratic A-module (E, q) is an associative
and unital A-algebra (i.e. sheaf of A-algebras) associated with
the quadratic ShSetX-morphism q, and satisfying a certain universal
property. By introducing sheaves of sets of orthogonal bases (or simply
sheaves of orthogonal bases), we show that with every Riemannian quadratic
free A-module of finite rank, say, n, one can associate a Clifford
free A-algebra of rank 2n. This “main” result is stated in Theorem 3.2.
Description
Keywords
Clifford A-morphism, Qquadratic A-module, Riemannian quadratic A-module, Clifford A-algebra, Principal A-automorphism, Even sub-A-algebra, A-antiautomorphism, Sub-A-module of odd products
Sustainable Development Goals
Citation
Ntumba, PP 2012, 'Clifford A-algebras of quadratic A-modules', Advances in Applied Clifford Algebras, vol. 22, no. 4, pp. 1093-1107.