Clifford A-algebras of quadratic A-modules
dc.contributor.author | Ntumba, Patrice P. | |
dc.contributor.email | patrice.ntumba@up.ac.za | en_ZA |
dc.date.accessioned | 2016-10-13T07:36:45Z | |
dc.date.available | 2016-10-13T07:36:45Z | |
dc.date.issued | 2012-04 | |
dc.description.abstract | A Clifford A-algebra of a quadratic A-module (E, q) is an associative and unital A-algebra (i.e. sheaf of A-algebras) associated with the quadratic ShSetX-morphism q, and satisfying a certain universal property. By introducing sheaves of sets of orthogonal bases (or simply sheaves of orthogonal bases), we show that with every Riemannian quadratic free A-module of finite rank, say, n, one can associate a Clifford free A-algebra of rank 2n. This “main” result is stated in Theorem 3.2. | en_ZA |
dc.description.department | Mathematics and Applied Mathematics | en_ZA |
dc.description.librarian | hb2016 | en_ZA |
dc.description.uri | http://link.springer.com/journal/6 | en_ZA |
dc.identifier.citation | Ntumba, PP 2012, 'Clifford A-algebras of quadratic A-modules', Advances in Applied Clifford Algebras, vol. 22, no. 4, pp. 1093-1107. | en_ZA |
dc.identifier.issn | 0188-7009 (print) | |
dc.identifier.issn | 1661-4909 (online) | |
dc.identifier.other | 10.1007/s00006-012-0333-9 | |
dc.identifier.uri | http://hdl.handle.net/2263/57139 | |
dc.language.iso | en | en_ZA |
dc.publisher | Springer | en_ZA |
dc.rights | © 2012 Springer Basel AG. The original publication is available at : http://link.springer.com/journal/6. | en_ZA |
dc.subject | Clifford A-morphism | en_ZA |
dc.subject | Qquadratic A-module | en_ZA |
dc.subject | Riemannian quadratic A-module | en_ZA |
dc.subject | Clifford A-algebra | en_ZA |
dc.subject | Principal A-automorphism | en_ZA |
dc.subject | Even sub-A-algebra | en_ZA |
dc.subject | A-antiautomorphism | en_ZA |
dc.subject | Sub-A-module of odd products | en_ZA |
dc.title | Clifford A-algebras of quadratic A-modules | en_ZA |
dc.type | Postprint Article | en_ZA |