Clifford A-algebras of quadratic A-modules

dc.contributor.authorNtumba, Patrice P.
dc.contributor.emailpatrice.ntumba@up.ac.zaen_ZA
dc.date.accessioned2016-10-13T07:36:45Z
dc.date.available2016-10-13T07:36:45Z
dc.date.issued2012-04
dc.description.abstractA Clifford A-algebra of a quadratic A-module (E, q) is an associative and unital A-algebra (i.e. sheaf of A-algebras) associated with the quadratic ShSetX-morphism q, and satisfying a certain universal property. By introducing sheaves of sets of orthogonal bases (or simply sheaves of orthogonal bases), we show that with every Riemannian quadratic free A-module of finite rank, say, n, one can associate a Clifford free A-algebra of rank 2n. This “main” result is stated in Theorem 3.2.en_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.librarianhb2016en_ZA
dc.description.urihttp://link.springer.com/journal/6en_ZA
dc.identifier.citationNtumba, PP 2012, 'Clifford A-algebras of quadratic A-modules', Advances in Applied Clifford Algebras, vol. 22, no. 4, pp. 1093-1107.en_ZA
dc.identifier.issn0188-7009 (print)
dc.identifier.issn1661-4909 (online)
dc.identifier.other10.1007/s00006-012-0333-9
dc.identifier.urihttp://hdl.handle.net/2263/57139
dc.language.isoenen_ZA
dc.publisherSpringeren_ZA
dc.rights© 2012 Springer Basel AG. The original publication is available at : http://link.springer.com/journal/6.en_ZA
dc.subjectClifford A-morphismen_ZA
dc.subjectQquadratic A-moduleen_ZA
dc.subjectRiemannian quadratic A-moduleen_ZA
dc.subjectClifford A-algebraen_ZA
dc.subjectPrincipal A-automorphismen_ZA
dc.subjectEven sub-A-algebraen_ZA
dc.subjectA-antiautomorphismen_ZA
dc.subjectSub-A-module of odd productsen_ZA
dc.titleClifford A-algebras of quadratic A-modulesen_ZA
dc.typePostprint Articleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ntumba_Clifford_2012.pdf
Size:
974.71 KB
Format:
Adobe Portable Document Format
Description:
Postprint Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: