The genome of Eucalyptus grandis

Show simple item record Myburg, Alexander Andrew Grattapaglia, Dario Tuskan, Gerald A. Hellsten, Uffe Hayes, Richard D. Grimwood, Jane Jenkins, Jerry Lindquist, Erika Tice, Hope Bauer, Diane Goodstein, David M. Dubchak, Inna Poliakov, Alexandre Mizrachi, Eshchar Kullan, Anand Raj Kumar Hussey, S.G. (Steven) Pinard, Desre Van der Merwe, Karen Singh, Pooja Van Jaarsveld, Ida Silva-Junior, Orzenil B. Togawa, Roberto C. Pappas, Marilia R. Faria, Danielle A. Sansaloni, Carolina P. Petroli, Cesar D. Yang, Xiaohan Ranjan, Priya Tschaplinski, Timothy J. Ye, Chu-Yu Li, Ting Sterck, Lieven Vanneste, Kevin Murat, Florent Soler, Marcal Clemente, Helene San Saidi, Naijib Cassan-Wang, Hua Dunand, Christophe Hefer, Charles Amadeus Bornberg-Bauer, Erich Kersting, Anna R. Vining, Kelly Amarasinghe, Vindhya Ranik, Martin Naithani, Sushma Elser, Justin Boyd, Alexander E. Liston, Aaron Spatafora, Joseph W. Dharmwardhana, Palitha Raja, Rajani Sullivan, Christopher Romanel, Elisson Alves-Ferreira, Marcio Kulheim, Carsten Foley, William Carocha, Victor Paiva, Jorge Kudrna, David Brommonschenkel, Sergio H. Pasquali, Giancarlo Byrne, Margaret Rigault, Philippe Tibbits, Josquin Spokevicius, Antanas Jones, Rebecca C. Steane, Dorothy A. Vaillancourt, Rene E. Potts, Brad M. Joubert, Fourie Barry, Kerrie Pappas Jr, Georgios J. Strauss, Steven H. Jaiswal, Pankaj Grima-Pettenati, Jacqueline Salse, Jerome Van de Peer, Yves Rokhsar, Daniel S. Schmutz, Jeremy 2014-09-29T11:21:24Z 2014-09-29T11:21:24Z 2014-06-19
dc.description.abstract Eucalypts are the world’smost widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled .94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highestdiversity of genes for specializedmetabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot orderMyrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology. en_US
dc.description.librarian am2014 en_US
dc.description.sponsorship The Brazilian Ministry of Science, Technology and Innovation (MCTI) through its research funding agencies (CNPq and FINEP), the Brazilian Federal District Research Foundation (FAP-DF), the public-private Genolyptus network of Brazilian forestry companies, the Tree Biosafety and Genomics Research Cooperative (TBGRC, Oregon State University), South African forestry companies Sappi and Mondi, the Technology and Human Resources for Industry Programme (THRIP, UID 80118), the South African Department of Science and Technology (DST) and National Research Foundation (NRF, UID 18312 and 86936), the Laboratoire d’Excellence (LABEX TULIP ANR-10-LABX-41), the Agence Nationale pour la Recherche (Project Tree For Joules ANR-2010-KBBE-007-01; Fundaçao para a Ciencia e Tecnologia (FCT, P-KBBE/ AGR_GPL/0001/2010), the Centre National pour la Recherche Scientifique (CNRS), the University Paul Sabatier Toulouse III (UPS). en_US
dc.description.uri en_US
dc.identifier.citation Myburg, AA, Grattapaglia, D, Tuskan, GA, Hellsten, U, Hayes, RD, Grimwood, J, Jenkins, J, Lindquist, E, Tice, H, Bauer, D, Goodstein, DM, Dubchak, I, Poliakov, A, Mizrachi, E, Kullan, ARK, Hussey, SG, Pinard, D, Van der Merwe, K, Singh, P, Van Jaarsveld, I, Silva-Junior, OB, Togawa, RC, Pappas, MR, Faria, DA, Sansaloni, CP, Petroli, CD, Yang, X, Ranjan, P, Tschaplinski, TJ, YE, C-Y, Li, T, Sterck, L, Vanneste, K, Murat, F, Soler, M, Clemente, HS, Saidi, N, Cassan-Wang, H, Dunand, C, Hefer, CA, Bornberg-Bauer, E, Kersting, AR, Vining, K, Amarasinghe, V, Ranik, M, Naithani, S, Elser, J, Boyd, AE, Liston, A, Spatafora, JW, Dharmwardhana, P, Raja, R, Sullivan, C, Romanel, E, Alves-Ferreira, M, Kulheim, C, Foley, W, Carocha, V, Paiva, J, Kudrna, D, Brommonschenkel, SH, Pasquali, G, Byrne, M, Rigault, P, Tibbits, J, Spokevicius, A, Jones, RC, Steane, DA, Vaillancourt, RE, Potts, BM, Joubert, F, Barry, K, Pappas Jr, GJ, Strauss, SH, Jaiswal, P, Grima-Pettenati, J, Salse, J, Van de Peer, Y, Rokhsar, DS & Schmutz, J 2014, 'The genome of Eucalyptus grandis', Nature, vol. 510, pp. 356-362. en_US
dc.identifier.issn 0028--0836 (print)
dc.identifier.issn 1476-4687 (online)
dc.identifier.other 10.1038/nature13308
dc.language.iso en en_US
dc.publisher Nature Publising Group en_US
dc.rights © 2014 Macmillan Publishers Limited. All rights reserved. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence. en_US
dc.subject Eucalypts en_US
dc.subject Hardwood trees en_US
dc.subject Eucalyptus grandis en_US
dc.subject Diversity en_US
dc.title The genome of Eucalyptus grandis en_US
dc.type Article en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record