Viscosity of nanofluids based on an artificial intelligence model
Loading...
Date
Authors
Mehrabi, M.
Sharifpur, Mohsen
Meyer, Josua P.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
By using an FCM-based Adaptive neuro-fuzzy inference system (FCM-ANFIS) and a set of experimental data,
models were developed to predict the effective viscosity of nanofluids. The effective viscosity was selected as
the target parameter, and the volume concentration, temperature and size of the nanoparticles were considered
as the input (design) parameters. To model the viscosity, experimental data from literature were divided into
two sets: a train and a test data set. The model was instructed by the train set and the results were compared
with the experimental data set. The predicted viscosities were compared with experimental data for four
nanofluids, which were Al2O3, CuO, TiO2 and SiO2, and with water as base fluid. The viscosities were also compared
with several of themost cited correlations in literature. The results, which were obtained by the proposed
FCM-ANFIS model, in general compared very well with the experimental measurement.
Description
Keywords
Nanofluid, Effective viscosity, FCM-based adaptive neuro-fuzzy inference, System (FCM-ANFIS), Particle size, Volume concentration, Temperature
Sustainable Development Goals
Citation
Mehrabi, M, Sharifpur, M, & Meyer, JP 2013, 'Viscosity of nanofluids based on an artificial intelligence model', International Communications in Heat and Mass Transfer , vol. 43, no. 4, pp. 16-21.