Identification of catalysts for the beneficiation of ptfe pyrolysates

Show simple item record

dc.contributor.advisor Crouse, Philippus L. en
dc.contributor.postgraduate Puts, Gerard Jacob
dc.date.accessioned 2015-01-19T12:13:11Z
dc.date.available 2015-01-19T12:13:11Z
dc.date.created 2014/12/12 en
dc.date.issued 2014 en
dc.description Dissertation (MEng)--University of Pretoria, 2014. en
dc.description.abstract This dissertation relates the results of the preliminary investigation into the catalytic interaction of PTFE with various inorganic materials, with the primary goal of find catalysts that will greatly increase the yield of the high value pyrolysis products, most notably hexafluoropropylene and octafluorocyclobutane. This dissertation is divided into three parts, viz.: A review on the literature concerning PTFE pyrolysis; a brief description of facilities built for this research; and the results of the experimental work. The experimental work was conducted with a hyphenated TGA-FTIR system in which samples of commercial PTFE mixed with catalyst were pyrolysed. Some sulfates, fluorides and common oxides of the fourth period- and group 13 metals were used as catalysts. It was found that the fluorides of the fourth period metals Zn, Cu, Ni, Co, Fe and Mn are generally inert with respect to reformation of the gas phase. The sulfates of these metals produced mixed results with NiSO4 increasing the yield of hexafluoropropylene whilst CuSO4 and CoSO4 produced unidentified side products and the rest being inert. The oxides also produced mixed results with CuO readily oxidising PTFE to CO2. Among the group 13 metals, the fluoride, sulphate, and common oxide of aluminium gave the best results, converting the PTFE pyrolysates almost completely to hexafluoropropylene and hexafluoroethane. Reaction mechanisms for the conversion of the pyrolysates on Al2O3 are proposed. No impact was noticed on the yield of octafluorocyclobutane or the yield of the octafluorobutene isomers. Research recommendations include: Metal oxides examined here should be tested further by examination of the metals in their 3+ and 2+ oxidation states, where the applicable oxide has not been covered; the phosphates of the metals examined here should also be studied to determine if the presence of a phosphorous atom will affect the reactivity; and ab initio work should be conducted to gain insight as to which crystal surfaces are responsible for the catalytic effects of the relevant materials. The work detailed here was limited to a qualitative investigation of the PTFE/catalyst system and does not include deep theoretical treatment of such topics as pyrolysate mass transfer and catalyst surface conditions. en
dc.description.availability Unrestricted en
dc.description.degree MEng en
dc.description.department Chemical Engineering en
dc.description.librarian lk2014 en
dc.identifier.citation Puts, GJ 2014, Identification of catalysts for the beneficiation of ptfe pyrolysates, MEng Dissertation, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/43226> en
dc.identifier.other M14/9/458 en
dc.identifier.uri http://hdl.handle.net/2263/43226
dc.language.iso en en
dc.publisher University of Pretoria en_ZA
dc.rights © 2014 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. en
dc.subject UCTD en
dc.title Identification of catalysts for the beneficiation of ptfe pyrolysates en
dc.type Dissertation en


Files in this item

This item appears in the following Collection(s)

Show simple item record