Deugoue, GabrielSango, Mamadou2014-06-252014-02Gabriel Deugoue & Mamadou Sango (2014) Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-α Model, Stochastic Analysis and Applications, 32:2, 253-279, DOI: 10.1080/07362994.2013.8623590736-2994 (print)1532-9356 (online)10.1080/07362994.2013.862359http://hdl.handle.net/2263/40380We propose and analyze a splitting-up scheme for the numerical approximation of the 3D stochastic Navier-Stokes- model. We prove the convergence of the scheme to the unique variational solution of the 3D stochastic Navier-Stokes- a model when the time step tends to zeroen© Taylor & Francis Group, LLC. This is an electronic version of an article published in Stochastic analysis and applications, vol. 32, no. 2, pp. 253-279, 2014. doi : 10.1080/07362994.2013.862359 Stochastic analysis and applications is available online at : http://www.tandfonline.com/loi/lsaa20.Splitting-up schemeCompactnessTightnessStochastic Navier-Stokes-α ModelConvergence for a splitting-up scheme for the 3D stochastic Navier-Stokes-α ModelPostprint Article