Ntumba, Patrice P.2016-10-132016-10-132012-04Ntumba, PP 2012, 'Clifford A-algebras of quadratic A-modules', Advances in Applied Clifford Algebras, vol. 22, no. 4, pp. 1093-1107.0188-7009 (print)1661-4909 (online)10.1007/s00006-012-0333-9http://hdl.handle.net/2263/57139A Clifford A-algebra of a quadratic A-module (E, q) is an associative and unital A-algebra (i.e. sheaf of A-algebras) associated with the quadratic ShSetX-morphism q, and satisfying a certain universal property. By introducing sheaves of sets of orthogonal bases (or simply sheaves of orthogonal bases), we show that with every Riemannian quadratic free A-module of finite rank, say, n, one can associate a Clifford free A-algebra of rank 2n. This “main” result is stated in Theorem 3.2.en© 2012 Springer Basel AG. The original publication is available at : http://link.springer.com/journal/6.Clifford A-morphismQquadratic A-moduleRiemannian quadratic A-moduleClifford A-algebraPrincipal A-automorphismEven sub-A-algebraA-antiautomorphismSub-A-module of odd productsClifford A-algebras of quadratic A-modulesPostprint Article