Tembeni, BabalwaSciorillo, AmandaInvernizzi, LukeKlimkait, ThomasUrda, LorenaMoyo, PhanankosiNaidoo-Maharaj, DashnieLevitties, NathanGyampoh, KwasiZu, GuoruiYuan, ZheMounzer, KaramNkabinde, SiphathimandlaNkabinde, MaguguGqaleni, NcebaTietjen, IanMontaner, Luis J.Maharaj, Vinesh J.2023-03-172023-03-172022-06-30Tembeni, B.; Sciorillo, A.; Invernizzi, L.; Klimkait, T.; Urda, L.; Moyo, P.; Naidoo-Maharaj, D.; Levitties, N.; Gyampoh, K.; Zu, G.; et al. HPLC-Based Purification and Isolation of Potent Anti-HIV and Latency Reversing Daphnane Diterpenes from the Medicinal Plant Gnidia sericocephala (Thymelaeaceae). Viruses 2022, 14, 1437. https://DOI.org/10.3390/v14071437.1999-4915 (online)10.3390/v14071437http://hdl.handle.net/2263/90152SUPPLEMENTARY MATERIAL : TABLE S1: Anti-HIV replication activity of the positive control efavirenz using the in vitro deCIPhR assay: TABLE S2: Anti-HIV replication activity of G. sericocephala root extracts using the in vitro deCIPhR assay: TABLE S3: Cytotoxicity of G. sericocephala root extracts using the in vitro deCIPhR assay; FIGURE S1: 1H NMR data of yuanhuacine A (1), acquired on a Bruker Avance III HD 500 MHz NMR spectrophotometer with Prodigy Probe, the compound dissolved in deuterated chloroform (CDCl3): FIGURE S2: 13C NMR data of yuanhuacine A (1), acquired on a Bruker Avance III HD 500 MHz NMR spectrophotometer with Prodigy Probe, the compound dissolved in deuterated chloroform (CDCl3): FIGURE S3: The DEBT NMR data of yuanhuacine A (1), acquired on a Bruker Avance III HD 500 MHz NMR spectrophotometer with Prodigy Probe, the compound dissolved in deuterated chloroform (CDCl3).Despite the success of combination antiretroviral therapy (cART), HIV persists in low- and middle-income countries (LMIC) due to emerging drug resistance and insufficient drug accessibility. Furthermore, cART does not target latently-infected CD4+ T cells, which represent a major barrier to HIV eradication. The “shock and kill” therapeutic approach aims to reactivate provirus expression in latently-infected cells in the presence of cART and target virus-expressing cells for elimination. An attractive therapeutic prototype in LMICs would therefore be capable of simultaneously inhibiting viral replication and inducing latency reversal. Here we report that Gnidia sericocephala, which is used by traditional health practitioners in South Africa for HIV/AIDS management to supplement cART, contains at least four daphnane-type compounds (yuanhuacine A (1), yuanhuacine as part of a mixture (2), yuanhuajine (3), and gniditrin (4)) that inhibit viral replication and/or reverse HIV latency. For example, 1 and 2 inhibit HIV replication in peripheral blood mononuclear cells (PBMC) by >80% at 0.08 g/mL, while 1 further inhibits a subtype C virus in PBMC with a half-maximal effective concentration (EC50) of 0.03 M without cytotoxicity. Both 1 and 2 also reverse HIV latency in vitro consistent with protein kinase C activation but at 16.7-fold lower concentrations than the control prostratin. Both 1 and 2 also reverse latency in primary CD4+ T cells from cART-suppressed donors with HIV similar to prostratin but at 6.7-fold lower concentrations. These results highlight G. sericocephala and components 1 and 2 as anti-HIV agents for improving cART efficacy and supporting HIV cure efforts in resource-limited regions.en© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Gnidia sericocephalaDaphnane-type compoundsReverse HIV latencyProtein kinase C activationAntiretroviral therapy (ART)Human immunodeficiency virus (HIV)Combination antiretroviral therapy (cART)Low- and middle-income countries (LMICs)Peripheral blood mononuclear cells (PBMC)HPLC-based purification and isolation of potent anti-HIV and latency reversing Daphnane Diterpenes from the medicinal plant Gnidia sericocephala (Thymelaeaceae)Article