Nyarukowa, ChristopherKoech, Robert K.Loots, Mattheus TheodorApostolides, Zeno2016-06-222016-07Nyarukowa, C, Koech, R, Loots, T & Apostolides, Z 2016, 'SWAPDT : a method for short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomics', Journal of Plant Physiology, vol. 98, pp. 39-48.0176-1617 (print)1618-1328 (online)10.1016/j.jplph.2016.04.004http://hdl.handle.net/2263/53292Climate change is causing droughts affecting crop production on a global scale. Classical breeding and selection strategies for drought-tolerant cultivars will help prevent crop losses. Plant breeders, for all crops, need a simple and reliable method to identify drought-tolerant cultivars, but such a method is missing. Plant metabolism is often disrupted by abiotic stress conditions. To survive drought, plants reconfigure their metabolic pathways. Studies have documented the importance of metabolic regulation, i.e. osmolyte accumulation such as polyols and sugars (mannitol, sorbitol); amino acids (proline) during drought. This study identified and quantified metabolites in drought tolerant and drought susceptible Camellia sinensis cultivars under wet and drought stress conditions. For analyses, GC-MS and LC-MS were employed for metabolomics analysis. %RWC results show how the two drought tolerant and two drought susceptible cultivars differed significantly (p ≤ 0.05) from one another; the drought susceptible exhibited rapid water loss compared to the drought tolerant. There was a significant variation (p < 0.05) in metabolite content (amino acid, sugars) between drought tolerant and drought susceptible tea cultivars after short-time withering conditions. These metabolite changes were similar to those seen in other plant species under drought conditions, thus validating this method. The Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) method presented here provides an easy method to identify drought tolerant tea cultivars that will mitigate the effects of drought due to climate change on crop losses.en© 2016 Published by Elsevier GmbH. All rights reserved. Notice : this is the author’s version of a work that was accepted for publication in Journal of Plant Physiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Plant Physiology, vol. 198, pp. 39-48, 2016. doi : 10.1016/j.jplph.2016.04.004.Abiotic stressAmino acid (AA)Camellia sinensisCarbohydratesDrought toleranceGC-MSLC-MSMetabolite profilingShort-time witheringTargeted metabolomicsSWAPDT : a method for short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomicsPostprint Article