
Spatial Statistics 65 (2025) 100877 

A
2
(

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

An optimised rabies vaccination schedule for rural settlements
Rian Botes a, Inger Fabris-Rotelli a,∗, Kabelo Mahloromela a, Ding-Geng Chen a,b

a University of Pretoria, Department of Statistics, South Africa
b College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA

A R T I C L E I N F O

Keywords:
Rabies
Sampling
Spatial sampling
Point patterns
Vaccination
Rural settlement
Kernel-weighted spatial sampling

A B S T R A C T

The timely and efficient administration of rabies vaccinations to animals in rural villages is
necessary to attain a state of herd immunity. Efficient sampling of households in a rural village is
of utmost importance in reaching the most animals for vaccination, with the least effort, and in
the lowest time. This research seeks to both optimise the spatial sampling scheme used to sample
households, as well as the route travelled by persons performing door-to-door vaccinations. The
walking time in minutes is regarded as the cost of a vaccination scheme and is minimised in this
paper. The distribution of houses in a rural village constitutes a spatial point pattern in R2, and
as such, spatial point pattern analysis techniques as well as some spatial sampling schemes are
applied throughout this research. The penultimate aim of this work is to provide policy makers
with additional tools to combat rabies, a disease which remains endemic to some countries in
West and Central Africa, and Asia.

Contents

1. Introduction .............................................................................................................................................................................. 2
2. Methodology ............................................................................................................................................................................. 3

2.1. Stopping point selection using k-means ............................................................................................................................ 3
2.2. Sampling schemes .......................................................................................................................................................... 4

2.2.1. Traditional simple random sampling (SRS) ......................................................................................................... 4
2.2.2. Traditional cluster sampling (TCS) ..................................................................................................................... 4
2.2.3. Uniform spatial sampling (USS) ......................................................................................................................... 4
2.2.4. Spatial stratified sampling (SSS) ........................................................................................................................ 5
2.2.5. Systematic regular spatial sampling (SRSS)......................................................................................................... 5
2.2.6. Systematic non-aligned spatial sampling (SnaSS)................................................................................................. 5
2.2.7. Systematic hexagonal spatial sampling (SHSS) .................................................................................................... 5
2.2.8. Kernel-weighted spatial sampling scheme ........................................................................................................... 5

2.3. Algorithms to calculate walking distance.......................................................................................................................... 6
3. Results ...................................................................................................................................................................................... 6

3.1. The data........................................................................................................................................................................ 6
3.2. 𝑘-means parameter tuning............................................................................................................................................... 7
3.3. Walking distance distributions ......................................................................................................................................... 8
3.4. Comparison of the sampling schemes ............................................................................................................................... 9

4. Discussion and future work ........................................................................................................................................................ 10
5. Conclusion ................................................................................................................................................................................ 12

Acknowledgements .................................................................................................................................................................... 12

∗ Corresponding author.
E-mail address: inger.fabris-rotelli@up.ac.za (I. Fabris-Rotelli).
https://doi.org/10.1016/j.spasta.2024.100877
Received 1 April 2023; Received in revised form 5 December 2024; Accepted 9 December 2024
vailable online 17 December 2024 
211-6753/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/spasta
https://www.elsevier.com/locate/spasta
mailto:inger.fabris-rotelli@up.ac.za
https://doi.org/10.1016/j.spasta.2024.100877
https://doi.org/10.1016/j.spasta.2024.100877
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spasta.2024.100877&domain=pdf
http://creativecommons.org/licenses/by/4.0/


R. Botes et al.

a

u

a

f
i
o
c
n
t

d
f

i

s

Spatial Statistics 65 (2025) 100877 
Appendix. Algorithms ................................................................................................................................................................ 12
References................................................................................................................................................................................. 14

1. Introduction

A One Health research approach to combatting rabies requires attention paid not only to human health, but also to animal
health (Lebov et al., 2017). Not only is it cheaper to vaccinate animals than humans against rabies (Lavan et al., 2017), but the
vaccination of animals is the only way to confidently curb the spread of rabies in a rabies endemic region (Mbilo et al., 2021).
Since dog transmitted rabies accounts for nearly all rabies cases (World Health Organization, 2018), annual mass dog vaccination
campaigns are often carried out in rabies stricken regions (Hampson et al., 2009; Wera et al., 2017). Such sustained mass dog
vaccination campaigns have proven effective in reducing instances of rabies in rabies endemic countries (Arief et al., 2017; Lavan
et al., 2017; Mbilo et al., 2021; Undurraga et al., 2020). Due to the fact that rabies is most common in developing and resource-
limited nations on the African and Asian continents (Masiira et al., 2018), the vaccination schedule developed in this research is
optimised for rural areas where rabies is especially prevalent (Mbilo et al., 2021). Rural village data from a household census in
Tanzania is therefore used to implement the optimised rabies vaccination schedule.

Two main alternatives to dog vaccination exist. The culling of a dog population under which rabies is prevalent is one option,
while the vaccination of humans is another. The culling of a dog population is not as effective as animal vaccination, and is regarded
s an ‘expensive distraction’ from the more important dog vaccination (Arief et al., 2017). From the study performed in Arief et al.

(2017), dog culling had no effect, and in certain regions even worsened the condition of rabies. This is most likely due to complacency
following what seems to have been an effective wave of dog culling. The vaccination of a human population, and post-exposure
treatment is considerably more expensive than vaccinating dogs (Lavan et al., 2017). Furthermore, vaccinating humans instead
of dogs does little to prevent the spread of rabies among a dog population. Focusing only on human vaccination leaves the virus
nchecked in the animal population. Rabies infections will therefore continue to spread in regions where it is already endemic,

posing a threat to bordering regions currently free of rabies. The vaccination of dogs therefore remains the most effective means to
control the spread of rabies and in the long term, eradicate the disease from a previously endemic region. This research therefore
focuses efforts on optimising a vaccination schedule aimed at a dog population, instead of a human population.

The four main methods for vaccination are static point vaccination stations, door-to-door vaccination, capture-vaccinate-release
methods, and oral vaccinations in the form of medically treated dog treats placed around a village upon which, once swallowed,
 dog receives a dosage of a rabies vaccination (Undurraga et al., 2020). The most popular method of dog vaccination is the use

of static vaccination points (Fabris-Rotelli et al., 2020). This method, however, while cost effective, is dependent on dog owners
bringing their dogs to these vaccination points. A door-to-door vaccination scheme ensures greater vaccination coverage by taking
the vaccine to the dog, instead of waiting for the dog owner to bring their dog to the vaccine. This research therefore seeks to
optimise a door-to-door vaccination schedule.

This paper focuses on a rural village setting for vaccination, specifically in Tanzania, Africa. The aim is to design a door-to-door
vaccination scheme that vaccinates all animals found at a residence.

A study performed by Knobel et al. (2008) provides further insights into why rural households in Tanzania own dogs. It was
ound that dogs are more prominent in households that also own livestock, however only 12.7% of these livestock-owning households
ndicated cattle herding and protection as their cardinal reason for domesticating dogs. What is interesting is that 23.5% of livestock-
wning households indicated that their primary reason for keeping dogs is to deter rodents and other pests from infesting their
rops. Perhaps the most reassuring finding for this door-to-door vaccination schedule is that the majority of both livestock and
on-livestock-owning households (61.9% and 76.4% respectively) own dogs to protect their homes from unwanted intruders. While
his suggests that a large proportion of Tanzanian-owned dogs would be present upon the arrival of a vaccinator, a significant

percentage of dogs can almost definitely be expected absent while roaming. Vaccinating all dogs the vaccination encounters will
obtain larger coverage. Methods other than a door-to-door vaccination schedule will need to be employed to reach domesticated
(owned) dogs who are either herding animals, or protecting crops. The matter of inoculating free-roaming (unowned) dogs can also
not be addressed by a door-to-door vaccination technique.

The vaccination of owned dogs, who are out in crops and pastures during the day is arguably more imperative than vaccinating
ogs that remain at home, as these travelling dogs are at a greater risk of encountering other carriers of this disease, especially
ree-roaming dogs or bats.

It may also be more likely for such dogs to contract rabies as they roam around outside the village. Younger dogs are also more
susceptible to infection due to the fact that they are less likely to be vaccinated than older dogs, who were alive during previous
vaccination campaigns. It is also a belief that puppies should not be vaccinated, in fear that their immune systems are not yet
mature enough to seroconvert against a rabies vaccine (Arief et al., 2017; Morters et al., 2015). This idea is however untrue and
belief therein may lead to greater risk for the young dog population contracting and transmitting rabies (Morters et al., 2015). This
research aims to further equip both private and public health sectors with a novel method to better understand the distribution of
potential rabies risk in rural areas, and to then mitigate this risk through effective mass dog vaccination campaigns. This research
s also performed to be in line with the Zero by 30 campaign (World Health Organization, 2018, 2019) led by the World Health

Organisation (WHO).
This research improves upon the vaccination scheme of Fabris-Rotelli et al. in Fabris-Rotelli et al. (2020) by applying a travelling

alesman algorithm instead of a minimum spanning tree algorithm to calculate the walking distance between houses. In addition, a
2 
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new sampling scheme is also proposed in this research, named the kernel-weighted spatial sampling scheme. Therein, the stopping
oint selection process is optimised by means of determining the least amount of stopping points needed to reach the maximum
umber of houses. While Fabris-Rotelli et al. used a kernel density estimate to determine stopping points, this research considers
-means to select stopping points. Ultimately, this study further optimises the simulation framework proposed by Fabris-Rotelli et al.

The remainder of this document is structured as follows. Section 2 gives a thorough presentation of the methodology and
ssumptions used to construct the optimised vaccination schedule. Section 3 provides further insight into the dataset used in the

paper and the parameter tuning for the k-means algorithm. Section 4 discusses the results as well as future work. This paper is then
oncluded in Section 5.

2. Methodology

The proposed vaccination schedule herein introduces a new sampling scheme, the kernel-weighted spatial sampling scheme.
Stopping points are selected to which a vaccinator should travel using a vehicle, and houses within 200 metres of these stopping
points are deemed accessible to a door-to-door vaccinator. The distance of 200 metres is deemed reasonable for a vaccinator on
foot (see Fabris-Rotelli et al. (2020) for additional explanation). Different sampling schemes are then used to sample at least 70%
of the accessible houses for dog vaccination, and the distance required to walk from each stopping point and the sampled houses
is calculated. The sampling scheme resulting in the shortest total walking distance to reach 70% of all the dogs in a village is
the preferred sampling scheme. This research further seeks to improve the methods proposed by Fabris-Rotelli et al. by employing
a travelling salesman algorithm (TST) instead of a minimum spanning tree (MST) algorithm when calculating the route that a
vaccinator should walk between sampled houses. It is briefly explained in the methodology of this research that a TST approach
always results in a walking distance that is shorter than that calculated by an MST (Michael and Kurt, 2007). A second contribution
s that this research optimises the parameter 𝑘 of the 𝑘-means algorithm used to select stopping points. While Fabris-Rotelli et al.
sed a kernel density estimate as well, the bandwidth parameter of this kernel density estimate is not optimised, and requires human
ntervention.

We define some notation next to enable to presentation of the methodology that follows. Let 𝑁 denote the total number of house
in the population, let 𝑛 denote the number of houses in a sample from 𝑁 , such that 𝑛 < 𝑁 , and let 𝑆 denote a sample itself. For
a village with 𝐾 stopping points, the sample 𝑆 of 𝑛 houses is segmented into these 𝐾 groups. Furthermore, let 𝑛𝑘, 𝑘 = 1, 2,… , 𝐾
denote the number of sampled houses within a 200 metre radius from the 𝑘th stopping point so that 𝑛 =

∑𝐾
𝑘=1 𝑛𝑘. This 200 metre

adius represents the accessible houses at stopping point 𝑘. We denote the total number of accessible houses in a village as 𝑁𝑎 ≤ 𝑁 .
he aim of the sampling herein is to sample from 𝑁𝑎. The vaccination coverage is represented as the percentage of 𝑁 then sampled.

The 70% coverage required by WHO will thus only be reached if the 𝐾 stopping points are well designed. Our simulation study
investigates this within the various possibilities.

2.1. Stopping point selection using k-means

The ideal stopping point algorithm allocates the least number of stopping points while simultaneously maximising the number
of accessible houses 𝑁𝑎. The method to select stopping points is 𝑘-means (MacKay, 2003).

Let 𝑥 denote a point pattern, spawned by some unobserved point process 𝑋. Furthermore, let the point pattern 𝑥 be observed
n the window 𝑊 . The 𝑘 initial values for the 𝑘-means algorithm can be chosen from this point pattern 𝑥, or as random (or pre-
etermined) points on the window 𝑊 . Unless the initial values of the 𝑘-means algorithm is fixed, a different clustering solution
s produced after each instance. In the current application, this means that the same number of 𝑘 stopping points can result in
ifferent sets of attainable houses 𝑁𝑎, and thus different coverage percentages in terms of houses. The fact that the 𝑘-means clustering
lgorithm produces a different solution depending on random starting values poses a slight challenge. For some fixed number of 𝑘
topping points, the location of these points can vary significantly depending on the starting values. Since the placement of the 𝑘

stopping points vary, so too does the important value of 𝑁𝑎. In a very real sense, some sets of 𝑘 initial values are better than others,
given that they result in a final solution with more accessible houses.

The 𝑘-means stopping point selection algorithms require the parameter 𝑘 to be set as a priori. This parameter determines the
umber of stopping points in a village. Since only houses within a 200 metre radius of a stopping point are considered accessible
o a vaccinator, more stopping points are required in order to increase 𝑁𝑎. While the distance travelled by a vaccination between
topping points (by car) is considered negligible in this research context, it remains necessary for the number of stopping points
o be as little as possible to achieve a practical solution, while also ensuring that 𝑁𝑎 is as large as possible. The reason why the
istance travelled between stopping points is considered negligible is because vaccinators would use vehicles to travel between
topping points. While this will still take time and cost fuel, the cost relative to the vaccinators time and energy spent walking
etween houses and vaccinating animals is different enough to warrant the driving costs to be excluded from this study. The cost
f moving between stopping points should, of course, not be ignored when planning a rabies vaccination campaign. It is therefore
his cost that should be minimised.

The bullet point outline below shows the step-by-step process used to generate walking distance distributions in rural villages,
in order to determine which sampling scheme yields the optimal solution (shortest walking distance). This process should also be
sed when the reader would like to run their own simulation using the code provided here, on GitHub.

1. Select a sampling scheme.
3 
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2. Select a TST algorithm (The farthest insertion heuristic is recommended).
3. Select a sampling coverage (30%, 40%, 50%, 60% or 70%).
4. Find the value of 𝑘 needed to generate the right stopping point configuration for the desired coverage (see Table 1 for

𝑘-means).
5. Generate the 𝑘 stopping points using your selected stopping point algorithm (remember to initiate 𝑘-means with the right

random seed from Table 1.)
6. Generate 10 000 random samples from the set of attainable houses 𝑁𝑎 using your chosen sampling scheme.
7. Calculate the total walking distance between each of the 𝑘 stopping point and its surrounding houses. Do this for every sample

using your chosen TST algorithm. The result is a set of 10 000 walking distances.
8. Calculate descriptive statistics on the 10 000 walking distances, and plot the distribution.

2.2. Sampling schemes

A trade-off exists between obtaining maximum vaccination coverage, and keeping the walking distance of a door-to-door
vaccination approach as low as possible. Since the household locations in a village constitute spatial point pattern data, the use
of spatial sampling schemes seem an obvious approach given the current spatial context. Two traditional (non-spatial) sampling
schemes are also explored here for further insight, and for the purpose of comparing the effectiveness of spatial sampling schemes
to traditional sampling schemes in addressing this trade-off between vaccination coverage and walking distance. This research looks
nto seven of the eight sampling schemes used by Fabris-Rotelli et al. in Fabris-Rotelli et al. (2020), while also applying the proposed

new spatial sampling scheme.
The two non-spatial sampling schemes applied in this research are the simple random sampling scheme and the traditional

stratified sampling. Five spatial sampling schemes are applied in this research. These schemes are the uniform, stratified, systematic
egular, systematic non-aligned, and systematic hexagonal spatial sampling schemes

2.2.1. Traditional simple random sampling (SRS)
Traditional simple random sampling (SRS) is performed directly on the list of households in a village without considering their

eographic location. The sample() function in R (R Core Team, 2022) is used to execute SRS without replacement. Sampling is
configured without replacement since it is not necessary to visit the same house for vaccination more than once. The sample size
is always specified to be 70% of the available houses, 𝑁𝑎, constituting a sample size of 𝑛 = 0.7 of 𝑁𝑎. The SRS scheme ensures that
ach household in 𝑁𝑎 has an equal chance of being selected, with a probability of selection equal to (𝑁𝑎

𝑛

)−1.

2.2.2. Traditional cluster sampling (TCS)
Having determined 𝐾 stopping points, a traditional cluster sampling (TCS) scheme samples a subset of the 𝐾 stopping points,

here each stopping point is regarded as a stratum (the clusters). If the 𝑘th stopping point is sampled as one of the strata, then the
𝑛𝑘 accessible houses around that stopping point form part of the sample 𝑆. cluster sampling in this research is performed by first
considering all 𝑁𝑎 accessible houses in each of the 𝐾 strata as being sampled, at which point 𝑛 = 𝑁𝑎. One stratum is then removed at
andom, and the sample 𝑆 then consists of all houses excluding those in the 𝑘th stratum that was removed. The proportion 𝑝 = 𝑛

𝑁𝑎
s then recorded, and another stratum is removed, resulting in a smaller sample. This process is continued until 𝑝 = 0.7. Setting
exactly equal to 0.7 is rarely possible while randomly removing strata, and for this reason, the removal process is stopped one

teration before 𝑝 < 0.7, at which point 𝑝 is some value slightly above 0.7. In order to set the sample size 𝑛 exactly equal to 70%
f the available houses 𝑁𝑎, the difference between 𝑛 and 0.7 × 𝑁𝑎 is calculated, and points equal to this difference is randomly
emoved from the sample 𝑆. This ensures that the number of points 𝑛 in 𝑆 is 70% of 𝑁𝑎 at every iteration of the TCS scheme. This

adjustment allows for an accurate comparison between the TCS scheme and the results of other sampling schemes that are able to
sample 70% of 𝑁𝑎 without any adjustment. This process is delineated in Algorithm 2, and may be accessed using this link.1

2.2.3. Uniform spatial sampling (USS)
The uniform spatial sampling (USS) scheme performs sampling by first generating 𝑝 random points on the spatial window 𝑊

under question. Since we are working in R2, each random coordinate on 𝑊 is generated by a set of two random uniform values
ithin the bounds of the window 𝑊 . The generation of such points are achieved by using the runifpoint() function from the

spatstat library (Baddeley and Turner, 2005) in R. Each set of uniformly generated points in 𝑊 constitute a randomly placed
polar coordinate. The house closest in terms of Euclidean distance to this point is sampled.2 To ensure that a house is not sampled

ore than once, the sampled house at the 𝑖th iteration is removed from 𝑊 before sampling the next house at iteration 𝑖 + 1. The
umber of uniform spatial points generated in 𝑊 is set to be equal to 70% of the accessible houses 𝑁𝑎.

1 The reason why this sampling scheme is described in an algorithm is because no R package exists that can be used to directly apply the TCS sampling
scheme as described in this research. The algorithm at this link is therefore meant to clarify this sampling scheme for the reader, making it easier to replicate it.

2 A fast and slow animation of the uniform spatial sampling scheme applied to the Machochwe village may be viewed here.
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2.2.4. Spatial stratified sampling (SSS)
The spatial stratified sampling (SSS) scheme considers each stopping point to be the centre of a stratum, and all the accessible

houses around each stratum are available for sampling. This is a similar approach to the traditional stratified samplings (TCS)
scheme. What is different, however, is that the SSS scheme samples 70% of the houses over every stratum. The TCS scheme on the
other hand only selects some of the strata, and considers all of the houses accessible around each strata as part of the sample. The
SSS scheme generates 𝑛𝑘 random points within a disc of radius 200 metres around the 𝑘th stopping point, and then samples the 𝑛𝑘
houses which are closest to the 𝑛𝑘 randomly generated points. In order to achieve the desired household coverage of 70% of 𝑁𝑎,
the number of sampling points 𝑛𝑘 in the 𝑘th stratum is calculated to be 70% of the houses around the 𝑘th stopping point. The SSS
algorithm3 is delineated in Algorithm 3 for further clarity.

2.2.5. Systematic regular spatial sampling (SRSS)
For a sample size of 𝑛, the window 𝑊 is broken into 𝑞 equally sized squares and a point is generated in the centre of each square.

his results in a regular grid of points on 𝑊 . The rsyst function from the spatstat package is used to generate such a regular
oint pattern in 𝑊 . The house closest to the 𝑖th generated point is then sampled, and removed to prevent that point from being
ampled again. The rsyst function, however, does not generate the same number of sampling points each iteration.

A form of manipulation to the generated pattern is therefore required in order to ensure that exactly 70% of the available houses
𝑁𝑎 are being sampled for every iteration. This manipulation is similar to what is done for the traditional stratified sampling scheme
in Section 2.2.2, and for the spatial stratified sampling scheme from the previous section. If the number of points 𝑝 in the systematic
egular spatial point pattern is greater than 0.7 ×𝑁𝑎, the points equal to the difference between 𝑝 and 0.7 ×𝑁𝑎 is randomly removed

from the sampling pattern, ensuring that 𝑛 = 0.7 ×𝑁𝑎.

2.2.6. Systematic non-aligned spatial sampling (SnaSS)
This fourth spatial sampling scheme follows a similar approach to the previous SRSS scheme. That is, the window 𝑊 is also

partitioned by a grid of 𝑞 squares, however instead of generating points in the centre of each square, points are generated in a
random location within each square. The resulting set of generated points are therefore still regularly spread out across 𝑊 , but with
some more variation as opposed to the SRSS scheme.

The spsample function from the spatstat R package (Baddeley and Turner, 2005) is used to sample 0.7 ×𝑁𝑎 points in 𝑊 .
o sample these spatial locations in a non-aligned fashion, the option type = ‘nonaligned’ is specified for the spsample
unction. Despite being able to specify exactly how many points should be sampled in the window 𝑊 , the actual number of realised
oints often differs from the goal of 0.7 ×𝑁𝑎. The point pattern manipulation approach used for the SRSS scheme is therefore also
sed here to ensure that exactly 70% of 𝑁𝑎 is sampled.

2.2.7. Systematic hexagonal spatial sampling (SHSS)
This final sampling scheme partitions the window 𝑊 with a grid of ℎ hexagons instead of squares, and generates a point at the

centre of each hexagon. Similar to the previous four spatial sampling schemes, a house is sampled if it is the closest house to one of
the generated points. To generate points for the SHSS scheme, the spsample function from the spatstat (Baddeley and Turner,
2005) is used again, but here with the option type = ‘hexagonal’ specified. The SHSS scheme also requires manipulation of its
samples, when the sample size 𝑛 is in excess of the 0.7 ×𝑁𝑎 goal. Any iterations of the SHSS scheme resulting in a sample size less
than the desired goal is rejected, and subsequent iterations are run until 𝑛 is equal to, or greater than 0.7 ×𝑁𝑎.

2.2.8. Kernel-weighted spatial sampling scheme
A new sampling scheme is introduced and applied here. This sampling scheme is named the kernel-weighted spatial sampling

(KWSS) scheme. This probability-based spatial scheme directly exploits the spatial distribution of each rural village in order to
obtain a more representative sample of houses. As a probability-based sampling scheme, the KWSS scheme assigns a probability of
being sampled to each spatial location in the window 𝑊 . The KWSS scheme is therefore partial towards certain spatial locations,
and will generate more samples in certain areas than in others.4 Spatial locations in 𝑊 with a higher density of houses is preferred
over lower-density regions.

The sampling mechanics of this newly proposed scheme works in a similar fashion to the five previously discussed spatial
sampling schemes. That is, after generating a set of spatial sampling points on 𝑊 , the house nearest to each spatial sampling
point is chosen to form part of the sample of houses to be visited by a vaccinator. The manner in which these sampling points are
generated, however, is different from the previous five schemes, and no function within the spatstat package (Baddeley and

urner, 2005) exists to generate a set of points for this scheme. Before generating the set of sampling points, a Gaussian kernel
density estimate 𝜆̂(𝑢) of the village point pattern under consideration is computed for each spatial location 𝑢. This density estimate
is then used as a map to dictate the likelihood of a spatial sampling point being generated at a given point in space. Dense areas

ith a larger 𝜆̂(𝑢) receive a higher likelihood of being sampled than areas where housing is sparse. This results in more houses being
ampled in regions where the point pattern is more dense.

3 This algorithm may be viewed using this link.
4 A comparison between animations of the uniform spatial sampling (USS) scheme and the KWSS scheme here shows how the KWSS scheme is able to secure

a much more representative sample from the high-density areas of Machochwe than the USS scheme.
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The intensity 𝜆(𝑢) may be estimated using either corrected or uncorrected kernel estimators (Baddeley et al., 2015), where the
corrected estimator adjusts for edge effects. An uncorrected kernel estimator is used here, and the edge effects are accounted for
by adding a buffer to the spatial window 𝑊 . This buffer extends the border of 𝑊 with 4 times the bandwidth value ℎ, or, four
standard deviations.

The uncorrected kernel estimator used for the KWSS scheme is given by

𝜆̂(𝑢) =
𝑛
∑

𝑖=1
𝜅ℎ(𝑢 − 𝑥𝑖), (1)

where 𝜅ℎ(𝑢) = ℎ−1𝜅(ℎ−1𝑢) denotes some probability density function used as a kernel to estimate 𝜆̂(𝑢) (Diggle, 1985). The kernel
used in this research is the isotropic Gaussian kernel, resulting in

𝜆̂(𝑢) = 1
√

2𝜋 ℎ2
𝑛
∑

𝑖=1
exp

{

−1
2

(

(𝑢 − 𝑥𝑖)2

ℎ

)}

. (2)

This kernel is used because it is simply a function of distance and does not account for the direction as well (Baddeley et al.,
2015). This is ideal for the current use case, as the direction is not of importance. The parameter ℎ from Eq. (2) is the standard
eviation, or scale parameter of the Gaussian kernel, which is referred to as the bandwidth of the kernel (Baddeley et al., 2015).

Smaller values of the bandwidth ℎ result in a coarser estimate of 𝜆(𝑢) while large value of ℎ yield a smoother estimate. In this
research, an ℎ parameter of 50 is used, as it yielded results better able to attain the 70% (see Botes (2023) for details). The function
density.ppp from the package spatstat (Baddeley and Turner, 2005) is used to compute estimates for 𝜆̂(𝑢), and the probability
𝑝𝑖 of generating a sampling point at the spatial location 𝑢𝑖 is equal to

𝑝𝑖 =
𝜆̂(𝑢𝑖)

∑𝑛
𝑖=1 𝜆̂(𝑢𝑖)

. (3)

The kernel weighted spatial sampling scheme is summarised in Algorithm 4, which may be viewed using this link.

2.3. Algorithms to calculate walking distance

Different methods can be used to compute the route followed by a vaccinator from the 𝑘th stopping point to each sampled house
𝑛𝑘. The method employed by Fabris-Rotelli et al. in Fabris-Rotelli et al. (2020) is a minimum spanning tree (MST), as it is less
opmputationally expensive than a TST algorithm. In this research, the travelling salesman tour (TST) (Skiena, 1990) method is

used. The reason why the MST algorithm is not used, is because it generates a tree. It is not practical for a vaccinator to walk on a
path generated by a tree, since the vaccinator would need to traverse each edge of the MST twice to visit each house at least once
nd then return back to the stopping point. This would result in unnecessary walking distance. It is therefore more intuitive and
ptimal to treat this problem as a travelling salesman problem. When constructing a TST from an MST graph, it can be shown that
he worst case solution for a TST is the MST (Laporte, 1992). Most heuristic algorithms will always provide a solution that is less
han two times the total distance along an MST graph (Michael and Kurt, 2007).

Several algorithms to aproximate the TST problem exist, such as the Lin–Kernighan (Lin and Kernighan, 1973) heuristic
algorithm, and variation of the nearest neighbour and insertion algorithms (Rosenkrantz et al., 1977). The algorithm used in this
research is the farthest insertion algorithm (Rosenkrantz et al., 1977), which is implemented using the TSP package (Michael and

urt, 2022) in R. An in-depth simulation comparison between eight different TST algorithms are drawn in Botes (2023), and the
farthest insertion algorithm was found to yield the fastest computation time, given its accuracy.

3. Results

3.1. The data

The Tanzanian village dataset5 was compiled from a census of 90 rural Tanzanian villages conducted between August 2014 and
October 2016. Relevant fields in the dataset include the name of the village where each house is situated, the GPS coordinates of
each house, and the number of dogs above and below 3 months of age. The dataset also makes a distinction between vaccinated and
nvaccinated dogs. In this application, however, all dogs are considered to be unvaccinated. Whether or not vaccinated dogs are

included in results will not affect the findings in terms of which TST algorithm, stopping point algorithm and sampling scheme is
the most optimal. If the methods of this research were to be applied to design a rabies door-to-door vaccination schedule based from
ecent census data, all dogs that have already been vaccinated should be excluded before sampling the houses. While the dataset
istinguishes between puppies (those dogs in the dataset which are younger than 3 months of age) and adults dogs, these two fields
ere aggregated and no distinction is drawn between dogs of different ages. It must be noted that this dataset also includes houses

that do not own any dogs. These houses were not considered when calculating the optimised rabies vaccination schedule.

5 The use of this dataset was approved by the Faculty of Natural and Agricultural Science Research Ethics committee at the University of Pretoria under the
eference NAS339/2019. The data used in the paper was obtained from Katie Hampson (https://www.gla.ac.uk/schools/bohvm/staff/katiehampson/).
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Fig. 1. Satellite images of Machochwe and Morotonga.

Fig. 2. The distribution of coverage obtained from 1000 instances of 𝑘-means with 𝑘 = 50, and random initial values, in Machochwe.

From the 90 villages in the census dataset, two villages are chosen for the purpose of this research. The village of Machochwe
and the village of Morotonga. These two villages are displayed in Fig. 1. Morotonga is a smaller village, with only 246 dog-owning
households, while Machochwe is a relatively large village, containing 632 dog-owning households. The houses in Morotonga are
also more regularly spread out over space, while the village of Machochwe is more clustered. On average there is more than one
dog at each house in the villages (Fabris-Rotelli et al., 2020).

3.2. 𝑘-means parameter tuning

Finding the 𝑘 which achieves the maximum coverage with the smallest number of stopping points is achieved by means of a
simulation study. This simulation study comprises of calculating the minimum number of stopping points required to reach different
coverage goals. The different coverage goals are 30%, 40%, 50%, 60% and 70%. Although the aim is of course 70%, the simulation
study investigates also lower values to understand the sampling algorithms better. Calculating the optimal 𝑘 for different coverages
aids in determining with greater certainty which of the sampling schemes are the most optimal in minimising walking distance,
and maximising vaccination coverage. It would, for example be interesting to verify if a sampling scheme which is optimal at 70%
coverage, is also optimal at 30%, 40%, 50% and 60% coverage. Since each sampling scheme strictly samples 70% of 𝑁𝑎, the optimal
number of stopping points for each coverage is the same for each of the eight sampling schemes.

To optimise the parameter 𝑘 for each of the five coverage thresholds, the lowest possible 𝑘 yielding each of the five thresholds
must to be found. Table 1 shows the minimum value of 𝑘 necessary in order to reach each of the five coverage thresholds for
Morotonga and Machochwe respectively. Finding these values of 𝑘 is done using an iterative approach. Fig. 2 shows the distribution
of sampling coverages possible when running 𝑘-means 1000 times with different initial values at each iteration. After each iteration,
70% of the attainable houses around the 50 stopping points are sampled, and the resulting coverage percentage is noted. Fig. 2
illustrates that this coverage can vary between a 34% and 40% in the village of Machochwe. The approach to optimise 𝑘 therefore
requires several iterations of 𝑘-means to be run for different values of 𝑘, to determine which 𝑘 is the minimum required to reach a
desired coverage threshold at least once.

To illustrate the iterative approach used to optimise the 𝑘 in 𝑘-means, say that one would like to minimise (optimise) the value
of 𝑘 needed to reach the 30% coverage threshold in the village of Morotonga. The process begins by selecting a reasonable value
7 
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Table 1
The minimum 𝑘-means value of 𝑘 necessary to reach each coverage goal in Morotonga and
Machochwe. The probability of reaching a coverage with some 𝑘, and the random seed for the
𝑘-means starting points are also tabulated.
Minimum 𝑘 for Morotonga

Coverage goal k Coverage Probability Random seed

30% 11 30.08% 5.7% 4
40% 15 40.24% 0.6% 26
50% 20 50.00% 7.3% 15
60% 26 60.16% 0.1% 697
70% 50 69.92% 0.2% 326

Minimum 𝑘 for Machochwe

Coverage goal k Coverage Probability Random seed

30% 36 30.22% 1.8% 193
40% 50 40.03% 0.5% 999
50% 68 50.00% 0.7% 174
60% 94 60.28% 0.2% 84
70% 205 69.94% 0.1% 13

of 𝑘, which we will set as 8. Next, 1000 iterations of 𝑘-means is executed. A random seed of 𝑖 is set using the set.seed function
in R (R Core Team, 2022) at each iteration, where 𝑖 corresponds to the iteration number, 𝑖 = 1, 2,… , 1000. Doing so allows us to fix
the random starting points of the 𝑖th 𝑘-means iteration with a seed of 𝑖, making the results reproducible. If, after 1000 iterations,
no stopping point solution allowed the SRS scheme to attain to the sampling threshold of 30%, another 1000 iterations of 𝑘-means
is executed, using a 𝑘 = 9. This process is repeated 𝑗 times for 𝑗 = 0, 1, 2,… until the parameter 𝑘 + 𝑗 is found for which the SRS
scheme can reach the 30% coverage threshold at least once over the 1000 iterations. The optimal 𝑘 in this example is the first 𝑘

for which
0.7 ×𝑁𝑎

𝑁
is greater than 0.3 for at least one of the 1000 iterations. In Table 1, the value of 𝑗 = 3, since three different 𝑘

values were tested before coverage of at least 30% was reached.
The column titled ‘Probability’ in Table 1 indicates that 57 of the 1000 𝑘-means iterations achieved coverage of at least

0%, hence the probability of reaching the 30% coverage threshold with 𝑘 = 11 is 5.7%. Note that while the column is titled
Probability’, the probabilities in this column should be seen as estimates of the true, unknown probability. Ascertaining a more
ccurate probability requires larger simulation studies to be performed. The probabilities displayed in Table 1 are however deemed
ccurate enough for the purposes of this research. The ‘Random seed’ column from Table 1 indicates that a random seed of 4 may be
sed to generate a 𝑘-means stopping point solution with 𝑘 = 11, that will also result in a sampling coverage of 30.08%. This random
eed of 4 is used in the upcoming Section 3.3 to fix the sampling coverage when calculating the walking distance distributions for

each sampling scheme. It is not desirable for each iteration of 𝑘-means to produce a different household coverage. Walking distance
is undeniably a positive function of household coverage, and it is therefore important to keep household coverage fixed at some
hreshold when comparing the walking distance between sampled houses for each sampling scheme.

Drawing a comparison between the SRS scheme which, for arguments sake, could require 13 km walking distance to reach 40%
of houses and the USS scheme requiring 15 km to reach 46% is no comparison at all, since the coverage percentages vary. It is
herefore necessary to fix the random initial values of the 𝑘-means algorithm to ensure that the value of 𝑁𝑎 remains constant for
ach iteration of the 𝑘-means algorithm. It was found, for example, that setting a random seed at 26 yields a 𝑘-means solution
here 40.24% of houses in Morotonga are accessible for sampling. By setting this determined seed value seed at each iteration, it

s possible to compare the performance of the eight sampling schemes with a constant house coverage.
Having optimised the parameter 𝑘 for the k-means algorithm in the previous section, this section performs a simulation study to

determine which of the eight sampling schemes is the most optimal for a door-to-door vaccination schedule. That is, which sampling
scheme is able to sample 70% of the attainable houses provided by the stopping point algorithms, such that the walking distance
between each stopping point and the sampled houses is a minimum. The same five coverage thresholds from the previous sections
are used to ascertain which sampling scheme is most optimal for the 30%, 40%, 50%, 60% and 70% coverage thresholds. Remember
that each of the sampling schemes introduced in Section 2.2 is set up to sample 70% of the attainable houses 𝑁𝑎. By varying the
alue of 𝑘 for a stopping point algorithm (and therefore changing the value of 𝑁𝑎), it is possible to increase the sample size 𝑛, as a
roportion of the total number of houses 𝑁 .

3.3. Walking distance distributions

To illustrate the method used to generate a walking distance distribution, consider the following example. To calculate the
istance that a vaccinator needs to walk to vaccinate 30% of the dog-owning households in Morotonga, the 𝑘-means algorithm with
𝑘 of 11 must first be executed with a random seed of 4. By sampling 70% of the attainable houses around these stopping points, the

sample size 𝑛 is exactly6 30.08% of the total number of houses 𝑁 , in Morotonga. Since every sampling schemes randomly samples

6 See Table 1.
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Table 2
Descriptive statistics on the 10 000 instances of each sampling scheme executed for the five different coverage thresholds in the village of Morotonga, after using
he 𝑘-means algorithm to select stopping points. The lowest statistics for each row are highlighted in bold, and the highest in italics.
Walking distance statistics per sampling scheme: Morotonga K-means

30% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 9.251 9.9352 9.8867 9.289 9.8583 7.7153 9.8508 8.8559
Median 9.2604 9.9454 9.8882 9.2953 9.8555 7.7852 9.8583 8.8658
Std. Dev. 0.3048 0.1293 0.1463 0.2639 0.154 0.4305 0.2205 0.3689
Min. 8.0519 9.3719 9.323 8.3329 9.1202 6.6639 8.9965 7.4288
Max. 10.1954 10.2984 10.363 10.1685 10.2566 8.4373 10.5657 10.1541

40% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 12.687 13.1961 13.1024 12.4969 13.0704 10.6235 12.9317 12.2532
Median 12.6995 13.1855 13.1054 12.5039 13.0937 10.634 12.9383 12.2618
Std. Dev. 0.3483 0.2423 0.2337 0.321 0.2323 0.4376 0.3275 0.3973
Min. 10.9004 12.2121 12.1474 11.2119 12.1129 9.321 11.5781 10.6746
Max. 13.8769 14.0131 13.9253 13.6573 13.7562 11.6625 14.0569 13.5412

50% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 15.269 16.1874 16.0916 14.5923 16.0298 12.8667 15.6523 14.6833
Median 15.2763 16.2002 16.0967 14.5962 16.038 12.8749 15.6568 14.6894
Std. Dev. 0.4117 0.2555 0.2497 0.3666 0.2686 0.4359 0.3687 0.4647
Min. 13.9033 15.246 15.1539 13.2649 15.0655 11.3018 14.3006 12.7787
Max. 16.7057 16.9079 16.9875 15.8401 16.9839 14.0726 16.8071 16.2195

60% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 19.1808 20.138 20.0353 18.1423 20.0623 16.3266 19.3408 18.5249
Median 19.185 20.1544 20.0454 18.1496 20.0668 16.3325 19.3397 18.5323
Std. Dev. 0.4558 0.2891 0.3243 0.3813 0.3034 0.5004 0.3954 0.5132
Min. 17.5815 19.0627 18.6145 16.8456 18.7766 14.7873 17.6704 16.8027
Max. 20.762 21.048 21.1422 19.6069 21.2276 17.8668 20.7982 20.2418

70% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 23.8847 25.3028 25.0343 22.3611 25.2285 21.2471 24.2909 23.3259
Median 23.8989 25.2949 25.0338 22.3614 25.2314 21.2544 24.2933 23.3289
Std. Dev. 0.6228 0.3791 0.4253 0.5486 0.3839 0.5744 0.5117 0.6478
Min. 21.5485 24.0229 23.384 20.088 23.7605 19.1815 22.2524 20.902
Max. 26.2086 26.7306 26.5497 24.3045 26.6738 23.1013 26.5843 26.0154

points, not every sample consists of the same houses. As such, the route a vaccinator should walk to visit the sampled houses is
different every iteration. By executing a sampling scheme several times on the same set of attainable houses 𝑁𝑎, it is possible to
generate a distribution for the walking distance required to visit 30% of the houses for each sampling scheme. The method used
o generate a walking distribution is delineated earlier. The nine step process in this list is implemented for 𝑘-means, for every

coverage threshold, and for each sampling scheme in both the Morotonga and Machochwe villages.

3.4. Comparison of the sampling schemes

The descriptive statistics from Tables 2 and 3 are used to determine the optimal sampling scheme for the Morotonga and
achochwe villages for each of the five coverage thresholds. The most important descriptive statistic is the minimum walking

istance for each threshold. Considering these results, the TCS algorithm is the best in both the Morotonga and Machochwe villages,
ince only 19.1815 and 44.9074 kilometres has to be walked by a vaccinator to vaccinate 70% of the dog-owning houses in
orotonga and Machochwe respectively. The standard deviation information is also displayed, however the most important statistic

onsidered is the minimum walking distance. Even though a sampling scheme may have a high mean and a high standard deviation,
t could still be the best sampling scheme if it has a minimum walking distance lower than the minima of all the other sampling
chemes. Fig. 3a and b plots the walking distributions for the eight sampling schemes, to reach a 70% vaccination coverage in
orotonga and Machochwe respectively. Note that this is 70% of all houses in these villages, as enough stopping points are placed

such that Na=N. Plots for the 30%, 40%, 50% and 60% coverages can be viewed in Botes (2023).
Fabris-Rotelli et al. (2020) found the systematic spatial regular sampling (SRSS) scheme to be optimal, while in this research,

he SRSS scheme ranged between being the 6th, 7th and 8th best sampling scheme depending on the coverage threshold and village
used. The difference between the walking distance distributions for the sampling schemes in this research is also much more spread
9 
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Table 3
Descriptive statistics on the 10 000 instances of each sampling scheme executed for the five different coverage thresholds in the village of Machochwe, after
sing the 𝑘-means algorithm to select stopping points. The lowest statistics for each row are highlighted in bold, and the highest in italics.
Walking distance statistics per sampling scheme: Machochwe K-means

30% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 22.2486 23.3703 23.2253 20.9042 23.2757 18.5524 22.1089 21.6728
Median 22.2652 23.3754 23.2305 20.909 23.2871 18.4693 22.1236 21.6902
Std. Dev. 0.5606 0.2806 0.3093 0.4196 0.3194 1.162 0.5368 0.6323
Min. 19.8266 22.3295 21.8627 19.3224 21.9035 15.7794 19.8318 19.1805
Max. 24.1266 24.1377 24.2411 22.4782 24.1623 22.3473 24.1958 23.7563

40% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 32.1471 34.8445 34.7432 30.7569 34.8392 26.9042 33.5445 31.5313
Median 32.1511 34.8696 34.7575 30.7616 34.8502 26.3498 33.559 31.5241
Std. Dev. 0.6931 0.3129 0.3197 0.5398 0.3096 1.7699 0.5357 0.7583
Min. 29.3331 33.642 33.3204 28.8152 33.1873 22.8386 31.6467 28.6559
Max. 34.5431 35.6196 35.9277 32.8183 35.7636 32.0994 35.3104 34.1056

50% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 40.0961 42.1906 42.079 38.0369 42.0806 34.2486 41.0959 39.3462
Median 40.1056 42.2365 42.082 38.0369 42.101 34.1781 41.1024 39.3585
Std. Dev. 0.8056 0.5579 0.4716 0.7179 0.506 1.4524 0.7058 0.8625
Min. 37.0149 40.4612 40.0256 35.1633 40.0765 30.1026 38.3048 36.0929
Max. 43.0429 43.4334 43.8248 40.8769 43.5177 39.3013 43.6167 42.4446

60% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 50.0226 53.365 53.3758 47.096 53.4469 43.27 52.4195 49.2092
Median 50.0281 53.3992 53.3749 47.0896 53.4422 42.8202 52.4236 49.2134
Std. Dev. 0.9057 0.4901 0.5343 0.7909 0.5928 1.823 0.709 0.9658
Min. 46.5855 51.259 51.1912 44.0944 51.3641 38.914 49.5094 44.8886
Max. 53.2552 54.9132 55.2321 50.3539 55.5442 49.5117 55.0782 52.6159

70% coverage

SRS SHSS SnaSS SSS SRSS TCS USS KWSS (50)

Mean 54.9476 58.5623 58.6836 52.2732 58.7214 49.7439 56.8576 54.9477
Median 54.9385 58.5849 58.6877 52.2722 58.7692 49.6859 56.8491 54.943
Std. Dev. 1.055 0.5709 0.6561 0.8993 0.6861 1.3319 0.8297 1.0541
Min. 49.9622 56.4116 56.2828 48.9114 56.086 44.9074 53.9622 50.845
Max. 59.1519 60.4399 61.15 55.6466 60.7331 54.1996 60.3476 58.7396

out than in the work of Fabris-Rotelli et al. For example, we see in Table 3 that there is nearly a 10 km difference between the
average walking distance of the TCS and SnaSS schemes in the Machochwe village. Key differences between the methodology used
by Fabris-Rotelli et al. (2020) have already been highlighted in Section 2.3. While Fabris-Rotelli et al. used a minimum spanning
tree (MST) to calculate the route a door-to-door vaccinator needs to walk between houses, this research uses a travelling salesman
tour (TST). This was shown to result in at least half the walking distance that an MST would. This code may be used to replicate
the simulation study, using the random seeds provided.

4. Discussion and future work

While this research has successfully optimised a vaccination schedule by comparing eight samplings schemes in two villages,
some limitations of this research should be highlighted. The first limitation is that only two villages were used in this simulation
study. One of the villages was clustered, and the other regular; one was large, and the other was small (link). Nevertheless, it is
recommended to test the methods from this research on more villages of varying sizes and second-order natures. It is possible that a
relationship exists between the optimal sampling scheme and the second-order nature of a point pattern that is not discernible from
the limited results of this research. It would also be a good idea to compare the 𝑘-means algorithm to other clustering algorithms for
the selection of stopping points. Some candidates could be more hierarchical-based clustering algorithms or even clustering from a

aussian Mixture model approach. However, 𝑘-means is simple and computationally easy thus providing a good solution.
The distance walked by a vaccinator between houses is assumed to be the shortest Euclidean distance. A more accurate walking

istance can be determined by calculating the distance walked along actual roads that may exist between house. It will not always
e possible for a vaccinator to walk the shorted Euclidean route. It would also be interesting to take into account the topography of

the landscape along which a vaccinator needs to walk when calculating distance, and determining the effort exerted by a vaccinator.
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Fig. 3. Walking distance bootstrap distributions for each sampling scheme with 𝑘-means stopping points. Only results for the 70% coverage threshold are shown
here.

Another point to mention is that the vaccination of 70% of household pets does not guarantee that 70% of the dog population
in a village is vaccinated. The methods described in this research should therefore, ideally, be implemented together with a plan
to vaccinate 70% of the free-roaming dogs in a village in order to truly attain herd immunity. Future research may look at how to
best perform vaccination on free-roaming dogs. The study on dog demographics in Tanzania from Knobel et al. (2008) mentioned
in Section 4 also show that it will not be possible to vaccinate 70% of household dogs by visiting 70% of the houses in a village,
since around 30% of these dogs can be expected to be away during the day. Depending on the true number of home-bound dogs in a
village, alternative means will need to be employed in order to reach dogs that are not at home during the day. An important point
that is not discussed in this research is the number of annual vaccination campaigns that should be performed in order for herd
immunity to be attained. In order to gauge this, the methods from this research will first need to be applied for multiple years. By
monitoring the rabies vaccination over these years, it would be possible to say for certain how many annual campaigns are required
to attain true herd immunity.

Another study that may be valuable to consider is to vary the radius of attainable houses around each stopping point. In this
research, only houses within a 200 metre radius of each stopping point is considered to be attainable for a vaccinator. An increase
in the accessible houses radius would allow for a decrease in the value of 𝑘, however it may also result in more kilometres walked,
11 



R. Botes et al.

s
e
v
p
a
e
w
a

v

c

Spatial Statistics 65 (2025) 100877 
and less driven. This is something that should be further explored, however, to find the optimal radius. A more accurate approach
could also determine radius based on walking distance on roads and paths, namely not the Euclidean distance. It would also be
interesting to see what difference it would make, were one to first sample and then select stopping points based on the sampled
houses.

The traditional stratified sampling scheme proved to be optimal among the eight schemes analysed in this research. Using this
scheme consistently resulted in the lowest average and minimum walking distance. Even though a traditional sampling scheme
outperforms the spatial schemes considered, this is an indication that the spatial information of house locations is taken into account
with the stopping point determination. This indicates that the use of TSP caters for the spatial autocorrelation present. In further
research, more focus should be placed on stratified sampling schemes, to see if it is possible to further minimise the walking distance
for a door-to-door vaccinator. It may also be valuable to measure spatially stratified heterogeneity in this research context, and to
understand how knowledge of this can assist in further optimising the simulation framework.

It may also be valuable to combine a static vaccination approach with a door-to-door vaccination scheme. A simulation study of
such a hybrid approach would also be useful for policy makers in setting up effect rabies vaccination campaigns. Static vaccination
tations are most frequently used when vaccinating dogs in rural settlements, as it requires less effort, and is therefore more cost
ffective. It may be unreasonable to expect policy makers to adopt a vaccination schedule that is completely built upon a door-to-door
accination approach. However, after having performed this research, a wholly door-to-door approach may be more attractive for
olicy makers, since a larger body of literature exists proving that such an approach can be optimised and the reach can be measured,
nd performed in as little as a one or two days, depending on the size of the rural village under consideration. Lastly, future research
fforts could go into developing a model based sampling technique, wherein it would be possible to quantify uncertainty regarding
hether or not a specific vaccination coverage target will be reached, or not, given dog demographics and other census data, where
nd when it is available.

5. Conclusion

This research set out to develop an optimised door-to-door rabies vaccination schedule in rural villages. Two rural Tanzanian
illages are considered in an application study to compare eight different sampling schemes, to see which one provides the most

optimal sample of houses to visit. Optimality throughout this research is measured in terms of walking distance. Sampling schemes
resulting in a sample requiring shorter walking distances to cover is preferred to sampling schemes requiring longer walking
distances. It is found that the traditional stratified sampling scheme provides the most optimal results when taking into account
spatial autocorrelation in the stopping point selection. The 𝑘-means algorithm is used to place stopping points throughout a village,
from which a vaccinator performs vaccination. This research provides policy makers with a further tool to combat the spread of rabies
in rural villages. This research furthermore provides a framework wherein any number of sampling schemes can be compared on any
given village. Having optimised this framework, and providing the code on GitHub, any researcher planner of a vaccination campaign
is able to input any village, and any alternative sampling scheme, and determine the optimal stopping point configuration and
minimum walking distance to reach 70% of the total dog population. This research could therefore ultimately help in construction
and planning of future rabies vaccination campaigns in Tanzania, and other endemic regions. With the year 2030 drawing nearer,
and with it the WHO goal of zero human rabies deaths, much work is still required. This research, together with previous and other
current efforts in the domain of rabies vaccination schedules will go far in assisting decision makers to apply the most time optimal
and cost effective methods to combat this deadly disease.
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Appendix. Algorithms

See Algorithms 1, 2, 3, 4 and 5.
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Algorithm 1 The 𝑘-means algorithm for selecting stopping points.
Input: List of locations of all accessible houses 𝑁𝑎, a value for 𝑘, and a random seed to select the initial k-mean values.
Assignment step
∙ Assign each accessible house to its nearest 𝑘-means initial value. Houses closest to the 𝑘𝑡ℎ stopping point are said to belong to
that stopping point.
Update step
∙ Recalculate the value of each stopping point as the mean of all the houses for which it is responsible after the previous assignment
step.
Convergence
∙ Convergence is reached once the assignments remain unchanged.

Algorithm 2 Traditional stratified sampling algorithm.
Input: List of the location of all accessible houses 𝑁𝑎 together with the stopping point (strata) index 𝑘 that each house belongs
to.
∙ Set 𝑝̃ = 0.7.
∙ Initiate a list strata with integers 1 to 𝐾.
∙ Set 𝑝 equal to 1.
while 𝑝 ≥ 𝑝̃ do

Randomly sample an integer from strata.
Remove all houses from the stratum corresponding the sampled integer.
Recompute the value of 𝑝
Remove the sampled integer from strata such that it is not sampled again.

end while
∙ If 𝑝 > 𝑝̃, calculate the difference between 𝑛 and the required sample size, 0.7 ×𝑁𝑎.
∙ Randomly remove 𝑛 − (0.7 ×𝑁𝑎) points from 𝑛, such that 𝑛 = 0.7 ×𝑁𝑎.

Algorithm 3 Spatial stratified sampling algorithm.
∙ redo = True
∙ Determine the required sample size as 0.7 ×𝑁𝑎
while redo == True do

∙ Set 𝑝 = 0.7
∙ Sample (100 × 𝑝)% of the houses in each of the 𝐾 strata
∙ Round the sample size of each strata to the nearest integer, 𝑛𝑘
∙ Calculate the difference between ∑𝐾

𝑘=1 𝑛𝑘 and 0.7 ×𝑁𝑎
if ∑𝐾

𝑘=1 𝑛𝑘 > (0.7 ×𝑁𝑎) then
∙ Randomly remove sampled points equal to the difference between ∑𝐾

𝑘=1 𝑛𝑘 and 0.7 ×𝑁𝑎
∙ Set redo = False

else if ∑𝐾
𝑘=1 𝑛𝑘 < (0.7 ×𝑁𝑎) then

∙ 𝑝 = 𝑝 + 0.01
∙ Continue with while loop.

else
∙ redo = False

end if
end while
13 
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Algorithm 4 Kernel weighted spatial sampling scheme.
Input:A value for the bandwidth ℎ and a village point pattern 𝒙 as well as the number of houses to sample, 𝑛 = 0.7 ×𝑁𝑎.
Perform the following three initial steps:
1. Perform edge correction by extending the spatial window 𝑊 with a buffer, such that the border of 𝑊 is expanded by 4 × ℎ.
2. Use the density.ppp function from the spatstat package to calculate a kernel density estimate of a 128 × 128 grid across
the window 𝑊 and the buffer, resulting 16 384 kernel density estimates. Some points in this square grid lie outside the convex
hull window 𝑊 and the buffer, and are not assigned a density estimate.
3. Use probability sampling to generate 𝑛 spatial sampling points in 𝑊 . Denote the 𝑖𝑡ℎ spatial sampling point as 𝑛𝑖, and the vector
of all sampling points as 𝒏.
for 𝑛𝑖 in 𝒏 do

∙ Determine which house in the point pattern 𝒙 is nearest to 𝑛𝑖 in terms of Euclidean distance.
∙ Sample the house nearest to 𝑛𝑖.
∙ Remove the nearest house to avoid sampling the same house more than once.

end for

Algorithm 5 Step by step breakdown of generating a walking distance distribution.
1: Select a stopping point algorithm.
2: Select a sampling scheme.
3: Select a TST algorithm (The farthest insertion heuristic is recommended).
4: Select a sampling coverage (30%, 40%, 50%, 60% or 70%).
5: Find the value of 𝑘 needed to generate the right stopping point configuration for the desired coverage.
6: Generate the 𝑘 stopping points using your selected stopping point algorithm (remember to initiate 𝑘-means with the right random

seed from table 5 for Morotonga or table 6 for Machochwe from the article)
7: Generate 10000 random samples from the set of attainable houses 𝑁𝑎 using your chosen sampling scheme.
8: Calculate the total walking distance between each of the 𝑘 stopping point and its surrounding houses. Do this for every sample

using your chosen TST algorithm. The result is a set of 10000 walking distances.
9: Calculate descriptive statistics on the 10000 walking distances, and plot the distribution.
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