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Abstract 

Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change 

mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. 

Their analysis inflated soil organic carbon gains, failed to safeguard against warming from 

trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, 

and shrublands to be restoration. 

Bastin et al. (1) used remote sensing and machine learning to estimate that global “tree 

restoration” could sequester 205 gigatonnes of carbon (GtC). If accurate and achievable, this 

would constitute an astounding accomplishment, equal to 20 times the current annual fossil 

fuel emissions (10 GtC/year) (2) and about one-third of total historical anthropogenic 

emissions (660 GtC) (2). Unfortunately, key assumptions and data underlying Bastin et al.’s 

analyses are incorrect, resulting in a factor of 5 overestimate of the potential for new trees to 

capture carbon and mitigate climate change. We show that Bastin et al. (i) overestimated soil 

carbon gains from increased tree cover by a factor of 2; (ii) modeled new tree cover in 

regions where trees reduce albedo and increase climate warming (3, 4); and (iii) relied 

heavily on afforestation of grasslands and savannas—biodiverse ecosystems where fires and 

large herbivores have maintained low tree cover for millions of years (5, 6). 

Bastin et al.’s inflation of soil carbon gains resulted in a ~98 GtC overestimate of potential 

carbon sequestration (Table 1). They mistakenly assumed that treeless areas have no soil 

organic carbon (SOC) and that SOC increases in direct (1:1) proportion to tree cover. The 

contribution of SOC to total carbon stocks is substantial in most terrestrial ecosystems. In 

humid tropical savannas, for example, 86% of all carbon is in soils (174 tonnes of SOC per 

hectare) (7). In boreal forests, 64% of carbon occurs in soils (8). North American grasslands 

can store as much carbon in soil (9) as tropical forests store as biomass (8). In Table 1, we 

display SOC-corrected carbon sequestration estimates that use more realistic (literature-

derived) values for the changes in SOC that occur with afforestation and reforestation. 

2



Table 1. Corrected estimates of the potential for increased tree cover to sequester carbon and mitigate climate change. We corrected Bastin et al.’s 
estimate (205 GtC) to represent realistic gains or losses of soil organic carbon (SOC) that occur with increased tree cover in each biome 
[based on (9, 16–21)]. We then excluded biomes (assigned a value of 0 GtC) where tree planting for climate change mitigation should not occur because of unintended 
consequences (e.g., net warming from reduced albedo or loss of biodiversity). Although we disagree with several of the carbon density values used by Bastin et al. 
[e.g., they applied values for intact tropical forests (8) to estimate second-growth forest biomass, and applied values from humid tropical savannas (7) to deserts and 
tundra], we retained these values to demonstrate the magnitude of the SOC and biome corrections. 

Potential carbon stocks, Bastin et al. (1) Correction for soil carbon Correction to avoid unintended 
consequences 

Biome* 

Canopy cover 
restoration area 

(Mha)* 

Carbon 
density 

(tC/ha)* 

Carbon 
density 
source* 

Carbon 
gain 

(GtC)* 
ΔC biomass

(tC/ha)† 
ΔSOC

(tC/ha)† 

Realistic 
ΔSOC

(tC/ha) 

Realistic 
ΔSOC
source 

SOC-corrected 
carbon gain 

(GtC)¶ 

Biome-corrected 
carbon gain 

(GtC) 
Detrimental effects of 
carbon-focused tree 

planting 178 239 (8) 42.6 85 154 0 (16)‡ 15.2 0
78 202 (7) 15.7 28 174 5.1 (9)§ 2.6 0
9 202 (7) 1.8 28 174 12.4 (17) 0.4 0
19 202 (7) 3.9 28 174 –3.3 (18) 0.5 0

Boreal forests/taiga 
Deserts and xeric shrublands 
Flooded grasslands 
andsavannas Montane 
grasslands and shrublands 
Temperate grasslands 

73 155 (8) 11.2 81 74 –3.3 (18) 5.6 0

↓albedo (net warming)
↓provisioning of water, ↑fire 
intensity ↓biodiversity
↓biodiversity, ↓albedo (net 
warming) ↓biodiversity, 
↓forage production, ↑fire 
severityTropical grasslands 190 283 (8) 53.5 199 84 12.4 (17) 40.0 0 ↓biodiversity, ↓provisioning 
of water, ↓forage production, 
↑fire severity51 202 (7) 10.2 28 174 0 (19)‡ 1.4 0 ↓albedo (net warming)

3 283 (8) 0.7 199 84 198 (20) 1.0 1.0 
19 202 (7) 3.8 28 174 0 (21)‡ 0.5 0.5 ↑fire intensity#
109 155 (8) 16.9 81 74 –3.3 (18) 8.4 8.4 
36 155 (8) 5.6 81 74 –3.3 (18) 2.8 2.8 ↑fire intensity and severity, ↓albedo#
7 283 (8) 2.0 199 84 12.4 (17) 1.5 1.5 
33 283 (8) 9.3 199 84 12.4 (17) 6.9 6.9 

Tundra 
Mangroves 
Mediterranean forests 
Temperate broadleaf 
Temperate conifer forests 
Tropical coniferous 
forests Tropical dry 
broadleaf forests Tropical 
moist broadleaf forests 

97 283 (8) 27.4 199 84 12.4 (17) 20.5 20.5 

Total 900 205 107 42 
*From materials and methods and table S2 of Bastin et al. (1): Carbon gain = canopy cover restoration area × carbon density.
†Portion of carbon density attributable to biomass and soil, from the same sources used by Bastin et al. [i.e., (7, 8)]. ‡Studies that 
report no statistically significant change in SOC. 
§Mean of two sites with annual precipitation < 300 mm.
¶SOC-corrected carbon gain = canopy cover restoration area × (ΔC biomass + realistic ΔSOC). 
#Strength of effects depends on ecological context, but effects are not universal enough to exclude the biome. 
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In addition to the SOC overestimate, Bastin et al. did not account for the warming effect of 

trees due to decreased albedo (3, 4). Trees, particularly evergreen conifers, are less reflective 

than snow, bare ground, or grasses, and thus absorb more solar energy, which is ultimately 

emitted as heat. At high latitudes and elevations, the warming effect of trees is greater than 

their cooling effect via carbon sequestration (3, 4). Similarly, trees planted in low-latitude, 

semi-arid regions can produce net warming for decades before carbon sequestration benefits 

are realized (10). Because, at a minimum, carbon from trees planted in boreal forests, tundra, 

or montane grasslands and shrublands should not be counted as climate change mitigation 

(Bastin et al. counted a SOC-corrected 17 GtC), in Table 1 we provide a corrected estimate 

that excludes these biomes. 

The carbon sequestration estimate of Bastin et al. is also dependent on the false assumption 

that natural grasslands and savannas with fewer trees than predicted by their statistical model 

are “degraded” and in need of restoration (11). Ecological restoration of savannas and 

grasslands rarely involves planting trees, and more often requires tree-cutting and prescribed 

fire to promote biodiversity and ecosystem services (12). Yet after correcting for SOC, 46% 

of the carbon sequestration estimate of Bastin et al. comes from increased tree cover in 

grasslands, savannas, and shrublands (Table 1). Among all biomes, tropical grasslands are the 

largest contributor to Bastin et al.’s estimate of potential carbon sequestration (SOC-

corrected 40 GtC or 37% of the global potential; Table 1). 

Although Bastin et al.’s model, developed with climate and soil data in protected areas, may 

be reasonable in some of the driest and wettest places on Earth, any statistical approach to 

predict tree cover at intermediate precipitation (500 to 2500 mm annually) must include the 

effects of fire and, where they still exist, large grazing and browsing animals (13). Because 

Bastin et al. failed to account for fire, their model had low predictive power across many of 

the open-canopy biomes they analyzed, as shown by their own uncertainty analysis. Although 

we commend their intent to respect the “natural ecosystem type” by training their machine-

learning algorithm on protected areas, they map many of these same areas—particularly those 

with grassland-forest mosaics (e.g., Yellowstone National Park, USA)—as opportunities for 

tree planting. Of additional concern, their method of interpolation between protected areas 

misrepresents some enormous savanna regions (e.g., western Los Llanos in Colombia is 

targeted for 75 to 100% tree cover), presumably because the protected areas are located in 

adjacent tropical forests, not savannas. 

Bastin et al.’s model suggesting grasslands and savannas as potential sites for restoration 

using trees is inaccurate and misguided. Earth’s savannas and grasslands predate humans by 

millions of years; their formation is a result of complex ecological and evolutionary 

interactions among herbaceous plants (grasses and forbs with extensive roots and 

underground storage organs), environmental change (climatic cooling, drying, changes in 

atmospheric CO2), fires (first ignited by lightning, then by people), and large herbivores (5, 

6). These ecosystems and their iconic species are already gravely threatened by fire exclusion 

and afforestation, processes that replace species-diverse biotic communities with lower-

diversity forests (14). Carbon-focused tree planting will exacerbate these threats, to the 

detriment of people who depend on grasslands to provide livestock forage, game habitat, and 

groundwater and surface-water recharge (11). Moreover, trees planted in grasslands will be 

prone to carbon loss from fires. Because these detrimental effects should preclude tree 

planting in grasslands, savannas, and shrublands, we excluded these biomes from Bastin et 

al.’s estimate in Table 1. 
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In combination, our corrections for SOC and corrections to avoid the unintended 

consequences of misguided tree planting (i.e., warming and biodiversity loss with 

afforestation) would reduce Bastin et al.’s estimate of potential carbon sequestration by a 

factor of 5, to the still-substantial amount of ~42 GtC (Table 1). Although ecological 

restoration, if carefully implemented, can have a role in mitigating climate change, it is no 

substitute for the fact that most fossil fuel emissions will need to stop to meet the targets of 

the Paris Agreement (15). Such action should be accompanied by policies that prioritize the 

conservation of intact, biodiverse ecosystems, irrespective of whether they contain a lot of 

trees. 
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