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Thesis Abstract

Savannahs, which are deféd as aheterogeneous mixture ofherbaceous and woody plant
componentspccupy one fifth of the global land gace and is the largest biome in South Afriddue

woody vegetationstructure of savannak is particularly important as it influencéise fire regime,
nutrient cyclingand the water cycle of these environmerdasd provides fuelwood to sustain the
local human populaceRemote Sensing has been proven in numerous studies to be the preferred
tool for quantifying andnappingthis woody veggtion structure (in this study, defined as woody
biomass, woody canopy volume and woaznopycover metrics) over large areas, mainly due to its
superior information gathering capabilities, wide spatial coverage and temporal repeatability. Active
remote sensing sensors such as Light Detection and Ranging (LIDAR) and Synthetic Aperture Radar
(SAR) are particularly useful in studying woody biomass andr athnopy structural metrg;
because of their capacity to image witktanopy properties. Passive agal imagery acquired over
multiple seasons can also provide tree phenological information which can be used to ascertain the
best period for monitoring tree structure, i.e. when tree canopies has sufficient leaves while the
grasses are dry. The combingtiength of these active (SAR and LIiDAR) and passive (optical) sensor
technologies, are yet to be applied to their full potential in the dynamic and heterogeneous

savannah environmentvith a special relevance in Southern African landscapes

This PhDstudy ained to evaluate various methods for estimating and upscaling woody structural
metrics of South African savannahs using integrated SAR and optical remote sensing datasets and
LiDAR datasets as training and validati@efore this aim coultbe tacked, two current globalscale

remote sensig woody structural products (25m JAXA ALOS PALSAR Fordstidstor FNFand

30m Landsatbased Vegetation Continuous Fiald VCI were evaluated, within the South African
context, with the help of high resolatn airborneLiDAR datasetsThese datasets were resampled to

YI 60K (KS LINE RdzOG & QdtOdépidl fSrésss It was §6ud tRaStReAFNR giodlugty” dza S
grossly underepresented the distribution of forests in savannah environmentsg@% CC ranges),

due to the inadequate HV backscatter threshold chosen in its creation. The FNF product also
showeda limited abilityin detecting closed forest cover class {200%) and Natural Forest and
Scub Forest tree structural classes. ThendsatvVCF product displayed strong CC underestimation
with increasing variability and mean error from CC valokgreater than 30%. The modéea
accuracies athe 1020% CC range (and in theéh Woodland tree structural cla3suggests that

the VCF product could be potentially applicable in low CC environments such as grasslands and

sparse savannahs but can also marginally detect closed camyonments (96100% CC range).
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These results provide the justification for developing new, locally calibrated woody structural
products for South Africa. Next, the aim of this studywas addressedfirstly, by developing
methodologies for the estimationf keywoody structural metrics(above groundbiomass,woody
canopycover andwoody canopy volume) for thesreater Southern Kruger National Park Region
usingmulti-frequencySAR parameters{, G and Lband backscatter and polarisations}Secondly,
the most suitable SAR frequenasas then tested against and in combination with varihasdsats

TM optical featuregtextures, vegetation indices and mufttasonal band reflectanc&r improved
regional modelling of woody canopy coveln both cases|n-situ field measurements of woody
vegetation structure werét & OMILER (2 f I y R a OscaldS by usih@ LIDAR, BAR afidi/or
optical sensor products to produce reliable mapswafody structural metrics. A Random Forest
modelling approach was predonantly used to meet the maelling challenges in this stu@yd the

LiDAR datasets were used for model calibration and validation

For the multifrequency SAR analysis,was concluded that the-hand SAR frequency was more
effective in the modelling ofhe CC (Rof 0.77), TCV ¢f 0.79) and AGB {Rf 0.78) metrics in
Southern African savannahs than the shorter wavelengthsfd Gband) both as individual and
combined (X+®and) datasets. The addition of the shortest wavelengths also did not assist
overall reduction of prediction error acrosparse and denseegetation conditions. Although the
integration of all three frequencies (X+@3dnd) yielded the best overall results for all three metrics
(R=0.83 for CC and AGB an@®85 for TCVthe improvements were noticeable but marginal in
comparison to the dband alone. The results, thus, do not warrant the acquisition of all three SAR
frequency datasets for tree structure monitoring in this environmefor theintegrated SAR and
optical datasetanalysisyresults showed thatandsats imagery acquired in the summer and autumn
seasons yielded the highest single season modelling accuracies, depending on the year but the
combination of multiseasonal images yielded higher accuracie$ @&ween ~0.60.7). The
derivation of spectral vegetation indices and image textures and their combinations with optical
reflectance bands provided minimal improvement with no optimaly product combination yielding
accuracies greater than winter SAPdnd backscatter alone @Rof ~0.8). However, there was
significant, yet modest, improvement {Rf ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy
when 2010 multiseasonal optical reflectance bands were combined with theard backeatter
variables. Thes results showed that future monitoring of woody coverin Southern African
savannahswill require priority access to-hand SAR imageryFinally, in order to move towards
upscaling woody canopy cover to thational scale, guidelines on the optimal gtignof field plots

and LIDAR coverage=quired for model trainingwere proposed for the country of South Africa.
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The results have shown that the Savamwatly training dataset yielded high accuracies across
Grasslands, moderate accuracies across €tsdkut poorer accuracies in the Indigenous Forests and
Fynbos biomes. Sampling the training data across all available biomes yielded higher accuracies.
From the LiDARImulated field plot analysis, it was concluded that a minimum of 500, 1ha field plots
would be sufficient for effective modelling of CC at the coumtigle scale. Additional field plots,
beyond this number (500) would improve the overall accuracies only slightly, but incurred significant
increases in samplingfforts and costs. He mostfrugal LIDAR acquisition strategyas found to
acquireonly four separate 5000ha LIDAR acquisitions, distributed across the five vegetated biomes.
The study found that much less LIDAR data were required to train the models than originally
expected, provided that the acquisitions were sufficiently diverse ira@LCvegetation type and
could also be cheaper to acquire than collecting 500 1ha field plBtdlowing the lessons learnt
from the various chapter resultg, new and more accurate woody canopy covep of South Africa
wasintroduced which serve as afirst step towards the establishment of an operational monitoring

systemfor the woody component

19



Chapter 1: Introduction and literature review

This PhDstudy aims to evaluate various methods for estimatamgd upscalingregetation woody
structuralmetricsof South African savannaland forests byusinga combination ofSAR and optical
remote sensing This study feeds into the long term goal of developing a scientific foundation for
the national mapping of thevoody vegeation structure of South African savannahs and forests as
only a limited knowledge base exists with rediable, continuous and ufp-date geospatial data
products being currently availabléDAFF, 2015; Skowno et al.,1B) With the increase of tree
cover at a rate of % per decade and the added threat of bush encroachment encroaching upon
approximately 120 million hectares of land and alien invasive plants spreading at a rate of
between 5 and 10% per year in Slol\frica, the creation of such map products is crugidd Q/ 2 y'y 2 NJ
et al., 2014; van Wilgen et al., 2012n this chapter Savannahs and the importance of its woody
component in ecosysterprocessesndtheir monitoring will be introduced. Bwoody component

will be broken down into woody structural metricswoody biomass, woody canopy volume and
woody canopy covet for purposes of quantification. Methods which utilise remote sensing and the
role of multisensor data integration will be reviewed as a primary means of monitoring and
measuring thee various woody structural metricand compared totraditional fieldbased
measirements. Finally the main research aim, objectives and specific research questions, which will
be addressed in the subsequent analytical chapters, will be introdutedhis thesis, in order to
eliminate any potential confusion between the terms savaim® and forests, these terms will be
usedwithout separation except when mentioned at the biome level. The reason for this, according
to the FAO definition of forests (elaborated in Chapter 2)pst savannahssystemscan be

potentially classified as foresbut not all forestcan besavannahs (e.g. Natural forests).

1.1 Savannahs and the importance of its woody component in ecosystem
and monitoring processes

Savannah woodlandsover half of the African continent and occupy one fifth of the global land
suface (Scholes and Wedr, 1993) Within the context of South Africa, the Savannah biome is the
largest and makes up 35% of the counfvian Wilgen, 2009) Savannahs are broadly composed of
herbaceous and woody components which araiconstant state of flu@Meyer et al., 2007) In this
biome, total woody canopy cover values camge from dispersed trees in opgmasslands (~5%) to
nearclosed canopy woodlands (~60%) and more than 80% in riparian pderteret al., 2003)

Vegetation height can range betweerahd 20 metres (Low and Rebelo, 1996énd also possess an
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above ground biomass range of less than 60 tonnes per he¢Buieoles and Walker, 1993)The
Savannah biome contains six bioregions (the Central Bushveld, Mopane, Lowveltsc8riment,
Eastern Kalahari Blrgeld and the Kalahari Duneveld bioregions) which vary according to their
geographical locations, geology and soil types and dominant vegetation sgRcigserford et al.,
2006) Savannahs, additionally, consist of Clay Thorn Bushveld, Mixed Bushveld, Sweet and Sour
Lowveld Bushveld vetmion types (Mucina and Rutherford, 2006) Seasonally, savannahs
experience phenological fluctuations in both haceous and woody components which influence
their associated distributionn the landscape.ln summer, both tree leaves and grasses are green
while in autumn, grasses are dry with trees remaining green but beginning to lose leaves. In winter,
most trees have lost leaves and grasses are dry while in spring, grasses areyfaiftyie the trees

first undergo a green flush of leavéarchibald and Scholes, 2007Consequently, savannahs are
seen as highly complex in both vegetation structure and comiposénd are highly heterogeneous

ecosystems.

Water availability and disturbance factors, such as fire and herbivory, mainly control the balance
between the herbaceous and woody components in savaniiBasidena et al., 2015; Sankaran et
al., 2008) The distribution of the woody component, in savannahs, is constrained in areas which
receive a mea annual precipitation of less than 650m(®ankaran et al., 2008nd under the driest
conditions(<200mm) savannahs do not occur #ise herbaceous component outcompete the tree
saplings of the woody componeiiBaudena et al., 2015; Sankaran et al., 200A¥ precipitation
increases, however, the woody component can outcompete the grassy component with deeper and
more established root systems than tiherbaceous componenftlose and Montes, 1997)Above
650mm of mean annual precipitation the woody canopy has a cover a@@deunless disturbance
factors are presentFire is ariver tha regulates the treggrass balanein savannahs by preventing
savannahs frombecomingforested woodlandgJose and Montes, 1997)Fire can promote the
growth of the herbaceous layer by miinating the woody component (including tree seedling
recruitment) and also due to the quicker recovery ability displayed by the herbaceous layer
(Baudena et al.,, 2015; Hanan et al., 2008pDn the other hand, excessive herbivory of the
herbaceous layer can prommtincreased growth of the woody component via bush encroachment
(Ward, 2005; Wigley et al., 2009This study will solely focus on the woody component which has a

considerable impact on both natural and anthr@amic processes.
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The savannah woody component impacts the fire regime, b&snaroduction, nutrient cyclingnd

the water cycle of these environmen{Sankaran et al., 2008From an anthropogenic point of view,

the woody component provides numerogssentialecosystemservicessuch as fuelwod (mostly
firewood and seHproduced charcoalderivativeg, medicinal products,construction timber and
edible fruits(Shackleton et al., 200,7yvhich sustain the needs of the largeral populace irsub-
SahararAfrica and regions of South Afri€Bwine, 2005; Wessels et al., 2013, 201h)South Africa,
approximately 80@M00 people of the rural populace heavily rely on this woody compom@esna
source of income through the craft industry and as well as through the small scale trading of forest
products (DAFF, 2015) Overall, this savannah woody component contributes approximately R17
billion to { 2dzi K ! FNAOF Qa | yydz ¢ DNGFE, 2015 £ondedsdlyl e t N2 R d;
densification of the savannah woody component, or bush encroachmesm, also severely
compromise the availability ofrazingresources that are essential tdivestock populations and
relatedhumanlivelihoods6 h Q/ 2 yy 2 NJ S I f ®3 . BustvemcfoachheRttadvéselp i | f ¢
affects agricultural productivity and biodiversity (e.g. loss of palatable grass sp&ngessa, 200p)

of approximately 10 million hectares of South AfricBWard, 2005) From an economic
standpoint, neighbouring countries like Namibia, which rely heavily on livestock farming, have
registered an annual lods incomeof more than N$700 million due to bush encroachment with
approximately 12 million hectares of land alreadginy severely encroache(De Klerk, 2004)
Factors such as humans (via wood harvesting activities), Afelegrhants and fire (less so than
elephants and humans), in communal rangelands and protected areas, have also been found to alter
the woody component by removing large trees which subsequentiyptesan increase in shrub

cover or encroachment due to redad tree seedling survival rates caused by these fadfsser

and Levick, 2012;shker et al., 2016; Mograbi et al., 2016)

Within the context of climate change, the sequestration of carldmngrowing vegetation is
understood as a significant mechanism for the removal off@ the atmospherdViergevert al.,
2008b) With a mean net primary productivity of 7.@8rinesCarbon perhectare per yearsavannahs
account for approximately0% of the global carbon stof€ollins et al., 2009; Grace et al., 2006)
Understanding how carbon is stored as carbon sinks in vegetative biomassuantfygng this
standing biomass is of paramount importante understanding of the global carbon cycle.
Initiatives such as REDD (Reduced Emissions from Deforestation and Degraafadidhg Bonn
Challengeprovide incentives to developing countries kipking forest conservation to market
related monetary valuesf carbon stock. Adverse anthropogenic activities such as deforestation,

from unsustainable harvesting, and the burning of biomass ttein carbon sinks into carbon
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emission source¢Viergever et al., 2008b) These activities are especially prevalent in developing
regions around the world such as the savannah woodlandSooth America an&outhern Africa.
Conversty, with the increase in carbon dioxide (@ the atmosphere over the past decade,
vegetation growthin grasslands and savannahas increasedvhich trees are growing at a faster
rate while utilising less resources to grq®ond and Midgley, 2012; Stevens et al., 201%)s a
result, increases inwooded savannahs, in terms of higher biomass and woody plant species
presence, areredictedin the future according to the current piiate condition trajectory(Higgins

and Scheiter, 2012; Stevens et al., 2016jven the importance ahe woody componentn global
savannas and the significant changes it undergoes on short andtiemg time scales, it is essential

to monitor the woody component effectively through time and space.

1.2 The current status of monitoring the woody component in South Africa

Despte the environmental and anthropogenic importance of woody vegetation, particularly in
savannahs, there is currently no monitoring programme available at the national level for South
Africa to produce reliable and dp-date products of the distributionrad amount of the woody
component(DAFF, 2015) This current inability to monitor the woody component has important
legal implications as the South African government has a national requirement to reporteon th
status of forests on a three year bagWillis, 2002) The government also have additional legal
obligations as signatories to various international treaties such as the Kyoto Protocol, United Nations
Convention to Combat Desertification, United Nations Forum on Forests and the Food and
Agriculture Organisation Forest Resource Assessment to map and monitor national carbon stocks
(DAFF, 2015; DEA, 2010; Main et al., 2016pnsequently, insufficient spatial and quantitative
information on the extent, the amount and possible changes in the South African woody
component, specially in savannahs, has preventathnagementfrom sustainably managing,
monitoring and utilising this woody resource. At the regional scale, various governmental initiatives
such as Working for Water have been introduced in 1995 to monitor this woodyponent by
reducing the density of established invasive alien plants (IAPs) via mechanical and chemical control
especially along vital watershed catchments where IAPs restrict and limit water(Baeh and

Dixon, 2009; Richardson and Van Wilgen, 20@yen after extensive clearing efforts and financial
investment (approximately R1.8 billion in 2015), spreading rates are estimated to digftween 5

and 10% per yeajvan Wilgen et al., 2012)Similar challenges are being faced by the Working for
Land project, established in 1997, to curtail bush encroachment via limited and small scale means

such invasive shrub removal, use of herbicides drdstablishment of fire breaksAd-hoc and
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sporadic studies, of variable temporal and spatial extents (mostly localisadd, shown the rate of
woody cover change to be betweef.131 and 1.275% per annum in Southern Africa with the
majority reporting anet increase as a result of bush encroachmértt Q/ 2 yy2NJ S | f &X
et al., 2016) Across a variety of land use and management amtfak gradients, only conservation
areas with elephants seem not to be subgatto bush thickening.The exact spatial extent of such
spread from both IAPs and bush encroachment is also currently unknBvem the perspective of

global initiatives suchs REDD+ and the Bonn Challenge, the identification of large, contiguous areas

of degraded and fragment land is crucial before various forest restoration effande made

In order to take the necessary steps to create a national monitoring pragearof the woody
component, various challenges still currently remain unaddressed in the scientific literature. These
challenges include determining whichmote sensinglatasets are most appropriatior mapping

the woody component across Souttm Africa, testing for the most effective modelling approaches

to achieve the best possible accuracies dimhlly, determining the optimal amount of training and
validation data required to achieve the development of such a monitoring programmehe
absence of such a monitoring program, global forest products, derived from global modelled
datasets, havébeen drawn upon, often erroneouslyThese global forest pradts are elaborated

uponin section 1.4.3.

1.3 Woody structural metrics

The woody componentan be assessed via a variety of variables such as species composition,
physiology (i.e. stress and productivity), phenology and structure. The structural variables of the
woody component will beéhe focus ofthis study. The following main quantifiablerizbles were

chosen as representative measurements or metrics which comprise of the savannah woody
component: biomass, woody canopy volume and cover. These variables are by no means exhaustive
but are capable of providing both two dimensional and thremefisional metrics of the woody
component. Each of these woody component variables will be separately explained within the

context of their definition, ecological importance and techniques used for measurement.

1.3.1 Woody biomass
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Biomass is defined as the mass of live or dead organic matter and is usually expressed in mass per

unit area(Bombelli et al., 2009; Brown, 1997) ¢ KS 3ISYySNI f GSN¥Y WoA2YIl &a

ground biomass (AGB), belaywound biomass (BGB) and dead mass and (i@asemi et la, 2011,

Lu, 2006) AGB is generally recognised as the main contributor of the total biomass and will be the
focus of this study as BGB cannot be studied with any other means beside labour and time intensive
in-situ sampling. In heterogeneous envimeants such as savannahs, AGB estimation is particularly
challenging because of the complex stand structure as a result of the abundant species diversity of
the vegetation(Lu, 2006) There are various methods for estimatiA¢GB which varies depending on

the spatial scale at which these estimates are predicted. The first method issitn, idestructive

but direct biomass measurement which involves the manual harvesting of pldnyieg them and

then weighing the biomass. This is the most accuasi@ direct method however it is extremely
intensivein both labour and timeand is usuallyimited within a small unit area such as asiagle

tree or plot level (Bombelli et al., 2009; Lu, 2006)The second is an -gitu, non-destructive
measurement which does not involve the harvesting of plants but requirescollection of plant
biometric measrements (e.g. height, diametat-breast heightor DBH etc.) for input into
allometric equations. These allometric equaticar® mathematical functions that relate tree dry
mass to one or more tree dimensions, suchdasmeter or height, and can be used ¢atrapolate
biomass to the unit ground arg@ombelli et al., 2009; Brown, 1997; Colgan et al., 2013; Nickless et
al., 2011; Saadogo et al., 2010) The final method entails the inferenemd mappingof regional

level biomass from remote sensing data and related modeldis particular woody structural
variable is proven to be vital for governance in light of the REDD+tiiré8aas it serves as a direct
indicator of carbon(Global Forest Observations Initiative, 2046) is also important for a number

of applications such the sustainable assessment of fuelwood stocks in communal rangelands
(Wessels et al., 2013y the assessnm@ of biomass resources for bioenergy proje(@&OFSSOLD,

2017)

1.3.2 Woody canopy volume

Woodycanopy volume, in its simplest form, can be derived from a simple product of canopy height
and canopy cover which would indicatee cylindricalvolume of vegetation Other definitions of
volume can be linked to various applications such as the forestry industry which relies on estimating
stem volume or bole volume which represents the volume of the tree stems per unit area, including
bark but exluding the branches and stun{@antoro et al., 2011) Woody canopy volume, usually

derived from volumebased allometric equations using DBH and sometimes height measurements
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(Abbot et al., 1997at the insitu level, can also be measured using remote sensing technologies.
The one of the methodologies of deriving this woody structural parameter wilbldered in greater

detail in chapter 3. This variable serves as a valuable proxy of biomass density and distribution
especially when biomass measurements are not possible due to the lack of available site specific
allometry, for instance. It also providéise means of investigating in a synthetic indicator both
woody cover and height variables which are highly variable across the savannah landscape. Apart
from its importance in the forestry industry for wood volume yields and derived woody products
(Forowhbakhch et al., 2012higher tree volumes are associated with a wider ecological niche and
correlates positively with both economic biodiversity value (EBV) and biodiversity ifdiasisemi,

2011; Merganic et al., 2013)

1.3.3 Woody canopy cover

Woody canopy cover is a simple and widely used structural metric which deénarea ‘ertically
projected on a horizontal plane by woody plant canogigsnnings et al., 1999)Canopy cover is

thus a two dimensional structural metric which indicates the spatial heterogeneity and possible
fragmentation in the ecological landscape. When combined with canopy height, it can provide an
informative indicator of volume and serve as indirect proxy for biomag€olgan et al., 2012)At

the in-situ level, canopy cover can be measured with the use of various sampling strategies such as
the vertical densitomete technique (Ko et al., 2009; Stumpf, 199@khich uses a point intercept
sampling approach. The point intercept method is a small angle approach but a large angle
I LILINB I OK Ol £ £ SR { K 8Villiams 226NalIK2008hs alsb baeNRtilis€lK This
approach morphs data from a circular fixatka plot to a square one and then uses a torus edge
correction technique to model the crowns of tree boles which fall outside a fixed plot but haire th
canopies partially covering portions of the pl@williams et al., 2003) At the landscape scale,
however, the canopy cover variable is adequately measured by remote sensing datasets. Measuring

canopy cover in both levewill be elaborated upon in greater detail in chapter 3.

1.4 Remote sensing of woody structure

Remote Sensing has been proven in numerous studies to be the preferred tool for the quantification
and mappingof this woody component mainly due to its supmrinformation gathering capabilities,

wide spatial coverage and revisit capacity. In contrast to the limited spatial scope of ground based
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techniques, remote sensing also has the ability to sense the high dpatigoral variability of
woody height, coveand biomass, as well as tree species diversity and plant phenological ciatus
defining but challenging set of characteristics typical of South African savaijAattsbald and
Scholes, 2007; Cho et al., 2012b; Mills et 2006) Additionally, remote sensing is more cost
effective, repeatable and most importantly, capable of effectively predicting environmental variables
over large geographical areas. When predicting regional biomass and other woody structural
parametes using remote sensing data, electromagnetic radiation (e.g. visible, infrared or
microwave) interact at different spatial scales with the woody component via direct (e.g. sensed
responses such as reflectance) or indirect (e.g. remote sensing derivedcpsaslich as leaf area
index or LAI) mean®@ombelli et al., 2009; Lu, 2006J his is usually achieved with the use of models
which can incorporate mukscale (from irsitu field measurements to regional remote sensing
derived parameters) and mutiensor type (passive and active sensor) data in the analysis. It is
important to note however, that the more open African savannah emments are relatively
understudied in the field of remote sensing in comparison to other environment types such as dense
forested environments (e.g. tropical and temperate forests) and other biof@egenzi and Lefsky,
2014; Gwenzi, 2017) Though limited in the number of available studies, a variety of passive and
active remote sensing sensor technolkgihave been employed to assess the savannah woody
component at various spatial scales: Light Detection and Ranging (L{Bi8R)r et al., 2014;
Mograbi et al., 2015)Synthetic Aperture Radar (SARdathieu et al., 2013; Mitchard et al., 2012;
Ryan et al., 2012)optical and integrated sensor platforms (e.g. Carnegie Airborne Ciiseyvor

CAO system which integrates both hyperspectral and LIiDAR sensors on the same p{asaen et

al., 2007).

1.4.1 Passive remote sensing of woody structure

AGB and other woody structural parameters have been successfully mapped using optical data from
fine to coarse spatial scaléBoggs, 2010; Casti®antiago et al., 2010; Nichol and Sarker, 2011)
This is made possible as forest structural characteristics (such as tree height, crown diameter etc.)
can be measured from stereoscopic rsaeements, spectral and texture orientated modelling
techniques(Lu, 2006) In terms of the electromagnetic spectrum, the red edge region has been
proven to be related tavoody structure, health and leaf and canopy biophysical factg@&ho et al.,
2012a, 2008; Delegido et al., 20EKd also played a role in estimating fresh aimg grass biomass

(Cho et al., 2006)Image texture is defined as a function bktlocal variance in an image which is

related to the spatial resolution and the size of target scene objects (e.g. tree can@yiesyl and
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Sarker, 2011; Wood et al., 2012Jor example, trees occurring over a bare soil background would
increase the variance through sunlit and shaded pixbiss tcreating image texture. The major
drawback of optical data, however, is the influence of high spectral variation and shadows at fine
resolutions, resulting from canopy and topographic effects, and the issue of sensor signal saturation
(e.g. MODIS sens data) and mixed pixels, at the medium and coarser resolutions, on AGB model
development and associated accuracigsl, 2006) Clouds and haze also detrimentally obscure
optical data which, in African savannahs, are prevalent in summer (due to the rainy season) and
winter (due to dry season veld fires). Another challenge is the effects of phenology on optical
imagery in savannah environments which undergo distinct phenologizosal changes during
which the green fractional cover of grasses and woody plants varies considéiabhibald and
Scholes, 2007) These phenological seasonal changes coutddate noise especially during the

wet or growing season when both woody plants and grasses are green. Thus, identifying the time
period during the annual vegetation cycle at which a maximum contrast is achieved between green
tree canopy and dry grass isiportant (Zeidler et al.2012) These phenological changes also,
however, experience noticeable intannual variability especially during years which experience

periods of severe drought or high rainfall.

1.4.2 Active remote sensing of woody structure

Active remote sensingensors such as LIDAR and SAR are particularly useful in studying woody
biomass and other capy related structural meics, because of their capacity to image within
canopy properties. Airborne LIDAR systems provide high resolutiofogat®d measuremets of
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canopies while SAR systems provide backscatter measurements which are sensitive to forest spatial
structure and standing woody biomass due to its sengjtid canopy density and geomet(iall et

al., 2011; Mitchard et al., 2011; Sun et al.,, 2011Both sensors have an ability to penetrate
vegetation canopies with SAR being unrestricted by challenging weather conditions such as dense
cloud cover which would inbit LIDAR and optical data acquisitiofMitchard et al., 2011)SAR
systems also operate at night, and altogether withvadlather capacity they can provide denser
a2a0SYFGAO a3dzl NI yeues Gniké LIDAR ¥eBsors, $relbaskacditersignal of SAR
sensors can saturate (i.e. a reduction in the net backscatter due to the extinction of the signal
(Collins et al., 2009depending on factors mainly related to the frequency and polarisation of the
sensor being used and density of vegetation structures being sensed. It was found that under these

conditions of signal saturation, SAR backscatter correlated negatively igithabs as a result of
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signal attenuation from denser forest canopi@dermoz et al., 2014) This would resulnia higher

than expected undeestimation of biomass past the point of saturation. Given that South African
savannahs possess a low to medium above ground biomass range of less than 60 tonnes per hectare
(Mathieu et al., 2013; Sotes and Walker, 1993it expected that SAR signal saturation would not be

an issue in this study. Another disadvantage of SAR, however, is that due to theokidg nature

of these sensors SAR backscatter is adversely affected by steep slopgpagdhphy in which the
creation of artefacts such as foreshortening, shadowing and layover effects and backscatter
calibration error are possibl@tukei et al., 2015; Van ZyR92; van Zyl et al., 1993 hese artefacts

and calibration error would complicate the analysis of vegetation structure over such terrain.

Although the LIiDAR technologyviell establishedand the most suited remote sensing technology
for mapping stucture with high accuraciesirbornebasedLiDARsystems are not webuited to
regional scale mapping asath acquisitionis constrained by operational restrictiorsuch as
expensiveflight campaigns, and accessgensors andlata is dependenion the country. (Popescu

et al., 2011)and (Lefsky et al., 1999however, did successfully make use of canopy height metrics
derived from satellite and small footprimtirborne LIDAR to estimate forest AGB. Few studies have
also utilised various LIDAR derived canopy metrics (e.gleyet and treelevel height and canopy
cover metrics) to estimate AGB in the South African savannah environf@elgan et al., 2013,
2012) Additionally, paceborne LIDAR missions (eMOLI¢ multi-footprint observation LIiDAR and
Imagerc to be launched by JAXA in late 2019 and GEBIbbal Ecosystem Dynamics Investigation
LiDAR¢ to be installed by NASA on the International Space Station in late) Z0@&oarse scale
sensors with large gapsetween samples which armadequate for producing consistent maps
across the landscapghe latter is also only a two year missjorDue to its precision and accuracies
over a limited coverage, airborne LIDAR data can be extremely useful in creating a large
representative ground truth dataset, once validated with collected field data, for regional scale
modelling using coarser datasdtdathieu et al., 2013; Naidoo et al., 2015)ompared to other high
resolution optical imagery, however, airborne LIDAR, is the most expensive with a cost of
approximately 15 US$ per hectare depending on the total coverage, sensor specifications and
location of deploymenf{Hummel et al., 2011; Kelly and Di Tommaso, 2015; Thompson et al., 2013;
Wulder et al., 2008) Waltto-Wall, repeat acquisitions of an entire country, particués large as
South Africa (122.1 million ha), is currently not financially feasible, and thus there needs to be a
trade-off between the area sampled with LIDAR and the total cost incUEee et al., 2016; Wulder

et al., 2008) Withthis in mind, it is thus imperative to establish a much needed guideline for the
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qguantity and distribution of LiDAR acquisitions required for training and validation of models in a

national woody component monitoring system.

The concept of polarimetry,e. radiowave orientation, in SAR theory has played an important role in
understanding ecosystem structu(€agues et al., 20Q0Polarimetric SAR systems emit and receive
waves potentially in HH, HV, VH and/or VV polarisations with H referring to aoatizvave
orientation and V referring to a vertical wave orientation. This allows for a complete
characterisation of the scattering properties of various ground targets which in turn, enables the
extraction of greater structural information. Some SARews offer only single polarimetkyone
polarization (e.g. ERS, dual polarimetryg two polarizations (e.g. Sentiré), or full polarimetry

(e.g. RADARSA]J when all four polarizations are available. Additionally, when a system is fully
polarimetric decomposition theorems (e.g. FreemBurden) can be applied to simulate and
guantify dominant scattering mechanisms (volume, double bousree single bounce) and relate
these mechanisms to specific target properties such as volumetric scattering widlgircanopies

etc. (Touzi et al., 2004)(Le Toan et al., 201Mapped biomass at a global scale (from 70°N t&56°

at 100200m spatial resolution) by utilisingtRand frequency fully polarimetric (HV) SAR backscatter
data, modelled against igitu biomass measurements, and interferometric SAR techniques. As an
alternative to the modelling of SAR scattering and poiatric variables(Balzter et al., 200#hade

use of polarimetric interferometric SAR (InSAR) techniques, in deciduous woodland, for the direct
estimation of forest canopy height which allowed for the indirect prediction of AB&8arimetric
INSAR principlesvolve the polarimetric separation of scattering phase centres in order to estimate
tree canopy heigh{Balzter et al., 2007)Similar methods, involving-band and &and, have been
explored in tropical savanheenvironmentgViergever et al., 2008&ut none have been attempted

in SouthAfrican savanrias with any reasonable succesg&.inally,(Mathieu et al., 2013)ested fully
polarimetric RADARSAT (Gband) in a Southern African savannah to assess various woody
structural metrics. It was found that the HV band was the best single predictor over the other
polarizations and that the polarimetric decomposition variables did not perform better than the
simple intensity bands. This work also suggested that dual polarimetry SAR seagobg mmore

than suitable for assessing vegetation structure in open savannahs. Similar work conducted by
(Urbazaev et al., 201%)ith dual and fully polarimetric ALOS PALSABafid) data also suggested
the importance of ce and cross polarised backscatter channels (HH and &tVivéody cover
assessment in South African savannabsd confirmed the limited benefits of polarimetric

decomposition for quantitative retrievals of forest parameters
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1.4.3 Global forest remote sensing products

With the increased availability of systematiad frequent acquisitions of high resolution remote
sensing datasets and the development of integrated large scale processing platforms, global scale
forest products were able to emerge to map the woody componafitelrknown products include

high resoluton (30m) global forest cover maps, derived friandsatData (Hansen et al., 2013a

30m global continuous fields tree cover product, derived froamdsatbased rescaling of MODIS
data (Sexton et al., 2013 25m global forest/nofiorest (FNF) classification product derived from
ALOS PALSARANnd SARbackscatter intensity datase{Shimada et al., 2014)These products were
developed primarily as a means to highlight the extents of forest loss and gain at the global and
possibly regional scales which can serve as a proxy for the impact on various ecosygiess sach

as biodiversity richness, carbon and nutriestbrages and fluxes, water supply and exchange and
also various climate implicatiorfslansen et al., 2013; Sexton et al., 201B)ese global forest cover
products(e.g. the(Hansen et al., 2013roduct and ALOS PALSAR FNF), howeaee, mainly been
validated against reference data collected in densemogeneousequatorial forested areas of
Africa and other countries rather than ieterogeneoussavannah and forested typedth variable
canopy cover and height profiles As a result, rast of these global forest products have yet to be
accurately vatiated at the reginal scale in South AfricdDue to the lack of available South African
forest products, created from local training and validation datasets, these global forest products are
temporally serving the need to monitor the woody component buthvwinknown local accuracies.
Assessing whether these products are suitable for the monitoring of the South African woody

component is thus of utmost importance.

1.5 Multi -sensor and multi -temporal remote sensing data integration

Remote Sensing technigsieand derived models have steadily moved from the reliance on a single
sensor type (e.g. SAR or LIDAR alone) to 1eeiftsor integration approaches. These data integration
approaches amalgamate various sensors and derived features (e.g. dyatsead textire, laser pulse

return and microwave backscattering data), mtdtinporal data (datasets acquired at different
seasons), mulirequency data (e.g.-lband and @and SAR) and multolarised SAR data (HH, HV,

VH and VV) in various modelled approacheke ffequency or wavelength of the SAR sensor can
have a major influence on the structural features sensed in the ecosystem. For example, when
sensing vegetation, the signal of shorter SAR wavelengths (panpdXand eand) interact with the

fine leaf and branch elements of the vegetation resulting in canopy level backscattering with very
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little signal penetration. The signal of longer SAR wavelengths {bamdand tband), on the other

hand, can penetrate deeper into the vegetation with backscatésulting from signal interactions

with larger vegetation elements such as major branches and tr(iMiishard et al., 2009; Vollrath,
2010) Canbining the properties of these different SAR frequencies in a feeitsor approach can
greatly enhance the sensing of the savannah woody compof&attmullius and Evans, 199wich
possesses a combination of fine and large woody elements within individual tree canopies and a

heterogeneous distribution of large trees and smaller shrubs throughout the landscape.

The change in climate (rainy or dry) and vegetation phenologae(gor senescent) throughout the
seasons of a year can also have a dramatic impact on the scattering and reflecting characteristics of
multi-sensor remote sensing datasets. Factors such as ground moisture arahleafl leafoff
vegetation conditions caaither enhance or diminish SAR signal penetration and scattering and the
reflectance of optical spectrgGlobal Forest Observations Initiative, 2016; Main et all,62®aidoo

et al., 2016; Urbazaev et al., 2015; Zeidler et al., 201R)derstanding these seasonal influences on
these datasets will shed some light on which temporal frame would be best for sensing the savannah

woody component.

(Sun et al., 201Inade use of LIDAR and SAR synergies for the mapping of forest biomass in which a
comparable biomass map was generated using limited ground biomass data and SAR polarimetric
and coherence variables derived from irferometric pairs. The advantages of the integrated
approach was best illustrated lflyucas et al., 2008yhich made use ohiegrated Compact Airborne
Spectrographic Imager (CASI) hyperspectral and LIDAR data to retrieve and map forest AGB and tree
component biomass at the individual tree or tree cluster level and then sgal® plot or stand

level. This was made possible biilising the optical CASI hyperspectral data as a means to
delineate crowns and for species identification. The component biomass for the individual
delineated trees was then estimated using LIiDAR derived height and diameter measurements which
were usedas inputs into the speciespecific allometric equations (Lucas et al, 2008))sui et al.,

2012) on the other hand, made use of muftequency SAR data {2and and tband data) for
improved biomass estimations in coniferous temperate forests of Can@diallins et al., 2009Iso

made use of multfrequency (P band, L band and C band data) fully polarimetric (HH, HV, VH, VV
modes) SAR data to estimate AGB and carbon storage of Eucalypts in thtogstrsavannahs of

North Australia. Despite the success achieved in these various studies via combining different SAR

wavelengthgMougin et al., 1999; Tsui et al., 201#)e combinedstrength of both shorter (e.g.-X
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and Gband) and longer SAR frequency (e-Apahd) sensor technologies, however, have yet to be

assessed in the heterogeneous and complex Southern African savannah environment.

Given the sensitivity of optical sensors fihotosynthetically active vegetation and the sensitivity of
SAR backscatter to vegetation structure, their possible integration may yield improved woody
structure estimates due to complementary information which neither sensor type could provide
alone. The integration of optical products has also proven useful in assisting the determination of
shrub-based and coppicing tree cover (and possibly biomass) which is not easily identified in the
LiDAR and SAR data produg@hasemi et al., 2011)For example, the work ljvloghaddam et al.,
2002)illustrated improve estimation of forest variables by the fusion of SAR (AIRSAR and TOPSAR)
data and optical multispectrdlandsatTM data which yielded higher modelled accuracies than the
use of each dataset type alone. Other studies in dense forested envirospsavannahs and
plantations alsdntegrated these two sensor technologiaad yieldedfavourable result§Laurin et

al., 2013; Lucas et al., 2006b; Moghaddam et al., 2002one of these studies, however, have
investigated the effects of vegetation phenology on optical imagery, especially in savannah
environments with complex tree and grass phenological seasonal changes. Integrating optical and
SAR imagery of the most pqopriate phenological window (i.e. maximum contrast between green
tree canopies and dry grass) could improve the modelling of the woody component in South African

savannahs.

Despite the success achieved in these various studies, the combined stadnijise active (SAR

and LiDAR) and passive (optical) sensor technologies, however, have yet to be applied to a more
heterogeneous and complex environment such as Southern African savannahs. This is evident from
gaps in the literature for savannah envirognts in South Africa. The aim, objectives and specific

research questions of the thesis will be detailed next.

1.6 Study aim

The overall aim of the thesis was to evaluate various methods of estimating andlingswoody
structural metris of South Afcan savannahs using integrated SAR and optical remote sensing
datasets and LIDAR datasetdm@sning and validation data.

Study areasanging from the Greater Kruger National Park region to the eastern half of South Africa

were chosen as the focus inistthesis.
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1.7 Study objectives and chapter breakdown

The objectives of the thesis were:

1) To comprehensively validatirrent globalscale remote sensing woody structural prodycts
within South Africausinghigh resolution airborne LIDAR datasets. Tés& will serve as an
important, quantitative benchmark for assessitige performance othese global products
in South Africanforests and savannahs and thus providing the justificatfon the
methodological development ohew savannatspecific products in South Africa This

objective will be addressed thapter 2.

2) To developand assessnethodologies for the estimation of keyoody structural metrics
(biomass, woody canopy cover and woody canopy volume) for the Kruger National Park
region usingmulti-frequency SAR parameters (backscatter and polarisations) and optical
features derived from multiple remote sensing sensorBor this objective In-situ field
measurements of woody vegetation structure and biomaissi & OWALER (12 f F yRa Ol LJ
regioral scales by using LIDAR, SAR and optical selasaito produce maps ofvoody
structural metrics. As a prelude, various parametric and Roarametric modelling
algorithms were tested in order to ascertain the best approach and these results are
reported in detail in Appendix 3C. Two separate analytical chapters adutdisis current
objective. Chapter 3 focusd on the woody structure modelling and mapping using multi
frequency SAR datasets (X and lband) Chapter 4nvestigatal the benefits of combining

optical data withL-band SAR datasets festimatingwoody canopy (fractional) cover.

3) To investigate thescaing up of the woody structuralmapping approach (developed in
objective 2)to national scale while considering the atlenges of predicting woody
vegetation structure across diverse environments (different bisneegetation types,
rainfall gradients and variable topography) and the LIiDAR data requiremen{s.g. how
much? And where?¥or successful model training andilidation overthe entire country.
This is particularly challenging farcountry where the woody componentassodominantly
present(and biasedjcross the savannah biome. The traufé betweenthe accuracy of
model training and increasing LIDAR acsjtion costsare considered. Optimalbut
representative samplingvith airborne LIDAR acrosise diversevegetation types of South

Africais a vital challenge taddress when developing a national scale monitoring system
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This research objective (to beldressed in Chapter 5), together with the lessons learnt from
previous chapters, will help shape the requiremeatsl specificationsf a national woody

structure monitoring system.

The final chapter, Chapter 6, inclisle & dzYYlF NBE 2F GKS addzReQa 02y Of dz

the ways forward.

1.8 Primary and secondary research questions

Chapter 2

1 ResearchQuestion2.0. How accurate aretwo global forest productsthe 30m Landsat

derived Vegetation Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non
Forest (FNF) global productghen validated against high resolution airborne LiDAR datasets
across South African forests and savannahs?

- Research Question 2.Kcross which canopyoger ranges do the two products yield the

highest and the lowest accuracies?

- Research Question 2.2Zcross which vegetation structural type (e.g. grassland, woodland
and natural forest(Willis, 2002) do the two produts yield the highest and lowest

accuracies?

Chapter 3

1 ResearchQuestion3.0. How do various SAR frequencies ¢X G or L-band) perform in

predicting woodycanopycover, woody canopy volume and above ground biomass in the

Southern African savannahstbe Kruger National Park?

- Research QuestioB.1: Does combining SAR backscatter of different frequency (X+C or X+L
or C+L band or X+Cband) improve the predictions of the various woody structumegtrics
over the single SAR frequencies and by how much?

- Research QuestiorB.2: What does the examination of the patterns of error, from the

different SAR frequency models, inform us on how the different SAR frequencies interact

within South African savannah landscape?
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Chapter 4

1 ResearchQuestion4.0: Does thecombination of SAR (ALOS PALSARnH) and mult

seasonal optical Landsats) remote sensing datasets improve wooa@nopy cover
estimation in comparison to the individual datasets alone?

- Research Questioh.l: Which season or seasonslaindsats data is/are best for predicting

woody canopycover?

- Research Questiofh.2: How does the aaaracy of woodycanopycover predictions compare

when usingsingle and multseasonalandsatersus tband dualpolarised SAR dadats?

- Research Question 4.8®0es the integration of optical predictor parameters (e.g. textures,

vegetation indices, and/or raw reflectance etc.) withhdand SAR data, improve the overall
modelling accuracies? If so, how do these accuracies compare with the modelling results

using onlythe SAR datass?

Chapter 5

1 ResearciQuestion 5.0What is the optimal representative sampling of airborne LIDAR data

and LiDAR simulated field plots, across Savanmih and all main biomes (Savannah,
Grassland, Fynbos, Thicket and Indigenous Forestihe training of modek predicting
woody canopycover at the country level using ALOS PALSHdhd SAR data? Secondary
objectives also include the investigation of the inclusion of regional environmental variables
(i.e.digital elevationbased and raifall variables) for potential model improvements.

- Research Question 5.Does the inclusion of regional ancillary variables such as elevation,

slope, and aspect and rainfall gradientprove the accuracy of modelling woodwanopy
coverwhen compared to usg only thel-band HH and HV backscatter?

- Research Question 5.%/hat is the impacbn model accuracgf having LIDAR data that are

limited to a single biome, i.e. the Savannah? More specifically, is LIDAR data which is limited
to the Savannah biome (as specifiedRutherford et al., 2008)sufficient for training and
validation for Eband SAmased modelling and mapping of woodgnopy cover for the
whole country? Also, how do these results of using LIDAR from the Savannah only compare
to those where diverse LIDAR datasets from Fynbos, Thicket, Grassland and Indigenous

Forest biomes are used?
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Research Question 5.8vhat is the optimal enount of field plots, as simulated from LIiDAR

datasets, required for modelling and mapping of woazhnopy cover with Eband SAR

I ONRP&a GKS O2dzyiNE YR AY {I@IyylKa 2yfeKkK ¢
most favourable tradeff betweenmodelling accuracies and sampling effort (i.e. number of

field plots).

Research Question 5.What is the optimal amount, in terms of area (hectares) and number

of acquisitions of LIDAR data required for optimalaind SARased modelling and mapping

of woodycanopycover within (i) the Savannah and (ii) countvide, in comparison with the

accurad Sa | OKAS@GSR dzaAy3a 'y 2LWGAYIE ydzYoSNI 2F T
case, refers the most favourable tradéf between modelling accuracies and sampling effort

(i.e. the number, size and total coverage of LIDAR acquisitions while takingcitdunt the

cost effectiveness of the various LIDAR acquisition specifications).
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Chapter 2: Assessment of the Performance of Global Forest Cover

Products in South Africa z Establishing the benchmark

2.1 Abstract

There is dervent debate on whetheiglobal forests are in the state of growth or loss. Global scale
forest cover products have providea means to measure where forest lesand forest gais are
occurring. Most of these global forest cover products, however, have yet to be accurateitedlid

at the local to regional scale especially within the savannah biome. This study aimed to assess the
performance of two 2010 global forest cover products, the 3Qandsatderived Vegetation
Continuous Field (VCF) and the 25m JAXA ALOS PALSAR FoFeselio(FNF) global products,
against an extensive collection of airborne LIiDAR datpuiredduring2009and 2013 across South
Africa (SA) with special focus on detecting foreét & LISNJ G KS LINPRdWiaQ T2
savannahs. The overall stragiewas (i 2resathpl® G KS [ A Snateh the triterfa use® to

create the VCF and FNF products. It was found that the FNF product grossiyaprdeented the
distribution of forests in savannah environments {6 CC ranges), due to timadequate HV
backscatter threshold chosen in its creation. The FNF product also sheviedted ability in
detecting closed forest cover class {P00%) and Natural Forest andr@z Forest tree structural
classes. TheandsatVCF product displayed strong CC undéneation with increasing variability

and mean error from CC value$ greater than 30%. The moderate accuracieshat 1020% CC

range (and in the @en Woodland tree structural cla3suggest that the VCF product could be
potentially applicable in low CC environments such as grasslands and sparse savaimibd
detection accuracies (~30%)y the VCF however, were also observed in closed canopy
environments (9100% CC range)Degite the lackof a completely balanced LIDAR acquisition
coverage across the forested biomes of SA (most LIDAR acquisitions were biased to the Savannah
biome with limited coverage over dense forestd)ese results give some insight into the inherent
flaws of the global products especially over the savannah bionhese results provide the

justification for developing new, locally calibrated woody structural products for South Africa.

Keywords:Global forest covetandsatVCEFALOS PALSAR FNF, LiDARatiah
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2.2 Introduction

South Africandrestsand savannahare crucial ecosystems which provide a plethora of goods and
services (food and energy) which benefit both natural and anthropogenic f¢@aislumgo and
Gumbo, 2010; Shackleton and Shackleton, 2004; Twine, 2005; Wessels et al.TBéfd )s a strong
debate on whether theeforestsand savannahare in the state of growth or loss. This state of flux

is documentedparticularlyin heterogeneousavannalenvironments, in which the woody resources

are harvested for food or selectively logged to satisfy energy securities, by the local populaces, thus
creating a perception of forest declirfPereira et al., 2011; Ryan et al., 2012; Wessels et al., 2013)
On the other hand, there is the issue of bush encroachment, which threatenibsédstockgrazing
potential of Southern Africamangeland h Q/ 2 yy2NJ SG Ff ®X HamnT,o2 | NRX
the occurrence of forest regeneratiofChazdon, 2008)either assisted or unassisted byrhans,

which thus creates a perception of foregtowth. The emergence oflgbal scale forest cover
products have providg a means to confirm and measure where forest loss and forest gain is
occurringat a global scaléHansen et al., 2013ut whetherthese products are accurate enough to

monitor forests in the Southern African region is left to be investigated

The developmentof global scale forest cover products was made possible withirtbeeasing
availability of systematicand frequent acquisibns of high resolution remote sensing datasets
(which are also ideal for regional monitoring efforts), and the development of integrated large scale
processing platforms Weltknown products includehigh resolution (30m) global forest cover maps,
derived from Landsat7 ETM+ dta (Hansen et al., 2013% 30m global continuous fields tree cover
product, derived fromLandsatbased rescaling of MODIS dgexton et al., 2013R 25m global
forest/non-forest (FNF) classification product derived from ALOS PALB&RI ISynthetic Aperture

Radar backscatter intensity datase(Shimada et al., 2014)These products were developed
primarily as a means to highlight the extents of forest loss and gain at the global and possibly
regional scales which can serve as a proxy for the impact on various ecosystem services such as
biodiversity richness, carbon and nutriestbrages and fluxes, water supply and exchange and also
various climate implicationgHansen et al., 2013; Sexton et al., 201#dditionally, hese global
products play a major role in the greater scientific community as they contribute to global initiatives
such as REDD+ (Reducing Emissions from Deforestation and forest Degradation) and greatly
influence environmental management tite regionalgovernancescale(Hansen et al., 2013; Sexton

et al., 2013; Shimada et al., 2014t is believed that such satelliteasedglobal forest cover and
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change products have actually hedigtablish variousnvironmental policy initiativesuch as the
Kyoto Protocol, REDD+ and the Aichi Biodiversity Ta(§etdon et al., 2015)Most of these global
forest products, however, have yet to be accurately validated at the regional scale in South Africa,
especially within the sannah biome. The global forest cover products mentioned egtiansen

et al., 2013; Sexton et al., 2013; Shimada et al.4pBave mainly been validated against reference
data collected in densénomogeneousquatorial forested areas of Africa and other countries rather
than inheterogeneoussavannah and forested typegth variable canopy cover and height profiles

As a esult, when generalised at the continental scale, validation accuracies of these products are
reasonable with validation sites biased to the dense forested areas (e.g. Figure (B3anmada et

al., 2014) Figure 2 if{Sexton et al., 201R) (Kim et al., 20143lso confirmed that.andsatbased VCF
global products have a relatively low certainty ofdst and norforest classification in serairid
environments in which sparse and short trees persist such as the Miombo woodlafd®,
surprisingly,the Global Forest Watch web portal whichbased on theLandsatand MODIS VCF

products (Hansen et al., 2013; Townshend et al., 20(idp:// www.globalforestwatch.ord/ does

not acknowledge the presence of forest in the South Africa savannah Loaneld also limited to

targeting trees greater than 5m in height

What also compounds matters further, is that these products are derived acgptd different
definitions of what constitutes a forest, with different definitions being introduced from various
institutes and initiatives (e.g. United Nations Framework Convention on Climate Change, UNFCCC,
versus Convention on Biological DiversitDC versus Food and Agriculture Organization of the
United Nations, FAQSchoene et al., 200)/) The Forest Resources Assessment (FRA) of the FAO, for
example, defines forest as land spanning more than 0.5 hectares with trees higher thamtrems

able to reach these thresholds in situ and a canopy cover of more than(BA@, 2015)vhile the
UNFCCC defines forests more flexibly as a minimum area of land f B&%ith crown tree cover

(or equivalent stocking level) of mothan 10¢ 30%(UNFCCC, 2001(Sexton et al., 2015¢vealed

that swch an ambiguity in the definition of forests can potential result in a discrepancy of
approximately 19.3Xfxm?in forestcoverage (i.e. area of classified forest) at the global sc&lech

a discrepancy can adversely affect forest area calculations in regions that have overall less dense
tree cover such as savannah and shrubland environméRexchio, 2015) Sincethe savannah

biome possess total woody fractional cover that can range from dispersed trees irgogesiands

(~5%) to neaclosed canopy woodlands (~60%) and more than 80% in riparian pdester et al.,

2003) it is expected that forests should be present in such a system regardless of the definition of
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forests implemented. Regardless of the definition utilised in these gfobasdt products, a flexible

and accurate validation data source is needed for such validation effdright Detection and
Ranging (LIDARp such a data source and particularly well suited for woody structural
measurements, because i$ capacity tocapture canopygeometry and structuréMcGlinchy et al.,
2014; Popescu et al., 2011; Sun et al., 20BDditionally, in terms of the measurement of fractional
tree cover, airborne LIiDAR derived metrics have proven to be mongratecthan field measured
metrics derived from field laser, manual collection and hsptierical photography methods
(Nickless et al., 2009) This accuracy together with the large geographical coverage managed by
airborne LIDAR sensors, thtesults in the availability of a large validation source for remote sensing

product validation studies.

This study aimed to assess the performance of two 2010 global forest products, théa@inat
Vegetation Continuous Field (VCF) and the 25m JAXYS AALSAR Forest/Neorest (FNF) global
products, against an extensive collection of airbokil@AR data collected over years 2009 and 2013

in South Africa, which served as the ground trulthese high resolution global forest products have

yet to be asessed in South Africaa country where no regionally derived forests products, from
remote sensing data, are currently available despite being a national requirement for reporting on
the state of the forestgWillis, 2@2). The global 30m tree cover product created (8exton et al.,

2013) however, vas notassesseas the 2010 version of the product was not available. The primary
focus of the study would be the assessment of both products for the accurate detection of forests,
Fa LISNJ KS LINE RdzO( 8ddth AfdchhBadaimnahR S/AickayeAlargelg yindlet Ay
represented or excluded by such global products. Based on the validation results, and as a
secondary objective, product error will be assessed over stratified canopy cover ranges and
vegetation structural classes, (e.g. woodlands, ndtfoeests and grasslandsVillis, 2002), in order

to ascertainthe performance ofthese productsaccording to vegetation type Suggestions, also,
were put forward to help improve these global forest products for geicturally variable South
African environment. A variety dbrest types (i.e. from savannah Lowveld vegetation to closed
indigenous forests and plantations) were choserSouth Africdo cover the full expected range of
canopy cover valueand structue in the validation efforts. This study will ascertain whether these
global forest products are applicable to the South African region or whether new regional forest

products will needed to be developed.
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2.3 Study Area

Theeastern half othe country of South Africa, between latitudes 22° and® 3outh and longitudes

25° and 33° eastwhere forests are dominanis under investigation for the task of global forest
product validation. Of approximately 120 million hectares in area, South Africa possessariety

of biomes, topographic landscape features, climate and geological conditions. South Africa consists
of nine main biomegMucina and Rutherford, 2006¢ach possessing a charat@séic suite of plant

and animal species which vary in distribution and according to environmental conditions. Of these
biomes, forests are largely present in Savannah, Indian Ocean Coas{@OB&jhnd Forest biomes

with the Savannah biome covering @50f the South African land surfag¢¢an Wilgen, 2009)
Savannahs are characterised by a mixture of a grassy ground layer and a upper woody layer of plants
which are in a constant state of flux depending on rainfidé and grazing pressures and occur
mostly over the Lowveld and Kalahari regions of the coufitoyv and Rebelo, 1996)As mentioned
earlier, Savannahare of great importance as the woody layer is harvested by the local populace for
energy provision while the grassy ground layer supports cattle rangishg@zingLow and Rebelo,

1996; Ryan et al.,, 2012; Ward, 2005; Wessels et al., 20IB)is could lead to threats of
overharvesting of trees, overgrazing of the grass and subsequent emergence of bush encroachment.
Structurally, 8vanndns possess total woody fractional cover that can range from dispersed trees in
opengrasslands (~5%) to nealosed canopy woodlands (~60%) and more than 80% in riparian
zones a general height range of20m and a total biomass mostly less than 100 tonpeshectare

(t/ha) (Low and Rebelo, 1996; Mathieu et al., 2013; Venter et al., 200@) Forest biome (including
indigenous forest and the IOCB) are less prolific (<19 ¢dril surface), occurring in patches rarely
greater than 1krfiin area and commonly occur along the South Coast, the Indian Ocean Coast and
the Lowveld escarpmerftow and Rebelo, 1996Due to high rainfall (>725mm) in such areas, these
forests are less affected by fire (except under very dry conditiflrc) and Rebelo, 1996ut are
susceptible to illegal logug activities of valuable timber, ridgarking resulting from the illegal
extraction of medicinal bark by surrounding communities and the invasion of alien species (e.qg.
Pinus spp.JShackleton and Shackleton, 2004%tucturally, the vegetatiorare usually evergreen

and multHayered with high woody fractional cover (290%), high biomass (>100 t/ha) and tall
heights (620m and greaterjWillis, 2002) Apart from naturally occurring indigenous forests, forests
FNBE fa2 NBLINBASYGSR o6& O2YYSNODAFE LXFydlFdAzya
eastern escarpmerand within the savannah, grassland and IOCB bigi@elsoles and Biggs, 2004)
These commercial plantations support alien species cultivars forvpobtel and mulch production,

for various commercial goods such as paper and furniture, and also for fruit production. Structurally,
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depending on the agera plantation type (orchrd versus woodlots), the vegetation is mostly
continuous cover with high biomass yields and height measurements (similar to the Forest Biome).
Finally, although not typically known to be containing forests, the Thicket Biome gsesse
evergreen, sclerophyllous vegetation that range from closed shrubland canopies to low forests with
no discernible grassy ground lay&ow and Rebelo, 1996)The vegetation supported in this biome
can possess high woody cover {I%), which can be impenetrable, with generally low height (1
2.5m) and bdmass level§Willis, 2002) One of the biggest threats to this biome is transformation of
natural land into agriculture and ranching resulting in land degraddtitoare et al., 2006) At the
South Afrtan scale, &erage temperatures are generally mild but can vary according to location and
proximity to the oceans. Annual average precipitation is about 450mm with atdvlglw rainfall
gradient existing from east to west which mainly limits forest dsiion. The map displayed
below, in Figure.l, illustrates the study areand showshe LIiDAR dataset coveragesed for the

validation of the global forest products
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Figure2.1: Sudy areawith focus on the LIDAR dataset coverages (see table 2r1fDAR specifications)

2.4 Materials and Methodology

Two weltknown global forest earth observation products, 2010 3DamdsatVCF and 2010 25m

ALOS PALSAR FNF (Figixe were validated at the country level against a geographically extensive
dataset of airborne LIDAR. The strategy was fairly simple in that the airborne LiDAR derived data
products, i.e. canopy height model (CHM), wprecessed an¥ R S 3 NI R S R@eridlafd pikel i (G K S
size used to create theLandsatVCF and ALOS PALSAR FNF prodddis. LiDABRased forest

products were then compared with the global forest produdihis takes into account the different

definitions used to define and map tree covetthie various global forest products.
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2.4.1 Global forest products

The 2010 andsatvCHproductwas derived from monthly surface reflectance composites, composed
from Landsat7 Enhanced Thematic Mapper Plus (ETM+) imagenyicularlyLandsafr ETM-+bands

3, 4, 5 and Ytaken throughout the year, derived NDVI, various baatibs and low and highgain
temperature bandgHansen et al., 2013, 2011YheLandsatvCF product was derivécbm a similar
methodology used to create the MODIS VCF prodliotvnshend et al., 2011)It is composed of
three main components; percent tree cover, pert@on-tree vegetation and percent bare ground;
modelledwith a nonparametric bagged decision tree approagtansen et al., 2014, 2011, 2003,
2002) TheLandsatV/CF percent tree cover component defines tree cover as any woody plant with a
height greater than or equal to 5 metre@Hansen et al., 200, 2003) In this study, percent tree
cover of the Landsat V@Foductwas considered to be analogous to the woody canopy cover metric
(CC).The ALOS PALSAR FNF was derived fronpdaaled (HH and HVjdand Fine Beam Dual
polarised EBD imagerywhich were mainly acquired during dry conditionsSouth Africgdbetween

June and September), according to the dual polarised data type Basic Observation Scenario (BOS)
(Shimada et al., 2014) Unlike the continuous tree cover qiuct of the LandsatVCF, the ALOS
PALSAR FNF is purely categorioaisisting ofthree classes: forest, neiorest and water. The
product was created from countryand/or continentspecific HV backscatter (dB) thresholdiog
forest separation together with specific HH and HV backscatter (dB) thresholds fepbnested
surfacesseparationand utilised the FAO definition of a foresthich is all contiguous areas where
the cover of woody vegetation is greater than 10%tkiis case, within the 25m pixel resolution of
the SAR backscatter imagery used for creating the FNF prog@ie), 2000; Shimada et al., 2014)

There was no vegetation height threshold used in the creation of the FNF product.

2.4.2 LIDAR validation datasets

The airborne LIiDAR validation datas@tstalling 122052 hectareswere acquiredrom a variety of
flight campaigns acrodhe eastern part ® South Africabetween 2009 and 2013. These datasets
were made availablethrough scientific and collaborative agreementdy the Carnegie Airborne
Observatory (CAO), Southern Mapping Comp&iNParksScientific ServicesAECOM (UKand
ESKOM. Due to theational scope of the study and the lack of available and extensive airborne
LiDAR which matchedxactly the global forest product acquisition year, a temporal difference

between the global forest and LIDAR datasetss permitted Most forest types do nothange
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extensively (indigenous forests are protectediit only gradually (savannahs through mostly
selectie logging or bush encroachment). Unfortunately, possible error associated with the
temporal differencebetween LIDAR datasets and global forestduats, however, could still be
incurredduring the validation processThe LIDAR datasetssed in this studyre outlined in Table

2.1

2.4.3 Global Forest Product Pre -processing

TheLandsatvVCF was obtained from the Global Land Cover Faditity:/(landcover.usgs.gov/gld/

while the ALOS PALSAR RNE publicly available from the Japan Aerospace and Exploration Agency
(JAXA) portalhttp://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm Both products were

obtained with no further posprocessing being conducted. The native projections of the products,
geogaphic WGS84 and Sinusoidal projection for ALOS PALSAR Fh#hdsatVCF respectively,
were reprojected to a common geographic projection with a WGS84 datltris. important to note

that preliminary work with the FNF and the ALOS PALSAR global HV, frosaievhich FNF was
derived from, indicated that was a pixel misalignment between the ALOS products and the LIiDAR
datasets. This misalignment was apparent in heterogeneous vegetated areas with varying land
usecover types (forest patches distributed spadically across sections of grassland and also along
urban settlement outskirts To address this discrepancy the FNF produas convertedto an

Albers EqualArea projection and shiéd by a constantdistance of 75m westwards and 50m
northwards. After he shift, the FNF products were converted back to a WGS84 geographic
projection. Changing to a common projection at the country scale was needed in order to eliminate
any errors arising from mismatched projections and potential misalignment between {d&iMed

extraction grids and the global forest products.
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Figure2.2 25mALOS PALSAR Forest/NBarest(left) and 30m Landsatvariable Gontinuous Feld cover
(right) products

2.4.4 Airborne LIDAR Data Pre -processing

Although the LIDAR sensand settingsused variegdsuch as scan frequency, laser spot spacing and
point density (outlined in Tabl2.1), a common methodology was applied to all datasets to ensure
consistency in the extraction of the canopgight models and associated woothactional cover.
Most of the raw LiDAR point cloud data were processed in TerraSolid LIDAR processing software in
which a Digital Elevation Model (DEM) and-tdgcanopy surface models (CSM) were creatBEM

and CSM were generated at a pixel size varyingifioto 5 m, depending on the dataset point
densities. Canopy Height Model§CHM), which varied in pixel size from 1 to 5mere then
computed by subtracting the DEM from the CSM. The 2012 CAO datasetpraeided already
processed by the CAO researtdtam, seedetails, such as software, iAsner et al. 2012 The
differences in LIDAR specifications would not be expected to be influential at the coarsletioes

of the global forest products. To match thateria in which the ALOS PALSAR FNF product was

created, the LIDAR CHM dateeme processed to generatdorest versus notiorest products

47



considering acanopy covemwith athreshold of greater tharor equal to 10%, after the extraction
process, which will be elaborated upon in the next sec{®#d.5) To match the conditions in which

the LandsatvCF product was created, the LIDAR CHM data was subjected to a tree height threshold
of greater than 5m. Wpixels which dichot meet these specified thresholds were masked out and
excluded from the rest of methodological workflow. The LIDAR datasets were kept in the pre
processed spatial resolution (ranging from 1m to 5m) as the datasets were indirecplesl to

match the global forest products during the data extraction process with the use of extraction grids

(to be elaborated upon further in the next section).
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Table2.1: Summary of LIDAR datasets uséltg year acquiredsensor specifications, coverage, environmental description and provider information

Laser spot
LiDAR dataset | Year Scan spacing Point density Final CHM Area Province Description Providex(s)
frequency | (along/across Resolution | coverage
track)
CAO 2012 | 50kHz 0.56m 6.4 points per m2 im 63 000 ha| Mpumalanga| Majority savannah with communal rangelang Cagt)esgétrevgigk;srne
KNP 2012 | 70kHz 0.5m 10 points per m? im 17 000 ha| Mpumalanga Savannabh riparian vegetation AECOM (UK)
EROS 2013 150 kHz 0.30m 12 points per m2 1m 6 700 ha KwaZulu Mixed cqn3|st|ng of azonal vegetation, fores CAD MappinESKOM
(max) Natal plantations plus savannahs and grassland
Dukuduku 2013 3(?261';';2 0.30m 10 points per m?2 1m 2100 ha KVI\\’thaLflu Majority indigenous coastal forest PROMAFESKOM
Boulders 2010 | 100kHz 0.67m 2.26 points per m? 1m 900 ha Gauteng Highveld bushveld with urban cover AOCESKOM
Gumeni Nkomati | 2010 | 100 kHz 1.10m 0.83 points per m2 2m 742 ha | Mpumalanga Mostly savannah with small tree patches AOCESKOM
Nkomazi Figtree | 2010 | 100 kHz 0.81m 1.53 points per m?3 im 659 ha | Mpumalanga Lowveld shrubs with majority agriculture AOCESKOM
Majuba AS058 | 2010 | 100 kHz 1.19m | 0.71 points per m3  5m 7085ha| RWazul Thornveld, shrub and grassland with small FugrdESKOM
Natal dense tree patches
. . o . Southern Mapping
2|
Albany Kowie | 2010 | 100 kHz 1.56m 0.41 points per m 2m 262 ha | Eastern Capeq Majority grassland and thicket CompanyESKOM
Applebosh . o KwaZulu Small patches of plantations with dense vel Southern Mapping
Ndwedwe 2009 | 70 kHz 0.98m 1.05 points per m 2m 650 ha Natal andsugar cane cropland CompanyESKOM
. KwaZulu L Southern Mapping
2|
Colenso Danskraa 2011 | 100 kHz 1.27m 0.62 points per m 5m 1675 ha Natal Majority thornveld CompanjESKOM
. o . Southern Mapping
2|
Grahamstown | 2011 | 100 kHz 1.08m 0.86 points per m 2m 400 ha | EasternCape Majority grassland and thicket CompanjESKOM
. . . Combination of shrubby rangeland and Southern Mapping
2|
Massa Ngwedi | 2010 | 100 kHz 0.95m 1.11 points per m im 6 981 ha Limpopo savannah CompanjESKOM
- . . Southern Mapping
2
Mfinizo 2010 | 100 kHz 1.41m 0.5 pointsper m 2m 278 ha | Eastern Capg  Grassland with dense patches of bushveld CompanyESKOM
Ndumo . ) KwaZulu . . Southern Mapping
Nondubuya 2011 | 70kHz 0.87m 1.31 points per m 2m 3175 ha Natal Bushveld and thicket with evergreen tree pat CompanjESKOM
. . Mixed consisting of dense bushveld, grasslal Southern Mapping
2|
Prairie Marathon | 2009 | 70 kHz 1.20m 0.69 points per m 2m 4 573 ha | Mpumalanga and patches of plantations/orchards CompanjESKOM
. . . Southern Mapping
2|
Taweni 2010 | 100 kHz 1.34m 0.55 points per m 2m 282 ha | Eastern Capg  Grassland with dense patches of bushveld CompanyESKOM
. . . . . . ) Southern Mapping
2]
Witkop Tabor 2009 | 70kHz 1.53m 0.43 points per m 2m 5590 ha Limpopo Mixed with agricultural fields and rangeland CompanjESKOM
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2.4.5 Data extraction process

25 by 25m and 30 by08n grid cells were aligned to the pixels of the ALOS PALSAR Fh&nhdsalt

VCF products respectively. These grids were then clipped to the extent of the available LIDAR CHM
datasets. Thus, these grids were used to extract the global forest product ancbthesponding

LiDAR data values for each cell. Any cells within the grid whiel féthin or overlaped with the

LiDAR coverage edges, urban and informal settlements/bpitireas, major water bodies and other

artefacts present within the LIDAR datag. power lines) were manually identified from a Google

9F NI K AYF3IS o6FO1RNRLI yR SEOfdzRSR FNRBY (KS Ot Al
pixels. LiDAR woody canopy cover (CC), in percentage, was dguaredel|l with the use of

Equaton 2.1 below, andconsidered woody vegetation above a height threshaid.5m(mainly for

the FNF product rather than the VCF productavoid the influence of grass in the CC calculations.

0 QO0d &P

Qp T

Equation2.1

The total number of LIDAR pixels in a grid cell differs depending on the spatial resolution of the
LiDAR CHM and the 25 by 25m (e.g. 625 1m LiDAR pix8&py 30m grid sizes (e.g. 90t LiDAR

pixels) usedor matching the corresponding LIiDAR derived G the respective ALOS PALSAR FNF

and LandsatVCF products. Finally for the ALOS PALSAR FNF product comparison, the CC forest
GKNBaK2ftR 2F xmm> gl & FLIWLXASR (2 GKS [A5!w RSNXC
the LIDAR derived FNF valuies. a Fores(CQ m srénd NonrForest(CC40% reclassification.

2.4.6 Global Product Accuracy Assessment

The data extracted from the individual LIDAR datasets and corresponding global product coverages

have been combined for an overall assessment.e Buthe nature of the different global forest

LINE RdzOGa RAFFSNBYG OLtARFGA2Y (SOKYAljdzSa Kk @S ¢
accuracy using LiDARerived CC. For the categorical ALOS PALSAR FNF product, summarised
confusion matrix statistis (particularly producer accuracies) together witrerallaccuracies, forest

and nonforest accuracies have been derived. The continubasdsatVCF CC product was

correlated against LIDAR derived CC, from which the coefficient of determinafiprragd®® mean
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square error (RMSEbiasand standard error of prediction (SEP) was derived. For a quantitative
measure of the extent of overestimation and underestimation in lth@dsatvVCF product across the
observed CC range, the LiDARc¢Q@ndsatVCF CC dérence values were arranged into box plots

over the 10% incremeat CC classes ranging fror100%.

To evaluate the performance of both produasnsidering vegetation type#he validation dataset
wasclassified accordintp woody cover(CG and struc¢ural classes For the FNF product, the LIDAR
CC data was reclassified or stratified into 10% incremental classes from1b@%0 range (i.e. 10
classes in total e.g.-D0%, 1620%, 2680% etc.). The total number of correctly classified data
records withn each CC incremental class was divided against the total number of records in the
particular classeand multiplied by 100 to ascertain the percentage accuracy of the FNF product
within the different CC class increments. For the vegetation structursdsament of the FNF
product, LIDAR CC and vegetation height record information was categorized accordingctaral
classesproposed by(Willis, 2002)for categorizing forest structure in southern Africa, including
dense tall natural forests, a range of open woodlands, and short thick&tsis classificatiois
presented in Figur@.3. As with the CC incremental class assessment, the total number of correctly
classified data records within each structural cléascording to the LIDAR CC and height ranges
was divided against the total number of records in the particular classes, and multiplied by 100 to
ascertain the percentage accuracy of the FNF product within the different vegetation structural
classes. Du# the continuous nature of theéandsatVCF CC and LiDAR CC values, the LIiDAR and
VCF CC rangeere both reclassified into the 10% CC incremental classes for assessvhgit
followed the same methodology as described with the Bifeuct above. Sincéné VCF measures
vegetation greater tharor equal to 5m in heightfor coherencethis threshold was also applied to

the vegetation structure class (Figu2e3) thus resulting in fewer classes being represented timan

the FNF product.
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Figure2.3: Classiftation of vegetation types according to structure (canopy cover and heigi)llis, 2002) The LiDAR

canopy cover and CHM products were used to reproduce this classification scheme for the extracted data.

As additioml support to the product assessments via CC and vegetation structural classifications,

product comparison maps (LIDAR vs FNF and LiDB&hasatvVCF) were also created to ascertain

the visual distributions of error, i.e. extents of underestimation andrestimation, throughout the

various landscape typed-or a more regional assessment of the products, an ALOS PADSAR L
derived CC map {R0.81; RMSE=9.89%) was also utilised for comparison purposes (SAR vs FNF and
SAR vs Landsat VCF). This SAR grads derived according to the methodologies carried out in
Chapters 3(section 3.4.5)and 4 (section 4.4.6) The lower Kruger National Park region, in the

Savannah Lowveld, was chosenthearea of focus.
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2.5 Results

This section was divided into twsub-sections: the FNF and the VCF product validation results. In

order to interpret these results, the LIiDAR data is considered as the ground truth.

2.5.1 ALOS PALSAR FNF validation results

Table2.2: Summarised FNF vdhtion results across stratified LiDA&erived CC ranges

Classified from Correctly atected by Grand
CC Class LiDAR(ground FNFas Forest (F) or | Accuracy
truth) Non-Forest (NF) of FNP%6
0-10% (NF) 738300 732321 99.19
10-20% (F) 278774 1570 0.56
20-30%(F) 276011 2398 0.87
30-40% (F) 231228 3339 1.44
40-50% (F) 225997 4454 1.97
50-60% (F) 176511 4594 2.60
60-70% (F) 153686 5500 3.58
70-80% (F) 100774 5282 5.24
80-90% (F) 92683 8354 9.01
90-10% (F) 164437 48622 29.57
Total Forest(F) 1700101 84113 4.95
Total NonForest(NF) 738300 732321 99.19
Grand Total 2438401 816434 33.48

From the summarised confusion matrix results (taBlg), it was evident that the FNF product
detectedvery wellNon-Forest area§99% for CC<10%\t performed poorly by detecting only 5% of
actual forest§CC>10% according to FAO definitiaaoss the LIDAR datasets. When analysing the
results at stratified CC levels (tab®2) and the detection of forestit was clear that the FNF
performed bes$ at the 90100% CC rangdut still onlyyielded a marginal 30% forest detection
accuracy.The product performed especially poorly throughout the@o CC range with a less than
5% forest detection rate being obtained between the 4@ CC rangeslheforest detection rate
tended to increase with the CC values between thel@0% CC rangels general, the high accuracy
of the NonForest class and the large number of NlBarest observations in the dataset (738300)
resulted in pushing up the overall ctfication accuracy of the FNF product (33.48%he results
from table2.3 and Figure2 4, below, indicate the FNF product detection accuracies in various LiDAR

derived vegetation structural classes.
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Table2.3: Summarised FNF validation results acraessious LiDARIlerived vegetation structural classes

Classified from Correctly eetected
StructureClass LiDAR(ground by FNFas Forest | Grand Accuracy
truth) (F) or NorForest of FNPb
(NF)
BushlandF) 233019 11659 5.00
Closed ShrublangF) 10725 486 453
GrasslandNF) 75501 74823 99.10
Grassland/herblandNF) 579303 574063 99.10
High(F) 23 0 0.00
Natural ForestF) 41031 11208 27.32
Open BushlandF) 306811 2188 0.71
Open ShrublangF) 253849 4502 1.77
Open WoodlandF) 225353 617 0.27
ScrubForest(F) 121444 31562 25.99
ShrublandF) 90199 1802 2.00
Thicket(F) 83920 13720 16.35
Wooded Grasslan(NF) 83496 83435 99.93
Woodland(F) 333727 6369 1.91
Total Forest(F) 1700101 84113 4.95
Total NonForest(NF) 738300 732321 99.19
Grand Total 2438401 816434 33.48
+20m High (0%)
Natural
Forest
(27.32%)
6-20m
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8 Woodland Woodland
|2 (0.27%) ez et
= 2.5-6m Scrub Forest
£ (25.99%)
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Figure2.4: Summarised FNF validation results across various LiDéded vegetation structural classess outlined by

(Willis, 2002)% values refer to the FNF detection accuracy of thatefagion structural classvhere red cells =
accuracies >90%, orange cells = accuracies between #53 =
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According to the vegetation structural class results, tabi@ and Figure2.4, the FNF product
achieved the highest detéon accuracies (~99%br all classes with CC below 10&bassland,
grassland/herbland and wooded grassland classes which were thé&bdlested classes according to

0 KS LINE R dzO (Btréb FRReStTandyNAtural Pogesb structural classes, i.e. &atethasses with
medium to high vegetation height and high CC, obtained accuracies of 26% and 27% respectively
while thickets, i.e. forested classes with low vegetation height and high CC, obtained accuracies of ~
16%. The Closed Shrubland class, whiehf@rested class with high CC but very low vegetation
height (<1m), yielded a very low detection accuracy of 4.5%. Other classes, which were structural
classes within thel0-80% CC ranges, obtained very low detection accuracies of 5% and less
whatever tre tree height profile The High tree structural class yielded 0% detection accuracy but
this structural class rarely occur®verall, the structural classification shows that forested class

detection decreased with CC, and was possibly more affectedv®rthan height.

The spatial patterns of FNF product, and the corresponding ground truth product (i.e. LADAR),

comparedat the local and regional scaile figure2.5.
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Figure2.5: i) ALOS PALSAR FNF (left) versus LIDAR derived FNF (right) across the CAO LIiDAR dataset; i) ALOS PALSARLFNRAJ!
ALOS PASARFBDderived FNRright), using LiDAR training, {R0.81; RMSE=9.89%his product will be detailed in chapters 3 ant)
across the entire Kruger National Park exteftie red and blue encircled areas indicates areas of interest for discussion]

At a larger scale (Figure.5ii), the FNF producshoweda sensibly betteragreement with actual
forest class witin the maindenselyforested zones along the South African escarpment (see blue
encircled areas)Patches of zonal and intizonal indigenous forestsnd commercial plantationare

present here(Mucina am Rutherford, 2006)ut not to the extent represented by the FNF. A
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potentially higher backscatter due to the topography of the escarpment may have boosted the
detection of forests in such features. Outside the escarpmieotvever, moswveld areaqi.e. areas

within and along the Kruger National Park boundamgre classified as neforest by the FNF.
According to(Mucina and Rutherford, 2006)hese veld areas consisted of mopane, sSoushveld,
granite lowveld and sandy bushveld vegetation types, typical of the savannah biome, which were
known to possess cover greater than 10%hese trends corroborate thpreviousresults in which

the FNF product lack the ability to detect the-80%CC range and the vegetation structural classes
found in this range (e.g. Bushveld and Woodland classes etc.) while showing some detection
potential in the high CC (8000%) and dense structural classes (e.g. Scrub Forests and Natural
Forests). The FNFgaaluct however, didalsoyield erroneous patches of water within the Kruger
National Park extents as these areas were confused with areas of basaltic open grasktzoally.

as shown with the LiDAR tracfsgure2.5i), the FNF product displayed verylétof the forest class
compared to the amount of forest actually present in the CAO Liapswhich falls squarely in
savannah biome. The red encircled area in the FNF product, a dense forested ridge, only showed
limited evidence of forest which coincideto some degree, with the LIDAR prodioetween 80

100% CC range along the ridge, according to the LIiDAR)

2.5.2 Landsat VCF validation results

°=0.32, RMSE =11.66, SEP =113.3092 »w

Bias =6.05 i |
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Figure2.6: (i) Density scatterplot of LIDAR derived CC versagdsatvVCF C@cross the complete extracted dataset [the
dotted red line represents the 1:1 line while the solid black line represents the data trend line]LéndsatvVCF product
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error (i.e. LIDARCCg VCF Cover a range of CC intervdisegative values inétate CC overestimation while positive
values indicated CC underestimation by thandsatVCF product; centre cross = mean value; box = standard error and
whiskers = standard deviation]

Figure2.6i) and ii) illustrated the correlation between LIDAR derived CC and VCF CC as well as the
level of over and underestimation of the VCF product across the complete CC range. The density
scatter plot of figure2 6i) indicated a generally poor relationshigth an R of 0.32, an RMSE of ~12
%and an SEP greater than 100%. The general trend was also hard to distinguish due to the large
discrepanciedpetween thecorrespondingLiDAR and VCF CC valesgeciallyat higher CC ranges.

The CC difference box plot figure 2.6ii), together with figure?.6i), illustrated thatthe VCF product
overestimated CC valud8-10%)slightly between the €20% range with general underestimation
(10-40%)occurring past this point to higher CC values. The standard deviatiostandard error

values increased greatly towards higher CC valuesl@89). B RMSE and SEP statistics were
initially ascertained across the individual stratified CC ranges and vegetation structural ciasses (
Appendix 2A for examp)ebut the resultsvere poor (i.e. low Rvith high RMSE and SEP valuweit)

no discernible patterns emerging. Thus a classification approach appeared to be more useful for

detailed analyses of the VCF produeat various CC and vegetation structural classes
Table2.4: Summarised VCF validation results across stratified LildlaRved CC ranges
CC Class Classified from LIDAR | Correctly tassifiedby | Grand Accuracy of VC
(ground truth) VCF %
0-10% 541181 188283 34.79
10-20% 136964 76674 55.98
20-30% 50130 10098 20.14
30-40% 22577 1454 6.44
40-50% 10595 988 9.33
50-60% 6517 905 13.89
60-70% 4508 168 3.73
70-80% 3693 219 5.93
80-90% 6945 353 5.08
90-100% 5988 1793 29.94
Grand Total 789098 280935 35.60
Table2.5: Complete VCECversus LIDAR CC confusion matrix acriesd CC ranges
LIDARCC
VCRCC 0.10 | 10 20 | 20.30| 30_40| 40 50| 50_60| 60_70| 70_80| 80_90| 90_100| Grand Total
0_10 188283| 29172| 7675| 2591| 886| 415| 204| 138| 275 429 230068
10_20 288431| 76674 | 25247 | 9247 | 3423| 1531| 648| 361 | 447 486 406495
20_30 43850 | 19842 | 10098 | 5222 | 2458 | 1275| 699 | 406| 431 382 84663
30_40 7112| 3777| 2260| 1454| 889 | 581| 385| 227| 274 198 17157
40_50 7649 | 3761| 2191 | 1604| 988| 695| 513| 340| 545 431 18717
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50_60 4338 2643 | 1643 | 1443 957 905 774 707 | 1264 1093 15767

60_70 473 320 271 243 198 174 168 173 342 289 2651
70_80 368 332 292 289 250 250 220 219 562 439 3221
80_90 145 109 119 126 117 141 156 178 353 448 1892
90_100 532 334 334 358 429 550 741 944 | 2452 1793 8467

Grand Total 541181 | 136964 | 50130 | 22577 | 10595| 6517 | 4508 | 3693 | 6945 5988 789098
Producer's Acc| 34.79| 55.98| 20.14| 6.44| 9.33| 13.89| 3.73| 5.93| 5.08| 29.94

The stratified CC results of the VCF, tabfe showed trendsuch as lowdetection accuracy at the
0-10%LiDAR Ce€ange ¢35%). Between this 610% LIiDAR CC range, according the confusion matrix
(table 2.5), the bulk of the error of the VCF (~60% of the error) was evident between t86%0and
20-30% VCF CC classes but classes up -i0%0class also contributed to this errofhe VCF
product, alsq yieldedmoderate to lowaccuracies in the 180%CCrange (56% and 20.14% for the
10-20% and 2€B0% LIDARCC classes respectively). For the VCF product, detection accuracies
remained fairly low(<10%)across the 3®0%LIDARCC range Across this LIDAR CC range, the bulk
of the VCF error (according to tatéb) fell in much lower VCF CC classes (e.g. in t29 Hhd 20

30% VCF CC classes across080 LiDAR CC range) which confirmed the general underestimation of
the VCF product beteen 3090% LIiDAR CC rangédie VCF product obtained an accuracy of 30% in
the detection of vegetation with a 9000% LIDARCC range. Finally, he overall classification

accuracy obtained by the VCF product was approximately 36%.

Table2.6: Summarised €F validation results across various LiDédRived vegetation structural classes

Structure Class Classified from LIDAK Correctly classified | Grand Accuracy
(ground truth) by VCF of VCP/%
Grassland/herbland 386280 146189 37.85
Wooded Grassland 154901 42094 27.17
Open Woodland 208877 88062 42.16
High 1180 181 15.34
Woodland 24927 2263 9.08
Scrub Forest 72 0 0.00
Natural Forest 12861 2146 16.69
Total 789098 280935 35.60
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Figure2.7: Summarised VCF validation results across various Libé&#ved vegetation structural classess outlined by
(Willis, 2002)% values refer to th&/CFRdetection accuracy of that vegetation structural clagéere red cells =
accuracies >20%, orange cells = accuracies betwee2020, yellow cells = accuracies <10%). The red 5m height line
indicates the limit of VCF product in which all classes coloured grey (below 5m height) was excluded.

Table2.6 and Figte 2.7 illustrated the detection accuracy results across the various vegetation
structural classes which were greater than or equal to 5m in vegetation height, as specified by the
steps used to create the VCF. As with the stratified CC range resuléCHgielded 38% and 27%
accuracies for detecting grassland/herbland and wooded grassland vegetation structural classes
which possessed low CC (<10%) and medium to high height ramiges/CF produdlsoyielded a
moderate detection accuracy of 42% forettOpen Woodland class (CC ranging fromQ% and

with a medium to high height range). On the high CC and height range, the VCF yielded 15% and
17% detection accuracy for the High and Natural Forests respectively while 0% accuracy was
observed for the Sab Forest clasahich mostly fell below the 5m height mar&sulting invery few

samples

Local and regional scaleandsatVCF products (Figur@s8i and 2.8ii) and their assessment against
more accurate map products (i.e. LIDAR and SAR based CC mapsitrwduced to understand the

geographical distribution of this product error.
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Figure2.8: i) Landsat VCF CC (left) versus LIDAR derivegigit) across the CAO LIiDAR datasetl @ndsat VCF Geft) and l-band ALOS
PALSAR FBD derive (right)using LIDAR training, {R0.81; RMSE=9.89%) across the entire Kruger National Park extentdthand blue
encircled areas indicates areas of interest for discussion]

At the local scale (Figu8i), a trend ofVCFCC overestimation is clearly shown when compared to
the observed LIDAR derived CCThe observed LIDAR derived CC product was created by
incorporatingthe 5m height threshold used to create thendsatVCF product.This corroborates

the trends displayed in figurea6i) and ii) at the €20% CC range. The VCF product also lacks the
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spatial detail of the low CC classes in comparison to the LIDAR CC product which has also been
degraded to match the VCF conditions (vagien height threshold ofxgm, 30m pixel sizZe
Although the class difference of approximately 10% is noticeable between VCF CC and LiDAR derived
CC, the VCF product does illustrate patterns of CC variability, though limited, across the landscape,
as indcated by the LiDARRegarding Figur.8ii, it is important to note the SAR derived @Gduct

was created withouimplementing the 5m height threshold which was used to create the VCF due

to poor modelling results of the SAR datasets when modelled wWSDWR cal/val datasets with the

5m height threshold applied. Despite this discrepancy, the main trends observed between the
products were fairly comparable At the regional scale (Figugs8ii), VCF results illustrate some of

the major patterns of higlCC classes (> 70%) being represented along the South African escarpment
in the modelled SAR CC product (see blue encircled areas). Additionally, the VCF product represents
well some patches of low CC classes (< 3@¥ig:h correspondvith the modelled SR CC product,

both along the grasslands of Kruger National Park and within rangeland patches outside the Kruger
boundary (see red encircled areas].he southern portion of the regional VCF product resemhble

more of the patterns displayed in the correspamgl portion of SAR derived CC map. This could be
related to the wetter and greener vegetation conditionkich were readily captured by tHeandsat
imagerywhile the drier conditions in the northed to a poorer representatiomf the vegetation

signal At the extreme northern tip of the Kruger National Pdbdoth above and to the right of the
highest positioned blue circlehowever, there was a large CC difference between the VCF and the
SAR product (10% CC in the VCF compared to betwe28%CCin the SAR). According to Google
Earth,the area to the right of the blue circls a vegetated escarpment feature with a nearby
riparian zone emergingvhile the area above the blue circle is dominated by mopané
combination of topographic effects and thegsence of dense vegetation may have led to higher CC
classes while the phenological differences of the underlihiagdsatimagery, used to create the

VCF product, may have contributed to the low CC values in that area.

2.6 Discussion

This study soughto assesswo global forest cover products, the 25m ALOS PALSAR FNF and 30m
LandsatVCF, using environmentally diverse LIDAR dataset coverages across the forested regions of
South Africa. The main focus was daantify how well these products detect ther@gsence of
F2NBaGaz FOO0O2NRAYy3I G2 (KS ngsiywithh fhdzsatannbNdRelzO G & Q

and other forest types present in South Africihe products were also assessed across stratified CC
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ranges and across particular vegetatiorustural classegWillis, 2002}o ascertainf performance is

consistent across vegetation types.

The FNF producbnly detected 5% of actual forests across the LIDAR datasets with majority
contributions to the accuracy, though low, falling in theBiD% CC range and Natural Forest and
Scrub Forest structural class types. The fact that low lying vegetated area804if0% canopy
cover values (e.g. the Closed Shrublands class) were not detectable by the FNF product indicated
GKIFIG GKS LINRPRdAzOG ¢l a y2i aSyairurosS SyzdAakK G2 Ofl
height. This poor result of the FNF, hower, could be compounded by the reduced effectiveness of
LiDAR sensors to capture vegetation less than\Wmessels et al., 2011)rhis caralsobe attributed

to the large wavelength of the-band SAR sensor (~23cm) which may have passed through these
small vegetative elements such as leaves and st@agdoo et al., 2015; Vollrath, 2010)The FNF
product yielded the poorest detection accuracy of 5% and less for tH80%® CC range; together

with the various associated woodland, shruidaand bushland structural classes; which illustrated
that the forest within the savannah biome is not detedt This suggested that the FNF product
largely undetrepresents the distribution of forests especially in savannah environments, which
possess araverage CC of 35%enter et al., 2003) Since savannahs cover roughly half of the
African continent and occupy one fifth of tlghbobal land surfacéSankaran et al., 2005; Scholes and
Walker, 1993; Venter et al., 20Q3his result is not favourablespecially for the applications of
carbon assessment and changetettion studies The FNF product obtained 99% accuracy in
detecting nonforested areas withthe highest accuracy being observiedthe 310% CC range and
within grassland structural typesThough it has been considered thdiet contrasting backscatter
responsedetweenforested and nonforested surfaces couldave contributed tahis high detection
accuracy of notforest areasit was the HV threshold used in the FNF product cregi&nimada et

al., 2014) which was too high, @t contributed mostly to this observatiorAn indepth assessment

of this threshold, involving Figu&e9, will be conducted in the following paragraphhepoor ability

of the FNF produdb detect forests in savannahand the underperformance of theNF product in

the 80-100% CC ranges and in the Natural Forest and Scrub Forest clessatso the result of the
selection of the FNF threshold used to define forest versus-famest in the African continent
(Figure2.9). Figure2.9 correlated the LiDR CC with the ALOS PALSAR HV backscatter (i.e. the global

mosaic data used to create the FNF product), extracted over the complete LIDAR dataset coverage.
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Figure2.9: LIDAR derived woody canopy cover versus ALOS PALSAR HV backscatter (dB) eatreictkd complete

LiDAR dataset coveradthe red line indicates the-15.6dB threshold value (Shimada et al., 2014) used to create the FNF
over the continent of Africa while the box indicates the bulk of the LIDAR CC values captured by the FNF
accoing to the CC values greater than and equal to the HV dB threshold]

For the continent of Africa, a threshold range-d5.6dBHV backscatterepresented by the red line

in Figure2.9, was used for the FNF product creation (Shimada et al., 20IH4js hreshold was
derived by ascertaining the cresser point between forest and neforest HV backscatter
cumulative histograms collected across various regions of inte(8stimada et al., 2014)
Backscatter values greater than aadual to threshold was classified as forest and the backscatter
values less than the threshold was considered as-foosst (excluding the HH backscatter
thresholding for urban class separation and waterbody classification outling8himada et al.,
2014). According to Figur@.9, a small, limited portion of the upper observed CC valuesl (8%0)

was captured by the FNF product which supported the limited representation of the major
distribution of forested areas (Tabl@2 and 2.3; Figure2.5) and almost no representation of the

20-50% CC rangedrigure2.9, supported by table.2, also showed that the HV threshold-46.6dB
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contributed to the very high detection accuracy of the Forest class (99%ccuracyfor CC values

<10%). Obviously due to the inherent variability of the SAR signal with e.g. moisture, structural type,
species, etc., and as shown by the point spretds clearlychallengingto select a single HV dB
threshold especially across the continent of Afrioahich covers the complete CC range in
heterogeneous savannah environments. Hypothetically, and with the retrospective guidance of
Figure2.9, a single optimizedHV thresholdof -19dB can be recommended for impraléorest
detectability in savannah envinmentslimited to the Southern African regiorBy adjusting the HV
threshold to -19dB, and applying it to the 2010 ALOS PALSAR HV global mosaic data, FNF
classification accuracies improved noticeably with an overall accuracy of 68.05%, a forest detection

accuracy of 59.26% and a nforest detection accuracy of 97.40%e€ Appendix 2B

The LandsatVCF product displayed underestimation past the 30% CC mark with increasing error
margins towards the 90% CC mark. This increasing error margin was alstedted in(Pengra et

al., 2015) This trend of CC underestimation by th€R/(>30%) product was well documented in
forested environmentfGao et al., 2014; Sexton et al., 2013; Song et al., 2018)e MODIS OF
version, but not in great extents in African savannah environmefiisinsen et al., 201Buggested

that the lack of growing season imagery, in ttendsatarchive over a particular area, could be one
oftheOlF dzaSa 2F (GKS +/ CQa dzyRSNBalAYlI A2y 2F FT2NBai
CC ranges (<30%), though minimal, was also corroborate@Péaygra et al., 2015) Within the
context of South Africa, the signal noise related to grass present in open land types such as open
woodlands and wooded grasslands etand te presence of trees less than 5m in height still
captured by theLandsatimagery,could also have contributed to increased CC estimates from the
VCF. This observation could be supported by the confusion matrix result g&blevhere the
majority of the VCF error within the Q0% LIiDAR CC class fell in the higher neighbouring VCF CC
classes (i.e. in the 2B0% VCF CC classel).general, theLandsatbased VCF product did improve

CC accuracies across agricultural areas, over the MODIS VCF derivatsidl, dxperienced noted
inaccuracies over woody cover areas which have a mixedstiagh gradient{Sexton et al., 2013)

The author of this thesis recommends thabra extensive groundruth datasets, i.e. LiDABased
metrics, especially over medium to dense forested areas and/or specific bioregions, would need to
be incorporated to trai the regression tree algorithm used to create the VCF product. Additionally,
the characterisation of CC in the VCF product was successfully improved by integratirgporaki

and multiresolution map product$Song et al., 2013)The ddition of a water mask, at the product
development stage, willlsohelp improve the VCF by distinguistplow CC values and water bodies

(Montesano et al.,, 2009) The moderate accuracies at the-20% CC range and in the open
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woodland tree structural class suggests that the VCF product ceufztbtentially applicable in low
CC environments such as grasslands and sparse savannahs but can also detect, to some extent,

closed canopy environments (4M0% CC range).

In closing, regardless of the chosen definition of forests and product oreatiotocols, it is clear

that forests, especially within the savannah biome, are severely underrepresented in both the VCF
and FNF global forest cover products. The outcomgSexton et al., 2015)ustrated the need for

a standardisation of definition of forests as well as the movement towards quantitative CC products
like (Hansen et al., 2CR).

2.7 Conclusions

This study sought to validate the accuracies of two global forest cover products, thé@thsat
Vegetation Continuous Field (VCF) and the recently introduced 25m JAXA ALOS PALSAR Forest/Non
Forest (FNF) global products, agaiastextensive collection of airborne LIDAR data. The primary
focus of the study was to assess both products for the accurate detection of forests, as per the
LINE RdzO (G &4 Q T 2 NBathern Rfcardayainahs @hich aneoticlgarly presentear even
excluded by such global products. It was found that the FNF product grosslyrepdesented the
distribution of forests in savannah environments @ CC ranges), due to tiadequateHV
backscatter threshold chosen in its creatifum the depidion of FNF across South AfricaVith this

HV threshold, however, the FNF product most accurately detected thefdent class (0% CC
range) but this class also included wide tracks of forested lanfise FNF product also showed
limited usein deteding closed forest cover class (200%) and Natural Forest and$ Forest tree
structural classes. TheandsatVCF product displayed strong CC underestimation with increasing
variability and mean error from CC values greater than 30%. The moderaraces at the 1€20%

CC range and in th&pen Woodland tree structural class suggest that the VCF product could be
potentially applicable in low CC environments such as grasslands and sparse savarrebswas,
however, limiteddetection ability by theVCF irclosed canopy environments (4@0% CC range). In

the light of these results, a fixed definition of forests is necessary and a more accurate forest
product, which has been specifically calibrated from locally collected datasets, will need to be

developed to capture the full CC range found in the heterogeneous South African savannahs.
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Chapter 3: Savannah woody structure modelling and mapping using
multi -frequency (X -, G and L-band) Synthetic Aperture Radar (SAR)

data

3.1 Abstract

Structural parameters of the woody component in African savannahs provide estimates of carbon
stocks that are vital to the understanding of fuelwood reserves, which is the primary source of
energy for 90% of households in South Africa (80% inSahlaran fica) and are at risk of over
utilisation. The woody component can be characterized by various quantifiable woody structural
parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each
been useful for different purposes In contrast to the limited spatial coverage of grodrabked
approaches, remote sensing has the ability to sense the high stgmtiporal variability of e.qg.
woody canopy height, cover and biomass, as well as species diversity and phenologicat atatus
defining but challenging set of characteristics typical of African savannahs. Active remote sensing
systems (e.g. Light Detection and RangingDAR; Synthetic Aperture Rada8AR), on the other

hand, may be more effective in quantifying the savannawely component because of their ability

to sense withircanopy properties of the vegetation and its insensitivity to atmosphere and clouds
YR aKlFKR2gao® l RRAGAZ2Y @Y GKS @FNR2dza O2YLRY S
differently with SAR depending on the frequency or wavelength of the sensor being utilised. This
study sought to test and compare the accuracy of modelling, in a Random Forest machine learning
environment, woody above ground biomass (AGB), canopy cover (CC) and tofaf eahone (TCV)

in South African savannahs using a combination-banxd (TerraSAR), Gband (RADARSA) and

L-band (ALOS PALSAR) radar datasets. Training and validation data were derived from airborne
LIDAR data to evaluate the SAR modelling accuraciéswas concluded that the-thand SAR
frequency was more effective in the modelling of the CC (coefficient of determinatioharOR77),

TCV (Rof 0.79) and AGB {Rf 0.78) metrics in Southern African savannahs than the shorter
wavelengths (Xand Gband) both as individual and combined (X3dd) datasets. The addition of

the shortest wavelengths also did not assist in the overall reduction of prediction error across
different vegetation conditions (e.g. dense forested conditions, the dense shifaipby and sparsely
vegetated conditions). Although the integration of all three frequencies (Xb&id) yielded the

best overall results for all three metrics *#R.83 for CC and AGB an&®85 for TCV), the

improvements were noticeable but marginal geamparison to the dband alone. The results, thus,
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do not warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in

this environment.

Keywords:Woody structure, Savannahs, SAR, Mu#tiuency, LIDAR, Random Forest

3.2 Introduction - Background, Aims and Objectives

Structural parameters of the woody component in African savannahs provide estimates of carbon
stocks that are vital to the understanding of fuelwood reserves, which is the primary source of
energy for 90%of households in South Africa (80% in [aharan Africa) andre at risk of over
utilisation (Wessels et al., 2013, 2011The woody component in Africaavannahs is an important
physical attribute for many ecological processes and impacts the fire regime, vegetation jwaduct
nutrient and water cyclegSilva et al., 2001) The density of woody plantgan also severely
compromise the availability of grazing resources, valuable festldek populations and related
livelihoods, throughbush encroachmenfWigley et al 2009) Within the context of climate change,

the sequestration of carbon by growing vegetation is a significant mechanism for the removal of CO
from the atmosphere (Falkowski et al., 2000; Viergever et al., 2008). Understanding how carbon is
stored as carbon sinks in vegetative biomass and thus quantifying this standing biomass is central to
the understanding of the global carbon cycle. Vegetation clearing (e.g. for cultivation) and
degradation (e.g. for timber or fuelwood) and the burning of bé&ms, which are prevalent in
developing regions and savannah woodlands of Southern Africa, can alter carbon stocks and
emissions(Falkowski, 2000; Viergever et al., 2008bBased on the important environmental
implications revolving around woody vegetation, there are growing initiatives aiming at forest and
woodland conseration that require its active inventorying, mapping and subsequent monitoring
such as the Reducing Emissions from Deforestation and Forest Degradation programme (REDD+)

(Asner et al., 2013; Corbera and Schroeder, 2011; Kanowski et al., 2011)

The woody component can be characterized by various quantifiable woody structural parameters,
such as woody canopy cover (CC), tree height, agomend biomass (AGB) or total woody canopy
volume (TCV), each been useful for different purposes. AGB is defined as the mass of live or dead
organic matter above the ground surface (excluding roots etc.) and is usually expressed in tonnes
per hectare or tha (Bombelli et al., 2009) Woody canopy cover (i.e. the percentage area occupied

by woody canopy) is a key parameter used in monitoring vegetation change and cambéeed

with tree heidit to estimate approximate AGRBColgan et al., 2012) Lastly, total woody canopy
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volume indicates the volume of vegetation present within the vertical maodihd serves as an
alternative proxy for biomass density and distribution. Further, these metrics, both 2D (CC) or 3D
(TCV and AGB) in nature can provide useful information regarding the prediction of density, habitat
requirements and biodiversity assessnts for conservatioiiBradbury et al., 2005; Jung et al., 2012;
Mueller et al., 201Q)

Remote Sensing has been used in numerous studies as the preferred tool for quantifying and
mapping woody structural features due mainly to its superior information gathering capabilities,
wide spatial coverage, cost etfiveness and revisit capacifizu, 2006) In contrast to the limited

spatial coverage of grouddlased approaches, remote sensing also has the ability to sense the high
spatiotemporal variability of e.g. woad canopy height, cover and biomass, as well as species
diversity and phenological statigsa defining but challenging set of characteristtgpical of African
savannahgArchibald and Scholes, 2007; Cho et al., 2012b; Milld.e2@06) Woody structural
parameters have been successfully mapped using passive optical data at fine and coarse spatial
scalegBoggs, 2010; Cilfo-Santiago et al., 201®y making use of textural (the local variance of an
image related to its spatial resolution (Nichol and Sarker, 20)1and/or spectral (e.g. spectral
vegetation indices related to vegetation structure (Johansen and Phinn, 200&pproaches.
Passive optical data are, however, adversely affected by high spectral variation, which refers to the
change in spectral properties or character of a target, due to seasonal dynamics, clouds and haze.
These spectral variations are prevalent in the rairgssa of African summers with veld fires in the

dry winter, and in shadowed areas, which results from terrain topography and tree canopies, at fine
resolutions and in mixed woegrass pixels at the medium and coarser resolutions. Active remote
sensing sysims such as Light Detection and Ranging (LIDAR) and Synthetic Aperture Radar (SAR), on
the other hand, may be more effective in quantifying the savannah woody component because of
their ability to sense withirtanopy properties of the vegetation and its@nsitivity to atmosphere

and clouds and shadows.

Airborne LIDAR systems provide higisolution geef 2 O 1 SR Y SI adz2NSYSyda 27
structure (upper and lower storey) and the ground elevations beneath dense canopies. Although
airborne LIDAR pxades detailed tree structural products it relies on the availability of aircraft
infrastructure, which is not always available in Africa. Satellite LIDAR is also currently not available.
On the other hand, SAR systems provide backscatter measurementarthaensitive to forest

spatial structure and standing woody biomass due to its sensitivity to canopy density and geometry
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(Mitchard et al., 2011; Sun et al., 2011 SA®ased approach offeran allweather capacity, when
using SAR intensity, to map relatively large extents of the woody component, which cannot be easily
achieved with airborne LiDARlitchard et al., 2011)

Polarization,which refers to the orientation of the emitted and received signal, and frequency of

SAR data play important roles in sensing vegetation structure. phidirized SAR systems emit and

receive in HH, HV, VH and/or VV with H referring to a horizontal waeetation and V referring to

a vertical wave orientation. This allows the more complete characterisation of the scattering
properties of ground targets which in turn, enables the extraction of greater structural information.

For instance, HV or VH aletter linked to canopy structure because of the volumetric water
contert in the canopies architecturéSchmullius and Evans, 199¥hich brings about volumetric
A0FGGSNAY3I 6AGKAY GKS OFy2LR IyYyR Ala AaNlyR2Y¢ &
GKS SYAGUGSR 46+ @S 6Sd30 | G2 = 2N+ G2 100 ¢ KS
can be sensed differentlwith SAR depending on the frequency or wavelength of the sensor being
utilized. For example when sensing vegetation, the signal of shorter SAR wavelengths, such as X
band and &and, interact with the fine leaf and branch elements of the vegetation Itieguin

canopy level backscattering with limited signal penetration. The signal of longer SAR wavelengths,
such as thand and tband, on the other hand, can penetrate deeper into the vegetation with
backscatter resulting from signal interactions with glar vegetation elements such as major
branches and trunk@Mitchard et al., 2009; Vollrath, 2010Consequently, the-hand frequency has

been poven in numerous studies to be the most preferrgharreiras et al., 2013; Mitctaret al.,

2012; Ryan et al., 2012; Santos et al., 2@0®) the most effectivéLucas et al., 2006&) estimating

woody structure, particularly AGB with a higher saturation level a8BQonnes per hectare
compared to the shorter wavelengths, in forested and savannah woodland envirosmméoivever,

since woodlands and savannahs possess a sporadic combination of fine and large woody elements
within individual tree canopies, and a heterogeneous distribution of large trees and smaller shrubs
throughout the landscape, we hypothesized that dwoning the capabilities of these different SAR
frequencies under a muisensor approach may enhance the sensofgthe savannah woody

element (Schmullius and Evans, 1997Var2 dza a G dzZRASa KI @S WFdzaASRQ 2 NJ
frequency and polarimetric datasets for modelling and mapping of tree structural attributes across
various environments from the coniferous temperate forests of North America to mangrove forests

and to the openforest woodlands of AustraliéCollins et al., 2009; Mougin at., 1999; Tsui et al.,

2012) Despite the success achieved in these various studies via combining different SAR

wavelengths(Mougin et al., 1999; Ts et al., 2012) the combined strength of both shorter and
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longer SAR frequency sensor technologies, however, have yet to be assessed in the heterogeneous

and complex Southern African savannah environment.

This study sought to test and compattee accuracy of modelling woody above ground biomass
(AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a
combination of Xoand (TerraSAK), Gband (RADARSA) and kband (ALOS PALSAR) radar
datasets. Training and Mdation data were derived from airborne LIiDAR data to evaluate the SAR

modelling accuracies. The research questions were:

1) How do various SAR frequencies ¢XG or L-band) perform in predicting woody structural
parameters (CC, TCV and AGB) in soutA&inan savannahs?

2) Does combining SAR backscatter through different frequency combinations or scenarios
(X+C or X+L or C+L band or X+&nd) improve the predictions of the various woody
structural parameters and by how much?

We hypothesized that the conimmtion of shorter wavelength, ~3cm-Band and
~5cm Gband, with longer wavelength, ~23cmbhnd, SAR datasets, in a modelling
approach, will yield an improved assessment of woody structure. This idea is based on the
assumption that X and Gband SAR sigig interact with the finer woody structural
constituents such as leaves and finer branchlets, typical of the shrubby/thicket layer, while
the Lband SAR signal interact with the major tree structural components such as trunk and
main branches which are tiqal of forested areas.

3) Finally, through the examination of the patterns of the prediction error, within the
landscape for the different SAR frequency models, can the hypothesis, proposed above, be
confirmed?

More specifically, the investigation of thanteractions of the different SAR
frequencies, and their possible combinations, across the different vegetation patterning and
structural classes, such as grasslands, thickets and forests, wjiboipinthe effective
application of the different SAR freguacies and their possible combinations in Southern

African savannah landscapes.

The study is broken down into various sections. Se@&@iBdescribes the study area under
investigation. Section.8and subsections focus on the material and methodologictvioutlines
the remote sensing datasets used, field datasets collected, LIDAR and S#Bcpissing and metric

generation, modelling protocols, mapping and finally validation and error assessment. &B6tion
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describes the modelling, mapping and errosuéts while section8.6and3.7 discuss the main study

outcomes and concluding remarks, respectively.

3.3 Study Area

TheKruger National Park regiorstludy area is located in the Lowveld region of negtistern South

' FTNAOFS 6AGKAY GKS &l @LYyyFrK 06A2YS S6omcnfih®@ (2 ow
study area included portions of the southern Kruger National Park, the neighbourinds&ads

Private Game Reserve, and the densely populated Bushbuckridge Municipal District (BBR) (Figure
3.1). The area is characterised by short, dry winters and a wet summer with an annual precipitation
varying from 235mm and 1000mm, and is representatifeouthern Africa savannahgdhis rainfall

range, together with grazing pressures, fire, geology, nteghivore activity and anthropogenic use
(fuelwood collection and bush clearing for cultivation) govern the vegetation structure present in
this biome The vegetation comprise particularly of Clay Thornbush, Mixed Bushveldvaet &hd

Sour Lowveld BushvelMucina and Rutherford, 2006) The woody vegetation in the region is
generallycharacterized as open forest with a canopy cover ranging fror6020, a predominant

height range of 2 to 5m and biomass below 60 t(Mathieu et al., 2013) The Sabi Sands Witdan

consists of a group of private owners with a strong-tmarism based approach to conservation with

the Kruger National Park being more geared towards ksgde public conservation via the inclusion

of large tracts of land for protection. The comnal rangelands of BBR are primarily utilised for
livestock ranching, fuelwood harvesting and various-nommercial farming practice@Vessels et

al., 2013, 2@1). This study region was selected to represent the differences in the woody structure
(e.g. riparian zones, dense shrubs, sparse tall trees etc.) and spatial patterns of the different land
management and disturbance regimes (communal rangeland manage private game reserve

and national park management), varying vegetation types (lowveld savannah and mixed forest fringe

species) and geological substrates (granite and gabbro).
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Figure 3.1: The Southern Kruger National Park region and the spatial coverage of all implemented remote sensing datasedslidTried line indicates the coverage of the 2009
RADARSAZ scenes while the solid gold line indicates the two scenes of the®@BLOS PALSAIRal-pol imagery. The dashed grey line indicates the five scenes of the 2012 TerrXSAR

StripMap imagery. The shaded black areas represent the coverage of the 2012 CAO LIDAR sensor tree cover product. Theaethdipade the 38 sampletsis where field data
collections took place.
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3.4 Materials and Methodology

The general methodology sought to develop woody structural metric models between collected field
data and airborne LIDAR data for detailed localised metric r{#fra spatial resolution to match the

field data plots). These LiDAR derived metric products (CC, TCV and AGB) were then used as the
ground truth for model upscaling at the regional scale using miiiéiquency SAR intensity
backscatter datasets {XC and L-band). This was achieved by integrating the LIDAR and SAR
datasets with the use of a sampling grid and the extracted values were subjected to modelling using
the Random Forest (RF) algorittiBreiman,2001) Different SAR frequencies were modelled in the

form of various SAR frequency combination scenarios. Thed&Med woody structural metrics

were then validated using the LiDAIRrived woody structural metrics (CC, TCV and AGB) to

ascertain eror statistics and error distribution.

3.4.1 Remote sensing data

Five TerraSAR Xband dualpolarized (HH and HV), four RADAR3AGband quadpolarized (HH,

VV, VH, and HV) and two ALOS PALS#Rd dualpolarized (HH and HV) SAR intensity datase
(summarized in Tablg.1) were acquired to cover the study transect shown in Fi@ute Only dual
polarized SAR data (HH and HV) was used because the HV polarization parameter is known to better
model the structure of woody vegetation through volumetbackscatter interactions, while HH is

also reported as been sensitive to structure although to a lesser extent than the-potzsized

band (Collins et al., 2009; Mathieu et al., 2013; Mitchard et al., 200Byrther, HH/HV was the
common polarization configuration available for all three sensors. Winter seasonat§éiRiteons

were chosen because winter in the Lowveld is the dry season and exhibits the lowest level of
moisture in the landscape. The tree leaves are off along with dry soil and dry grasses. This reduced
the chance of interference of the SAR signahwiariable moisture content while allowing a greater
penetration of microwaves into the canopieb the same regiofMathieu et al., 2013)eported the

best retrieval of woody structural parameters with RADARSATata acquired in winter. An
extensive airborne LIDAR dataset (total coverage of c.a. 63000 ha) were acquired for this study
(Figure3.1) by the Carnegie Airborne Observat@AToMs sensor during Apiflay 2012. For our
datasets, the LIDAR was operated at a pulse repetition frequency of 50 kHz with a 0.56m laser spot
spacing and an average point density of 6.4 points p&fram a flying altitdle of 1000m above
ground level(Asner et al., 2012)In comparison with the LIDAR dataset, the SAR images were
acquired during the winter 2009 (RADAR&AT2010 (ALOS PALSAR), and 2012 (TerdSAR
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Unfortunately, the last ALOS PALSARexiscenes were acquideduring 2010 in the study aremd
no RADARSAT imagery were available closer to 2012.

3.4.2 Field data

Field data were collected in ApglMay, and Novembeg December 2012 across 38 sampling sites

(in Figure3.1). These siteprovided ground truth data to model and validate the LIDAR derived
woody structural metric products to be used to model the $&Bed woody structural metrics.
Ground sampling sites were located to represent the diversity in woody structure of the differe
vegetation types, management regimes, and geological substrates mentioned above. Each site
covered a 100m X 100m area and vegetation measurements were taken from four clustered 25m X
25m sampling plots (with minimum distance > 50m, identified from tgistic range assessments,
(Wessels et al., 201)1Jocated at each of the four corners of the site (Figdi®). The 100m X 100m

sites were positioned using highs@ution imagery from Google Earth as well as earlier LiDAR
datasets acquired in 2008 2010 to ensure that they are representative of the surrounding

landscape.

Field AGB estimates were derived from height and stem diameter measurements using an &lometr
biomass estimation equatio{Qolgan et al., 2013) Equation 3.1 in AppendiX3A). The allometric
equation was developed following destructive harvesting of 17 savannah tree species present in the
study area (Number of trees sampled =707=R.98; relative Root Square Error = 52%; ranging from
0.2¢ 4531 lg per tree(Colgan et al., 2018)Tree height was meased using a height pole and Laser
vertex/rangefinder, while stem diameter was measured using callipers and Diameter above Breast
Height (DBH) tape. Stem diameter was measured at 10cm above the ground and festemuitied

plants every individual stem wasneasured as separate individuals (e.g. species such as

Dichrostachys cinerga

Due to logistical and time constrains associated with measuring every tree within the sample plot
G2 YIFAY adGSY RAFYSGSNI wiz2ySaQ ¢SNBE ARSYyGATASR
still yielding representative quantities of biomass estigs (Figure.2). The first diameter zone was

the 25m X 25m plot where all trees with a stem diameter of 5cm and greater were recorded,
provided that they had a height of 1.5m or greater, and the second diameter zone was a 10m X 10m

area positioned at tb inner corner of the 25m X 25m plot where all trees with a stem diameter
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between 3 and 5cm and greater than 1.5m were also recorded. This allowed catering for a few sites,
mostly in the communal lands, where most of the AGB consisted of dense standdtie$teramed

plants (coppicing) with low DB{¥Matsika et al., 2012 A total of 152 25m X 25m biomass plots were

al YL SR® LYRAGARdzr f GNBS fS@St ! D.(ColpanktaRS NA OSF
2013) AGB was then calculated for each diameter zone by summing the relevant tree level AGB
values which was then subjected to particular AGBscaling factor (EquatioB.2 in Appendix3B).

The complete plot level AGB was calculated by summing all thectedrd GB subtotals for the stem

diameter zones.

One or two sampling plots were chosen for most sites for CC data collediennorth east 25m X

25m plot and/or the south west 25m X 25m plot (DBH zone Rigure3.2). CC values were
estimated followng the vertical densitometer protoc¢Ko et al., 2009; Stumpf, 1993pnceptually

a point intercept sampling approach, and one of the most tafficient techniques to implement.

The point intercept method is a small anglpproach well suited to measure the vertical canopy
coverc i.e. vertical projection of canopy foliage onto a horizontal surfgcand as such is the most
directly comparable with cover derived from remaosensing imagery such as LiD@la et al.,

2006) The sampling procedure involved laying down transects along a fixed 25m measuring tape
orientated from north to south and moving from west to east within the subplot at 2m increments
(Figure3.2). Along these transects, the presence of canopy cowsr determined using a 5m pole
placed vertically above each sampled points every 2m along the transects. At each sampled point
the presence of cover was coded as Y. For plot level canopy cover, in terms of percentage at the
25m X 25m scale, the CC preseand absence data were subjected to the formula below (Equation
3.3):

Plot level C@6)=0 ° , kX460 0 Equation3.3

5

Where Y represents the presence of cover data. The value 169 represents the total number of
sampling points in a 25m X 25m platnclucted at 2m sampling incrementsA total of 37 (25m X

25m) plots of CC were recorded during the field campaign.
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Figure 3.2: Ground sampling design including ground tree biomass and tree cover collection protocols (50m spacing

between sampleplots coincide with the autecorrelation distanceg refer to data integrationof section3.4.5)
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3.4.3 LIDAR data processing, woody structural metrics and validation

Two LIDAR datasets were utilised to derive the LIDAR tree structure metrics. Fosttloathset,

~1m Digital Elevation Models (DEM) and -tfcanopy surface models (CSM) were created by
processing the raw LIiDAR point clouds according to the steps outlirf@drier et al., 2012)Gnopy

height models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM. For
the second dataset, the raw point cloud data were further processed to pseudo waveforms, in which
the LIDAR hits or returns falling within a cube plaabdve the ground were binned into volumetric
pixels (voxels of 5m X 5m horizontal X 1m vertical) and weighted relative to the total number of hits

within the vertical column (the resugt LIDAR slicer datéAsner et al., 2009)

Three woody structural metrics were derived from the processed LIDAR datasets. The derivation of
the three metrics excluded all woody vegetation below a height threshold of 0.5m as to exckide th
grassy savannah component. The Carnegie Airborne Observatory (CAO) LIDAR data were validated
against field height measurements of approximately 800 trees. There was a strong relatioAship (R
0.93, pvalue < 0.001) but a fraction of woody plants belb¥1.7m were not detected by the LIDAR
(Wessels et al., 2011)This would introduce a source of error in the modelling process. However,
since our objective was tovestigate the potential contribution of short microwavesh@anhd and/or

Ghband) in detecting the shrubby layer we still preferred to use a 0.5m height threshold over a higher
height threshold at 1.5m. In addition, all metric products have been resahgnld computed at the

25m spatial resolution to correspond with the ground data measurements (plot size of 25m X 25m)

collected in the field for metric validation. These metrics are described in detail below:

1) Woody Canopy Cover (CC) is defined as theadically projected on a horizontal plane by
woody plant canopie§lennings et al., 1999)Themetric was created by first applying a data
mask to the LIDAR CHM image in order to create a spatial array of 0s (no woody canopy) and
1s (presence of a woody canopy). A percentage wamahopycover distribution image
6adzyYAy3a it (GKS mMQa FyYyR RAGARAY3I o0& cHp | yF
resolution of 25m. This metric was validated against the 37 25m X 25m CC ground truth
plots (Figure3.3). Results yielded a strong, positiunbiased relationship $80.79) with a
low Root Mean Squared Error (RMSE) (12.4%) and Standard Error of Prediction (SEP) (23%).
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Figure 3.3: Validation results of fieltheasured woody Canopy Cover (CC) versus LiDAR derived CC (above 0.5m |
Number of observations =37)

2) Total Canopy Volume (TCV) is a metric which approximates the area under the curve of the
pseudo waveform (i.e. a plot displaying the LIDAR return frequbpdyeight; (Muss et al.,
2011) and indicates the volume occupied by vegetation matter within the vertical profile.
The metric was computed from the pseudo waveform LIDAR data (i.e. voxel) by the addition
of the within-canopy LIDAR returns at different heights or slices (incremegritadteasing by
1m) above 0.5n(Asner et al., 2009)and the value was converted to hectare. The TCV
LiDAR metric was not validated with ground collected data as a suitedte Sampling
approach was yet to be defined for this type of savannah environment. However, in
(Mathieu et al., 2013)the TCV metric, in comparison to all the other metricss ast
correlated with RADARSA&Tbackscatter and was thus considered a suitable metric in this

study.

3) Above ground woody biomass (AGB) is defined as the mass of live organic matter present
above the ground surfac@ombelli et al., 2009nd is expressed in this study as tonnes per
hectare (t/ha). The AGB LIDAR derived metric was modelled using a linear regression,

ground estimated AGB (within 25m field plots) and a simple HGT X CC LIiDAR metric (where
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HGT is the mean tepf-canopy heighand CC is the canopy cover of a 25m pixel resolution)
(Colgan et al.,, 2012) 65% of the 152 ground estimated AGB was used for model
development while the remaining 35% was usedrfmdel validation. The validation results

of ground versus LIDAR AGB (Fig#® indicate a moderate positive correlation’4R.63).

With the use of allometric equations frofColgan et al., 2013pr ground AGB estimation,

the RMSE (19.2 t/ha) and SEP (63.8%) is, however, high with underestimation at high
biomass levels by the LIDAR. Due to the intensive and time consuming nature of sampling
these very high biomass plots, an insufficient number of these plots may have been sampled
to suitably train the model which thus led to such a deviation from the ihgl dt the high
biomass levels in FiguB4. In the absence of better biomass estimates, the LIiDAR derived

AGB metric was deemed sufficient for the modelling and validation.
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Figure 3.4: Validation results of fieltheasured Above Ground Biomass (AGBJsus LiDAR derived AGB (above 0.5m height,
Number of observations =53)

3.4.4 SAR data and processing

The SAR intensity images,(® and l-band) were preprocessed according to the following steps:
multi-looking, radiometric calibration (conversioffo N} ¢ RA3IAGIf ydzYoJNB Ay i
backscatter values), geocoding, topographic normalization of the backscatter and filtering. These
steps were compiled in the form of scripts in GAMM#adar processing software (Gamma Remote

Sensing, Copyrigh®® 2000-2011) for the Dual Polarised TerraSARkband (StripMap, Level 1b,
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Multi Look Ground Range Detected), Fine Quad Polarised RADARERAMd (Single Look Complex)

and Dual Polarised ALOS PALSB&hd (Level 1.1) data. A 20m Digital Elevation M{dEM) and a

90m Shuttle Radar Topography Mission (STRM) DEM were both used for the geocoding and
orthorectification of the X G and Lband SAR imagery. The 20m DEM was computed from South
African 1:50 000 scale topographic maps (20m digital contastheights, coastline and inland

water area data¢ ComputaMaps;www.computamaps.com with Root Mean Square (RMS)

planimetric error of 15.24m and a total vertical RMS error of 6.8m. The 90m (3 arc sec) STRM DEM
was gagfilled using Aster Global Digital Elevation Map data and was derived from 20m interval
contour lines extracted from 1:50 000 topographical maps. An automated hydrological correction
was applied to correct inaccuracies along river lines and trilegdWeepener et al., 2011) The
multi-looking factors and filtering were chosen to best minimize the effect of speckle while not
deteriorating the spatial detail captured by the sensors. 4:4, 1:5 and 2:8 range and azimuth multi
looking factors were implemented for the )G and lband datasets respectively. All datasets were
resampled, using a bicubiag spline interpolation function, to their final map geometry resolutions.
This was achieved by applying a DEM oversampling factor (DEM resolution / Final image resolution)
to the multi-f 221 SR {!w RIGFIaSia ¢KAOK gta asSi Ay UGKS
Differential Interferometry and Geocoding package. The original pixel size;lookithg factors

used in the preprocessing, modified pixel size (after miitoking) and thefinal pixel size (i.e. map
geometry) of the different SAR datasets were summarised in TableFinally, a Lee filter (3 pixX

3 pixel filtering window)Lee, 1980yas applied to the images. It is important to note that the full
extents varied for the different SAR datasets due to sensor coverage programming and specifications

(Figure3.1).

Table 3.1: SABnd LiDAR datasets acquired and utilised for the modelling of woody structural metrics

Incidence | Acquisition
Imagey Sensor Mode angle time Season
1 38.1-39.3° | 08/09/2012
2 StripMap Dual | 21.3-22.8° | 23/08/2012 .
3 Tﬁ_ﬁjﬁﬁg‘ Polarized (HH & 37.238.4° | 28/08/2012 Latgovi/'zmer
4 HV) 36.237.4° | 19/09/2012
5 39.1-40.2° | 30/09/2012
1 Quad Polarized| 34.4-36.0°| 13/08/2009
2 RADARSAT (HH, HV, VH, | 39.3-40.1° | 06/08/2009 .
Winter 2009
3 Gband¥ VV) butonlyHH | 32.4-34.0° | 06/09/2009
4 and HV used | 37.4-38.9°| 30/08/2009
1 ALOS PALSA Dual Polarized o 14/08/2010 .
2 L-band* (HH & HV) 343" | 31/08/2010 | Winter 2010
AGB (kg) Product Discrete .
CC (%fProduct CAO LIiDAR Footprint Nadir 1/04/2012- | End summer
24/05/2012 2012
TCWroduct

f3: http://mww.geoimage.com.au/satellite/TerraSdr¥: http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat
tableau.aspl  hitp:¥www.eorc.jaxa.jp/ALOS/en/about/palsar.htmap: Asner et al., (2012)
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Table3.2: Original, modified and final SR pixel size changes during mdiioking and preprocessing steps

Original Pixel Siz¢ fagg'rts"(Lr‘]’sk'Lr(‘)%ks Modified Pixel | Final Pixel Size
SAR Dataset [m] (.Range X for Range X Slze' [m] (gfter [m] (map_
Azimuth) Azimuth) multi-looking) geometry
ALOS PALSAR FBD 9.37 X 3.23 2X8 18.74 X 25.84 125X 125
RADARSAT SLC 4,70 X 5.10 1X1 4,70 X 5.10 5X5
TerraSARX StripMap MGO 275X 2.75 4 X4 11X 11 125X 125

"~ Resolutions used in the modelling stage but all were resamplé@ om for mapping

3.4.5 Data integration, modelling protocols and mapping

Before modelling could be conducted the different datasets had to be processed to a common
spatial grid. A sampling grid strategy was implemented as the relationship between dependent
(LiDAR) and independent (SAR backscatter intensity) datasets wer&idehteon a pixeby-pixel

basis mainly due to issues of SAR speckle and-lpisal inaccuracy of ewegistration between
datasets. This strategy also served as a means of extracting information from various remote
sensing datasets of varying spatial gkegions (see Tabl8.1 and Table3.2) without the need for

pixel level fusion procedures. A regular spatial grid made up of 105m resolution cells at 50m
distance spacing was created in QGIS 2.2 (Quantum GIS, Copyright @@@04nd applied over

the daasets. The choice of the cell size was informedMsgthieu et al., 2013)who tested various

grid sizes ranging from 15m and 495m with RADARSBAand data, and reported th&05m grid

size as the resolution which provided the best traafé between the finest spatial
resolution/mapping scale and strongest correlation with the LIDAR woody structure parameters.
Similar results (5025m grid size) were reported with ALOS PALEB&nd data in the region
(Urbazaev et al., 2015) The 50m distance spacing between the grid cells was chosen to avoid
autocorrelation effects arising from the inherent distribution of the vegetation structural parameters
across the landscap@WVessels et al.,, 2011) Informal settlements, the main roads and water
surfaces such as rivers and dams were masked and excluded from the analysis. Mean values within
each cell were extracted for theAR (XHH, XHV, GHH, GCHV, EHH and tHV) and LiDAR metric
datasets (CC, TCV and AGB). Due to the differences in spatial coverage of Hiequelticy SAR
datasets in relation to the LIDAR coverage (Fidut®, a varying number of data records (21170
records for Xband, 17980 records for-tand and 21467 records fordand) were obtained during
aggregation to the 105m grid. Various data mining, regression and machine learning algorithms
(linear regression, support vector machines, REP decision a#ggial neural network and random

forest) were tested if{Naidoo et al., 20149nd Random Fore¢Breiman, 2001yvas found to be the
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most robust and efficient, in terms of running time aaccuracieglsmail et al., 2010; Prasad et al.,

2006) The article of(Naidoo et al., 20145 available in Appendix 3C in its entiretynlike other

traditional and fast learning decision trees (e.g. Classification And Regression Trees or CART), RF is
insensitive to small changes in the training datasetd are not prone to overfittingIsmail et al.,

2010; Prasad et al., 2006) Additionally, RF is less complex and less computer intensive in
comparison to the high levels of customisation required for Artificial Neural Networks (ANN) and the
f2y3 Wt SI NYAY 3 fr SapNdrt WadlbrAMadhyied (StYNWWoBita et al., 2010)RF

requires two main usedefined inputs¢ i KS ydzYo SNJ 2F GNBSa odzatd Ay G
ydzYo SN 2F LJl2aaAiroftS aLd Al G ysyhal et@l, ROAO; Rrdsasl &t alf 2008) S| OK

RF was applied, using R rattle data mining software (Togaware Pty Ltd., Copyright-202@d6to

the data with 35% of the data being used for model training and tmearging 65% being used for

model validation. For the modelling process, the SAR frequency datasets were selected as the input
(independent) variables while the LIDAR derived metrics were selected as the target (dependent)
variables. The random forestm8d & ¢ SNB o0dzAf i dzaAy3d GKS RSTFIF dzA G
FYR WYOGONRQ ' KI {!w LINBRAOG2NRAOL IYyR G(KS GNBSa
versus observed scatterplots and validation scores were outputted to calculate the modeh@ccur
statistics. The coefficient of determination (R2), Root Mean Square Error (RMSE) and Standard Error
of Prediction (SEP in % which also known as the Relative RMSE) were computed and the modelling
algorithm accuracies were compared for the individuaR$&enariosRMSE and SEP are considered

to be more informative in assessing model performance thizarid its derivatives (e.g. adjustedR

Seven modelling SAR scenariosé&xd only, and only, thand only, X+®and, X+iband, C+L

band and X+C+hand) were chosen to investigate the relationships between the individual SAR
frequencies alone and different muftiequency SAR combinations correlated against the three

LiDAR metrics.

The best performing RF model, for each woody structural metric,apatied to the relevant SAR

imagery, which were all clipped to a common coverage, resampled (pixel aggregate) to a common
resolution of 12.5m to match the coarsesband and stacked, by using a mapping script. This script

was developed in the R statistic software (Version 2.15.2, The R Foundation for Statistical

[ 2YLJzGAy3sS [/ 2LRBNAIKG 6 HAMHO gKAOK dziAfAaSR GKS
and Geospatial Data Abstraction Library (GDAL) modules. The map products were imported into

ArcMap 10.1 (ESRI, Copyright© 199814) and displayed in discrete class intervals (total of 6
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classes) to best illustrate the tree structural metric distribution representative of the entire modelled

ranges.

3.4.6 Error assessment

The purpose of this sectiomas to investigate the error produced by the different SAR models under
varying tree structural scenarios, and to ascertain whether spatial patterns in error were associated
with specific vegetation structural cohort types (e.g. grassland versus woodlamditions etc.).

Error statistics and maps were created by subtracting the LilgkiRed and SARerived woody

(LiDAR¢ SAR) structural metric maps for TCV, AGB and CC. The SAR derived metric maps were
resampled to 25m, via pixel aggregate, to match tfi2gAR metric spatial resolution first before the
subtraction. The error statistics for all metrics were documented but the TCV error maps were
OK2aSy F2NJ LINBaSyidlFidAaz2y 20SNI// RdzS (2 GKS YSi{N
capture the B8R backscatter interactions. AGB error maps, however, were not displayed due to the
high error in the dense forest canopies (plots not displayed but supported by the error observed
between the ground AGB and LIiDAR derived AGB in Rgurbefore AGB upcaling to the SAR).

For ease of interpretation of the error statistics and maps, the error values were grouped into 5
main groups using intervals which best covered the error range observed in the different metrics.
These groups were major overestim@ati minor overestimation, negligible error, minor

underestimation and major underestimation.

Additionally, we assessed the following main vegetation structural cohort types typical of savannah
landscapes: low cover and variable tree height (e.g. spaesd), high cover and high tree height
(e.g. forests) and high cover and low tree height (e.g. bush encroaching shrubs). The combined use
of CC and vegetation height metrics best described these structural cohorts than the use of AGB
and/or TCV metrics.Box and whisker plots were created from the mean LHSAR difference
values (i.e. prediction error), which were extracted from the same sampling (105m) grid used in the
predictor variable extraction process, and interpreted. A total of 17559 differeixes yalues were

used to generate the boxplots with the outlier values being removed. Similar error assessment
analyses were conducted over different landscape geologies (e.g. granite versus gabbro) and
topographic features (e.g. crest, slope and valldys) the error distribution patterns were fairly
similar without any distinct patterns to comment onThe complete methodology have been

summarized and compiled in the form a methodological schema (Figbixe
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3.5 Results
3.5.1 Modelling Accuracy Assessment
Table 3.3: Woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) parameter

modelling accuracy assessment (validation) results obtained from the Random Forest algorithm according to seven SAR
frequency scenarios

CC (%) TCV (urtless per hectare) | AGB (tonnes per hectarg
SAR Frequency R2 RMSE (SER) R2 RMSE (SER) R2 RMSE (SER)
X-band only | 0.34 18.12 (50.87) | 0.35 35534.50 (33.79) | 0.32 10.88 (59.82)
Gband only | 0.61 13.20 (38.50) | 0.66 24731.06 (24.07) | 0.60 7.81 (43.66)
L-band only | 0.77 10.59 (29.64) | 0.79 19902.79 (18.88) | 0.78 6.05 (32.90)
X+CGband 0.69 11.71(33.94) | 0.72 22243.64 (21.59) | 0.67 7.19 (40.33)
X+kband 0.80 9.90 (27.78) 0.82 18609.04 (17.70) | 0.81 5.70 (31.35)
C+kband 0.81 9.23 (26.94) 0.83 17236.50(16.77) 0.81 5.45 (30.44)
X+C+band 0.83 8.76 (25.40) 0.85 16443.57 (15.96) | 0.83 5.20 (29.18)
Datasets split into 35% Training and 65% Validation for modelling

Table3.3 illustrates the validation performances of the different SAR predictors, under various multi
frequency SAR scenarios, in predicting the three woody structural LIDAR metrics (CC, TCV and AGB).
When examining the individual SAR frequency performancesnfadtelling all three metrics, the
longer wavelength{band PALSAR predictors consistently yielded higher accuracies in comparison to
the shorter wavelength predictors of bothband TerraSAK and @and Radarsa2. The >and
TerraSAR predictors by farconsistently produced the lowest modelling accuracies. The
combination of the short wavelength SAR datasetsa@d Gband) improved the tree structural
modelling over the individual dataset accuracies results but never produced accuracies greater than
the use of the tband dataset alone. The combined use of all three SAR frequenejies #4d L=

band) data in the modelling process consistently yielded the highest accuracies for modelling all
three structural metrics (refer to the highlighted results &ach metric in Tabl8.3). In comparison

to the results for tband alone, there was a relative improvement of 10% or greater for all three
structural metrics in modelling accuracies when the shorter wavelength datasetm@XCGband)

were added. Howevwve the inclusion of the dband frequency contributed the most to the overall
accuracies. Overall, the three metrics were modelled at high accuracies under thdregugncy
scenario (X G and Lband) and with similar patterns when considering the easi individual

scenarios.
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Figures3.6A-G illustrates, by way of the 1:1 line, the extent of epeediction and undeprediction

by the models which is gradually reduced towards the ritgfjuency scenarios. The TCV results
were chosen for representation in Figur@g$A-G as the metric ylded the highest overall modelled
accuracies and the remaining metrics (CC and AGB) displayed similar trends throughout the different
SAR frequency combinations. For TCV (Fid®ésG), general oveprediction is observed at values

less than £100000 (nonit) TCV while general undgrediction is observed at values greater than

this threshold.

3.5.2 Tree Structure Metric and Error Maps

All three metrics were mapped for the study area (Fig8ré-iii) using the multfrequency SAR

models (X+C+hand). Figures3.7(i-iii) illustrate the spatial distributions of AGB (Fig®.&i), TCV

(Figure3.7ii) and CC (Figur&7iii) which overall were very similar with high and low AGB and TCV
regions coinciding with high and low CC. The spatial distributitimese metrics, coupled with the
FdziK2NBQ (y2¢fSR3IS YR 20aSNBIFiAz2yas gAatft 0SS St
(3.6) Figuresy &aK2ga (GKS ! D. @ao [/ / 37, QHdense Hiddiad 8itd. THE2 NJ ! h
point cloud generallgisplays a high correlation between the 2D (CC) and 3D (AGB) variable, but also

a triangular shape with an increasing base as the CC increases up to 75% (highlight by the white
labels in figure3.8). Hence, dense cover conditions (CC>70%) are charadtdnyz&GB values

varying from moderate (380 t/ha) to high (>60 t/ha), corresponding to a range of tree sizes from

coppicing thicket and medium sized tree bush encroachment to taller tree forests.
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CC, TCV and AGB error statistics were calculated to investigate the contributidves fofit main

SAR frequencies scenariosb@ahd, Gband, Lband and X+C+hand) to the modelling and mapping

error (Table3.4).
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Table 3.4: Total woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) % error across

the entire LIDARSAR coverage for the four main SAR frequency scenarios (Number of observations = 17559)

CC Error Classes

X-band Error

Gband Error

L-band Error

X+C+iband Error

Major overestimation (<15%) 21.02 13.87 12.78 9.43
Minor overestimation {15% to-5%) 17.30 16.38 16.74 16.85
Negligible error {5% to 5%) 19.52 24.58 31.34 31.84
Minor underestimation (5% to 15%) 13.87 16.95 19.27 20.08
Major underestimation (>15%) 28.29 28.21 19.87 21.80
TCV Error Classes X-band Error | Gband Error | L-band Error | X+C+iband Error
Major overestimation (50k) 7.54 1.69 0.40 0.35
Minor overestimation {60k to-10Kk) 28.58 22.96 22.32 18.57
Negligible error {10k to 10k) 4.64 8.26 15.56 16.62
Minor underestimation (10k to 50k) 32.41 58.43 57.12 60.31
Major underestimation (>50k) 26.82 8.66 4.60 4.14
AGB Error Classes X-band Error | Gband Error | L-band Error | X+C+iband Error
Major overestimation (<15t/ha) 4.53 1.95 0.79 0.65
Minor overestimation {L5t/ha to -5t/ha) 27.46 18.85 15.47 13.16
Negligible error(-5t/ha to 5t/ha) 13.29 22.05 36.42 36.05
Minor underestimation (5t/ha to 15t/ha) 25.07 41.00 37.24 39.70
Major underestimation (>15t/ha) 29.65 16.15 10.08 10.43
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In Table3.4, there is a noticeable decline in major overestimation and major underestimation with
an increase in negligible error for all three metrics from shorter wavelengthsid to Gband) to

the longer wavelength ¢(band). For all metrics, the X+@3dnd caonbined scenario further reduced
major overestimation and marginally increased negligible error but at the cost of an increase in
major underestimation in comparison to thebland results. The TCV metric, undeband and
X+C+band scenarios, illustratedhe most noticeable reduction in major overestimation and
underestimation, in comparison to the other metrics, but at the cost of a higher percentage of minor
underestimation (~60% between DDO to 50000 TCV units). The greatest percentage increase in
negligible error {6t/ha to 5t/ha) was noticed in AGB metric for theband and X+C+hand
combined scenarios. More specifically for the TCV metric, under dense forested conditions (Figures
3.9i-v), the Xband scenario (Figur8.9i) illustrate major TCV uerestimation. thand results
(Figure3.9ii) indicate an overall decrease of patches of major TCV underestimation but some of
these have been replaced with major TCV overestimation across less dense patches of large trees
(see encircled area in FiguBii). Further improvement is visible for theband scenario (Figure

3.9iii) with a noticeable increase in the minor TCV underestimation (10 000@®J CV units) and
negligible TCV error (evident in Taldd). Finally, the X+C+L scenario in Fi@®e/ illustrated
noticeable increases in the negligible TCV error coverage, especially over the dense green ridge
visible in the LIDAR TCV of FigB@v, but also indicated an increase in major TCV underestimation
over dense vegetation patches north okthidge (see encircle area in Fig@r8iv). Patches of major

TCV overestimation, however, still persist across riparian zones of minor tributaries (rectangle area
in Figure3.9iv). Under sparse vegetated conditions across gabbro intrusions (Figu@&sv),
however, Xband and eband scenarios (Figur&l0i and3.10ii) indicate vast extents of major TCV
overestimation for the sparse vegetation areas and major TCV underestimation for the dense
forested patches (see encircled area in Fig@r&0i). The Lband scenario (Figur@10iii) illustrates

a drastic improvement with an extensive increase in negligible TCV error across the Area of Interest
(AOI). Across patches of dense vegetation, major TCV underestimation still persists (similar to the
trend in Figure3.9). The X+C+iand scenario (Figur&10iv) also yields favourable results similar to

the L-band scenario with no visible improvement. More quantitative results filots, Figures
3.11ii) were introduced next to further assess the indivddl SAR frequency error contributions

under different sparse and dense vegetation conditions.
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CC error boxplots of the four main SAR frequency scenarios, Bddrevere chosen to investigate

error across vegetation structural types, classified from the LIDAR CHNhclnding sparse shrubs

(CC <40% and height <3m) or trees (CC <40% and height >3m) Rigi)reand dense forested (CC
>70% and height >3m) or bush encroached (CC >70% and height <3m) conditions3(Elgyreln
general, SAR derived CC is mostlyresttmated across sparse vegetation but is underestimated
across conditions of dense cover which coincides with the main trends of FR)@resand3.10iv.

The Lband scenario yielded the lowest overall CC errors (in terms of mean error or variance, or
both) across both low levels of CC (<40%) and low height (<3m), and dense CC (>70%) across all
height (<3m to >5m) in comparison to thebXnd (highest variability and mean CC error) and C
band. Thus under sparse and low vegetation and bush encroadbmidgions, it is the tband which

yields the lower levels of CC error and not the shorter wavelengtimitd or Gband) as we may

have expected. Also, the inclusion of the shorter wavelength datasdtar(®and cband) with the

L-band dataset led to mior improvements in the overall variability and mean of CC error across
most sparse vegetation structural conditions (except regarding vegetation conditions with CC <40%
and height >5m which is inconclusive) and across tall dense vegetation conditiongQ%Canrd
height >5m). Most significant improvement of the addition of the high frequency data occurred for

the sparse and tallest trees (CC <40% and >3m) conditions.

3.6 Discussion

The modelling results indicated that it was the longer wavelengthnd dataset which contributed

the most to the successful estimates of all three woody structural metrics. This finding agrees with
other studies in the literature across a variety of ecosystem types such as coniferous (Dasien

et al.,, 1992) boreal forests(Saatchi and Moghaddam, 200@hd temperate forest{Lucas et al.,
2006a) The results obtained for theldand can be attributed to its abilityp penetrate deeper into

the canopy, allowing the signal to interact the most with the larger tree constituents such as the
trunk and branchegMitchard et al., 2009)and thus produces stronger cefations with the LIDAR
metrics. Despite the leadff conditions of most trees in winter, the shorter wavelengthsgXd G
band), 5.6cm for RADARS2%&nd 3.1cm for TerraSAR may have had a limited penetration of the
canopy, and generally produced hagherrors than the iband for dense tree canopy (Figuse 1ii).

In the case of open woodlands (CC<40, Figur#i), results suggest that some penetration did occur
through the larger gaps with some good performance ot Xband compared to -band (ge

tree height >3 m). However,-ltand may have also been more sensitive to variability of surface

roughness features (e.g. dense to sparse grass cover, fire scars etc.) which were too small to affect
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the coarser tband (Bourgeatchavez et al., 2002; Menges et al., 2004; Wang et al., 20T8)s
interaction of the smaller wavelengths with these surface features may have introduced noise,

which could have weakened correlations between the SAR signal and the LIDAR metrics.

The integration of the shorter wavelengths (e.ghatd, Gband and X+C band), witkbland, yielded
relatively small improvements in comparison to thddnd result alone (a reduction in SEP by ~3%

and less for some metrics). The combination of all tHreguencies yielded the highest overall
accuracies for all metrics than each SAR frequency dataset alone. This result implies that the
combination of short wavelength and long wavelength SAR datasets (Xa@d)L does provide
improved estimation in the maelling of the complete vegetation structure in terms of CC, TCV and
AGB. As an aside to the modelling results, CC and AGB field data were initially investigated as a
LiDARsubstitute for SAR model calibration and validation but preliminary results sh@oecer
modelling accuracies (R2<0.60) in comparison to the LIDAR derived results. This demonstrated the

importance of extensive LIDAR coverage as the preferred source for modelling.

The three metric total percentage error statistics (TaBl4), the TV error AOI maps (Figuré®-

10iv) and the CC error box plots (FiguB$1tii) reaffirmed the modelling accuracy observations
but provided greater insight into the specific SAR frequency contributions to the overall prediction
error under a variety ofvoody structural conditions. The use eband alone and its integration
with the shorter wavelengths reduced the overall metric overestimation error (mean error and
variability) under sparse vegetation conditions while reducing overall metric undestimunder
dense vegetated conditions, in comparison to the shorter wavelengths alone and their
combinations. These observations thus go against the first part of the main hypothesis made in this
study which hypothesised the importance of shorter wavehhis for interaction with the finer
woody structural elements and shrubby vegetation cohorts -aard appears to be more effective

in this regard. The incorporation of the shorter wavelengths with ti&and improved the overall
metric error budget by rducing the overall mean error and the overall variability of the error under
most vegetation structural conditions. Additionallyband and X+C+#hand were more suited for
assessing the 3D metrics (TCV and AGB) than the single 2D metric (CC) withetstepleigcentage

of negligible AGB error and lowest percentages of major TCV uader overestimation being
observed. These results can be supported by the fact that thend was expected to penetrate
deeper and interact more with the lower levels ofgetation structure than the Xand Gband but

the shorter wavelengths may have provided minor assistance to h&nt by interacting with the
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smaller canopy elemen{®Rosengvist et al., 2003)Further investigation will be needed to ascertain

the exact cause of these trends but the overall results, however, advocate the suitability of the L
band over €and Xband for analysing dense forested environments (>70% CC with an expected
error ranging from ~7% to ~18%) and thus confirms the second part of the main hypothesis which
stated that the tband SAR signal interacts with the major tree structural componentstferds and

main brandes typical of forested areag¢Tarreiras et al., 2013; Lucasat, 2006a; Mitchard et al.,
2012) In the absence of-lhand data, &and has proven to be effective in sparser cover, i.e. less
than 40% CC, savannah environments which coincided with the recommendations made by
(Mathieu et al., 2013)

Among the three structural metrics, TCV was consistently modelled with higher accuracies, amongst
all seven SAR scenarios (TehB. This result concurs with that (¥athieu et al., 2013) TCV is a
metric which indicates the volume of vegetation present within the vertical structure and its higher
modelled accuracies could be attributed to the ledf conditions typical of the dry winter season
which allowed for greater wave penetration into the canopy for all wavelengths, even the shorter
wavelengths. CC and AGB metrics yielded similaalRes with higher SEP values observed for AGB
which may be due to the associated error propagated through the allometric equation and the LIiDAR
model (results of Figurg.4). Since SAR is a system which utilises penetrating radio waves, the SAR
signalswill be expected to be more related to 3D structural metrics such as TCV and AGB rather than
to the 2D CC metric (which achieved marginally poorer modelled results). This is due to the fact that
CC is a metric for which the 2D horizontal coverage fluesiadeasonally depending on the
phenological state of the vegetation, at least in comparison to TCV and AGB, which relies on the 3D
nature of the woody structure which includes height and is thus more consistent across seasons (in

the absence of disturbange

The multifrequency (X+C+hand) model maps created for AGB (Figard), TCV (Figurg.7ii) and

CC (Figure.7iii) illustrate patterns and distributions resulting from influence of numerous biotic
(megaherbivore herbivory and anthropogenic pressurasch as fuelwood extraction and cattle

ranching) and abiotic factors (fire regimes, geology and topographic features) relevant to the study

area. In order to discuss the common patterns in CC, TCV and AGB in these maps, it will be
collectively referred2 | & ag22Ré @S3SiliA2yéd 5SyasS g22Re @S
protected forested woodlands (Bushbuckridge Nature Reserve) and in the exotic pine plantations

within the vicinity of A. Generally, the riparian zones of major rivers and triiestée.g. B, the Sabie
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River catchment) have high values of CC, TCV and AGB compared to lower levels on the hill crests. In
contrast to the vegetation occurring on granitic soils, the intrusions of the Timbavati gabbro geology
group (Figured.7 C) have ery low woody CC, TCV and AGB. These geological substrates naturally
support more open landscapes than the more densely vegetated granite soils. Rangeland areas in
and within the vicinity of informal settlements, such as Justicea (F), also showed éweisr of CC,

TCV and AGB which could be linked to the heavy reliance of the local populace on fuelwood
collection for energy requiremeniShackleton et al., 1994; Wessels et al., 2013, 20Thg area of
interest E (Athole area which consisted of historical rotational grazing camps which are currently
inactive ¢ Barend Erasmus, personal communication, 27/02/2013) ¢sses a sharp fence line
contrast in tree structure between the dense woody vegetation evident in the northern extents of
Athole (i.e. north of fence) and the sparse woody vegetation in Sabi Sands Private Game Reserve (i.e.
south of fence). The extendedsence of grazing and browsing pressures in the old pasture and
paddock enclosures in the northern reaches of the Athole fence line boundary (Bigue caused

dense woody vegetation which contrasted sharply with the sparser woody vegetation in the more
open and highly accessed areas south of the fence boundary. Additionally, the dense woody
vegetation associated with th&cacia welwitschihicket which dominates the ecca shales geological
group of Southern Kruger National Park (outside map extents)algarly visible at @Mathieu et

al., 2013) In conclusion, the accuracy and credibility of these maps and their trends have been
supported by the various observations made Xiyf 3 FASE R @GAraiida FyR o8
knowledge of the study area. The general range of these tree structural metric values also agreed
with the ranges reported in other related studies doted in this savannah regiq@olgan et al.,

2012; Mathieu et al., 2013)

Although overall modelling and mapping results yielded favourable accuracies, it is, however,
important to acknowledgehe different sources of error which were introduced in this study. The

first error source was the temporal difference between the acquisition of the SAR predictor datasets
and the reference datasets such as collected field data and/or LIiDAR datasetga3hisavoidable

due to sensor failure (e.g. ALOS PALSAR in early 2011) and logistical restrictions to the current
research project (e.g. specific RADARSAlatasets available from collaborations). Although there

has been documented evidence of big tresd in the study regiofAsner and Levick, 2Q), no

major error was observed in the modelling results, especially when the 2@&Ehd model was
trained and validated using 2012 LiDAR data which produced expected results for this environment
(Colgan et al., 2012; Mathieu et al., 2013)his loss in trees which occurred during the different SAR

dataset acquisitions times (between 2009 and 2012) may have also introduced a ceatgjim of
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error in the modelling results. It was expected, however, that the main structure of the remaining
vegetation would not have changed prominently enough to extensively vary backscatter target
interactions between the different acquisition time# final source of error was introduced by the
fact that the LIDAR reference dataset, which was set to target woody canopies with complete
foliage, was acquired during the wdty transition season where the senescence process had just
started. This may h& resulted in a distorted representation of the woody structural metrics
expected on the ground. Understanding these sources of error will help improve future studies by

promoting the creation of more accurate models.

3.7 Concluding Remarks

This stidy investigated the accuracy of modelling and mapping above ground biomass (AGB), woody
canopy cover (CC) and total canopy volume (TCV) in heterogeneous South African savannahs using
multi-frequency SAR datasets-fAnd, Gband and thand including theiltombinations). Various
studies have implemented-thand SAR data for tree structural assessment in a savannah type
environment(Carreiras et al., 2013; Mitchard et al., 20b2} the use of shorter wavelengths, such

as Gband, have also been proven to perform relativwell(Mathieu et al., 2013) This study also
served to compare the three SAR frequency datasets@Xnd l-band) in the same study region of
(Mathieu et al., 2013and is the first attempt in an African Savannah context. It was hypothesized
that the shorter SAR wavelengths (e.¢hafid, Gband), since interacting with the finer woody ptan
elements (e.g. branchlets) would be useful for mapping the shrubby/thicket layer while the longer
SAR wavelengths (e.g-band) would interact with larger vegetation elements such as major
branches and trunks typical of forested argdéitchard et al., 2009; Vollrath, 2010)It was thus
proposed that the combination of these different SAR frequencies would provide a better
assessment of the samaah woody element than the individual SAR frequen¢i&shmullius and
Evans, 1997)

After reviewing all the modelling and error assessment results, it can be concludeebtme ISAR
frequency was more effective in the modelling of the CC, TCV and AGB metrics in Southern African
savannahs than the shorter wavelengths &dd Cband) both as individual and combined (X+C
band) datasets. Although the integration of all three fregaies (X+C+#band) yielded the best

overall results for all three metrics, the improvements were noticeable but marginal in comparison
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to the L-band alone. The results do not warrant the acquisition of all three SAR frequency datasets
for tree structuremonitoring. Further the addition of the shortest wavelengths did not assist in the
overall reduction of prediction error specifically of the shrubby layer as hypothesized. With the
recent launch of the ALOS PAL&EARband sensor, the use of suckband baed models will be
critical for future accurate tree structure modelling and monitoring at the regional and provincial
scale. The modelling results obtained from théddd SAR frequency alone, however, does yield
promising results which would make theptamentation of similar models to the free data obtained
from the recently launched Sentin&l Cband sensor (launched in April 2014) viable whdrahd
datasets are not available. Sentirieldata are as far as we know the only upcoming operational,
free and open access SAR dataset available in the near future, especially in Southern Africa. Building
up of seasonal / annual time series may also improve on the performance of single -bated C
imagery. The inclusion of seasonal optical datasets (e.gctefice bands, vegetation indices and
textures derived fromLandsatplatforms), which can provide more woody structural information,

may also augment the modelling results.

As a way forward beyond this study, in order to reduce the error experience@iAGB results (at

field collection, LIDAR and SAR levels), new and more robust savannah tree allometric equations,
with a greater range of representative tree stem and height sizes, will need to be produced but such
efforts will require extensive groundvel harvesting campaigns. Due to the success of this study,
particularly the positive results usingoland SAR data, future work will seek tosgale these results

to greater regional and provincial areas using more extensive LIDAR calibration andiovalida

datasets.
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Chapter 4: Integration of Optical and L -band Synthetic Aperture Radar
(SAR) datasets for the assessment of woody fractional cover in the

Greater Kruger National Park region

4.1 Abstract

Savannahs consist of mixed trgeass communities and can be best described as an ecosystem
possessing a continuous herbaceous and a discontinuous woody layer. The woody component has
considerable impact on natural and anthropogenic processes; for inst@impacts the fire regime,
biomass production, nutrient cycling, soil erosion and the water cycle of these environments while
providing numerous ecosystem resources, such as fuelwood, building material antimten
products, such as fruit and bark andots which are used for medicinal purposes. Woody canopy
cover or CC is the simplest two dimensional metric for assessing the presence of the woody
component. Synthetic Aperture Radar (SAR) sensors are particularly well suited and extensively
used forwoody structural measurements, because it senses the canopy geometry to retrieve
structural information while optical sensors, which have been used successfully in national CC
monitoring programmes outside South Africa, relies mostly on an optimum cortietgeteen the
GaANBSyySaaég 2F GNBS OFy2LASa | yR (KHe okedtivezo®t 2 NJ 0 |
this study was to evaluate the accuracy of modelling CC using-terltioral datasets of SAR-(L
band ALOS PALSAR) and opticadsats TM) sesor data, both independently and in combination,

in a Random Forest modelling environment. This research was based on the assumptidre that t
integration of optical and SAR sensor data will yield improved results by allowing for the extraction
of more detiled structural information and reducing associated uncertainty than the individual
datasets. Additional objectives saw the testingLaihdsatb image seasonality for the preferred
acquisition season and the inclusion of spectral vegetation indicesnaagei textures, as possible
optical enhanced predictors, for improved CC modellidge to its accuracy, extensive airborne
Light Detection and Ranging (LIDAR) data was used for model training and validRe&sults
showed thatLandsats imagery acquiredn the summer and autumn seasons yielded the highest
single season modelling accuracies using RF, depending on the year but the combination-of multi
seasonal images yielded higher accuracies H@&ween ~0.60.7). The derivation of spectral
vegetation indces and image textures and their combinations with optical reflectance bands
provided minimal improvement with no opticahly product combination yielding accuracies
greater than winter SARHand backscatter alone {Rf ~0.8). However, there was sificant, yet

modest, improvement (Rof ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy when 2010 multi
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seasonal optical reflectance bands were combined with tHeahd backscatter variables. This
research shows that considering the importance of saasnin the region, future monitoring of
woody canopycover will require priority access tebdland SAR imagery from planned missions such
as SAOCOM, TerraSARand NISAR. However, it is recommended by the authors that these results
be verified in other lbregions, especially those dominated by evergreen canopies such as
indigenous forest, thickets, and plantations. Finally, the integration of seasonally appropriate and
cloudfree Landsatb image reflectance and-hand HH and HV backscatter data does mteva

significant improvement for CC modelling at the higher end of the model performance.

Keywords: Woody canopy cover, SAR, LiDARndsat5, textures, spectral vegetation indices,

Random Forest

4.2 Introduction

Savannahs consist of mixed trgeass communities and can be best described as an ecosystem
possessing a continuous herbaceous and a discontinuous woody (@gekaran et al., 2008)
Savannahs cover half of the African continent and occupy one fifth of the global land surface
(Scholes and Walker, 1993)Thewoody component has considerable impact on natural and
anthropogenic processes, for instance it impacts the fire regime, biomass production, nutrient
cycling, soil erosion and the weat cycle of these environmenté§Sankaran et al., 2008yhile
providing numerous ecosystem resources, such awod, building material and netimber
products, such as fruit and bark and roots which ased for medicinal purpos€Shackleton et al.,
2007; Twine, 2005)At the regional scale, the quantification of carbon captured in woody plants als
plays an important role in understanding the global carbon cycle and fluxes between carbon sinks
and sourcegValentini et al., 2014; Viergever et al., 20Q8bJonitoringregional woody resources is
essential to its sustainable management, which is threatened by adverse activities, such as
deforestation, excessive fuelwood extraction and charcoal producf®imackleton et al., 1994;

Wessels et al., 2013)

The woody component can be represented by a variety of woody structural parameters such as
vegetation height, fractional cover, above groubidmass, basal area and canopy volume. Woody

canopy cover is the simplest two dimensional metric for assessing the presence of the woody
component and can be defined as the area vertically projected on a horizontal plane by woody plant

canopies(Jennings et al., 1999) When expressed as a percentage per unit area, this metric is
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referred to as fratonal canopy cover or CC. CC carcdmbined with canopy height, to provide an
informative indicator of volume and serve as a direct proxy for bionf@s¢égan et al., 2012)In
complex environments such as the heterogeneous savannahs of Southern Africa, CC also varies
considerably across a variety of structural classes (e.g. from tall closed forests to short closed, bush
encroached shrubs to sparsely distributed tall trees witlshert shrub understory; (Edwards,

1983). In South Africa and southern Afrittzere is no locally calibrated and validated national maps

of CC, despite it being recognised as an Essential Biodiversity Variable bythational research

community(Pereira et al., 203).

In contrast to the limited spatial scope of ground based techniques, remote sensing is considered as
the most appropriate tool for assessing woody structure across large areas. This is due to its ability
to sense the high spatitemporal variabity, species diversity and phenological status, over large
geographical scales a defining but challenging set of characteristics typical of African Savannahs
(Archibald and Scholes, 2007; Cho et al., 2Q13gnthetic Aperture Radar (SAR) sensors are
particularly well suited and extensively used for woody structural measurements, beoétiseir
capacity to capture withistanopy propertiegCollins et al., 2009; Le Toan et al., 2011; Santoro et al.,
2007; Sun et al., 2011)SAR sensors are usefa regional scale studies due to their-adather
capabilities and lack of sensitivity to dense cloud cover and hazy conditions (e.g. fire smoke) which
limit optical data acquisitiongMitchard et al., 2011l Among the different available SAR
frequencies, the dband (a longer wavelength between 15 and 30cm) has been proven to be the
preferred wavelength(Carreiras et al., 2013; Mitchard et al., 2012; Ryan et al., 2011; Santos et al.,
2002) and most effective in estimating woody stiture in foress and savannahf_ucas et al.,
2006a; Naidoo et al., 2015)This is due to the fact that the signal of longer SAR wavelengths{e.g. P
band and tband) can penetrate deeper into the vegetati@nd can interact with the major
constituents of vegetation suchsahe main branches and trunkMitchard et al., 2009) Recent
research in southern African savannahs showed that SAR can alsoepaogimbd performance to
retrieve CC, especiallyband imageryMathieu et al.,2013; Naidoo et al., 20155AR backscatter
signal, on the other hand, can be influenced by the variability in soil and canopy moisture, and by the
variability in surface roughness, which may hamper woody canopy assessment in a particular

environment(Bucini et al., 2009)

Although not known to be adept in sensing three dimensional vegetation structure (e.g. biomass

where reflectance saturates readily), medpectral optical sensors (with visible, neand mid
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infrared spectral coverage) are well suited for mapping twoatisional structure such as canopy
cover at various spatial scales, aiml dense tropical forestgFoody et al., 1997; Hansen and
Loveland, 2012; Hansen et,a&008) savannahgArmston et al., 2009; Boggs, 2010; Lehmanal.,
2013)and finally shrublands and grasslari@sirevdorj et al., 1998; Ramsey et al., 2004) contrast

with the SAR technology which senses the canopy geometry to retrieve structural information, the
mapping of canopy cover with optical sensors relies mostly on an optimutnastrbetween the
GaANBSyySaaég 2F (GNBS OFly2LIASa FyR (GKS 3INIaa 2N o
the time period at which a maximum contrast is achieved between green tree canopy and dry grass
during the annual vegetation cycle is impamt (Zeidler et al.,, 2012) Textural image products,
which provide information regarding the local variance, can be used as a measure of the canopy
roughness, gaps, and associated shadow. In additionpacemetric classification algorithms and
spectral unmixing have been ingphented for extracting fractional capy cover at the regional
scale(Chen et al.,, 2004; Foody et al., 1997; Lu, 2006; Nichol and Sarker, 20ptiral sensor
G§SOKy2t23ASa 6AGK SALISOAlLffe YSRAdzy (2 O2F NAS al
in that they are highly influenced by spectral variation ime& and space, mixed pixels andear
obscured by cloud and shadofiku, 2006) Nevertheless, these optical sensor technologies have
been adopted into successful national programnfes monitoring temporal woody canopy cover
changes. These include the Australian Statewide Landcover and Trees Study((Sh#st@) et al.,
2009)and the Australian National Carbon Accounting Systdrand Cover Change Program (NCAS
LCCPjLehmann et al., 2013yhich utilisedLandsafTM and ETM+ data. Another programme also
included theLandsatEcosystem Disturbance Adaptive Processing System (LEDAPS) for monitoring
North Ameican forest disturbance sy Landsatand ASTER datasdtdansen et al., 2013; Ju et al.,
2012) Finally, the Amazon Deforestation Monitoring Project (PRODES) which maps deforestation in
the Amazon usindg.andsatdatasets(Hansen and Loveland, 2012)Unfortunately, such national
programmes are not in place for the savannahs of Southern Africa, despite a very large reliance on
their ecosystem swices(Scholes and Biggs, 2004; Wessels et al., 20I8¢ ultimate purpose of

this research is to identify the possible contribution laindsatto develop a natinal system for

monitoring CC in South African savannahs.

Given the sensitivity of optical sensors to photosynthetically active vegetation and the sensitivity of
SAR backscatter to vegetation structure, their possible integration could yield improvedywo
structure estimates via the provision of complementary information which neither sensor type could
provide in isolation. The integration of SAR and optical technologies for woody structure assessment

have been successfully applied in previous studiegcas et al.,, 2006b; Miles et al., 2003;
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Moghaddam et al., 2002which included dense forested environments, savannahs and plantations
(Bucini et al., 2009; Shimabukuro et al., 2007; Wang and Qi, ,2008) reasonable accuracies
(R>0.60). Unfortunately, none of these studies have taken into account the effects of phenology on
optical imagery, especially in savannah environments with complex tree and grass phenological
seasonal changes. With this inind, he objective of this study was to evaluate the accuracy of
modelling CC, at the 30m spatial resolution, using ntettiporal datasets of SAR-lfand ALOS
PALSAR) and optichlafdsats TM) sensor data, both independently and in combination. Airbo
LiDAR data recorded using the Carnegie Airborne Observatory (CAO) Alpha @stemet al.,
2007)was used as a training and validation dataset. This research was based on the premise that
the integration of optical and SAR sensor data will yield improved results by allowingefor t
extraction of more detailed structural information and reducing associated uncertdiay the
individual datasetgRoberts et al., 2007) There were two main sets of research questions in our
study. The first set of questions focused amwhthe accuracy of CC predictions compared when
using Landsatversus tband dualpolarised SAR input data, whether the integration of additional
optical predictor features (e.g. textures and vegetation indidegproved modelling accuracies in
comparison to the dband SAmased CC resultand, finally, whether the integration of optical
Landsatand L-band SAR data yielded any noticeable improvements in CC modelled predictions. The
second research question sditgto ascertain the season or seasons in whidnmdsats data
predicted CC with the highest accuracies. This question is related to the fact that savannah
vegetation undergoes distinct seasonal phenological changes during which the green fractional
coverof grasses and woodygnts varies considerab{§ruller et al., 1997; Scholes and Archer, 1997)
We hypothesized that the seasevhen trees are completely covered in green foliage, while grasses
are dry, should be the best period to retrieve CC, since there is limited interference by green grass
(Archibald and &oles, 2007) The identification of phenologically optimised optical imagery may
improve CC estimation, when integrated with SAR data, in these heterogeneous savannahs where

there is general dearth of such studies.

This paper is structured int@fir main sections. The first secti¢f.3) outlined the study area and

associated landscape features and climate. The se@hdjioutlined the main methodological steps

taken which included the outlining and ppeocessing of the different remote sengirdatasets

utilised, the integration of these datasets and modelling scenatt@smodelling algorithm used and

accuracy assessment and CC mapping. The third sdét®yRA & LJX I @ SR G KS adddzRe Qa
while the fourth and final sectioif4.6) discissed these findings within context of muiémporal

changes in phenologizandsatcquisition times and reliable regional monitoring applicability.
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4.3 Study Area

The region under study includes the southern portion of the Greater Kruger National RfdnRe
{2dziK ! TNAOI Y 6KAOK FlLtfta o0SG6SSy |LILINBEAYIGSTE e
region consists of the mixture of communal rangelands (Bushbuckridge Municipality District), private
game reserves (Sabi Sands) and national or pe@li parks (southern Kruger National Park,
Andover) (figuret.1). The region covers an extensive range of geologies (e.g. granite, basalt, gabbro,
tonalite, shale etc.), vegetation types (plantations to Clay Thorn Bushveld, Mixed Bushveld, Sweet
Lowveld Bushveld and Open GrasslandMucina and Rutherford, 2008)rainfall (mean annual
precipitation of 1200mm in the west to 550mm in the eafBhackleton, 2000) management

regimes (communal and protected) and disturbance reginfies, (elephant damage, grazing and

browsing patterns of herbivores and fuelwood harvesting).

| Multi-seasonal LandSAT-5
2010 LIDAR x°
/ »H 2008 LiDAR
[ "[L] 20088 2010 ALOS PALS‘I:RJFB{)
Sabi Sands .
Bushbuckm;ge

Krugerﬁatronal Park
id, IGN, IGR, swisstops,

Figure4.1: The Southern Kruger National Park study area aogerage oremote sensingnodelling datasets
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4.4 Materials and Methodology

Various scenarios were used to predict CC to determine the respective contribution bémlgsat

and SARased variables. CC derived from very high resolution airborne LIDAR data were used as
training and validation of the modelsirstly, models were desloped to predict CC using reflectance
data extracted fromLandsats images acquired at different seasons. Thieardsatbased modelled
results were compared to-hand SARIlerived models using ALOS PALSAR dual polarised (HH and
HV) as input data. Secontthe best performing.andsat5 reflectance model was then expanded to
include combinations of additional input variables including image texture features and vegetation
indices. Finally, the integration of both muimporal opticalLandsatreflectance ad L-band SAR
datasets were assessed for the possible improvement in CC prediction. All modelling scenarios were
implemented using a Random Forest (RF)-parametic machine learning algorithnBreiman,

2001)

4.4.1 Remote Sensing Data

A collection of 2008 and 2010 dual polarised (HH, HV) ALOS PAh8SA®RIhtensity scenes and
multi-seasonalandsats (bands 17, excluding the thermal band 6) scenes were collected over the
study region(table4.1). The kband imagery2 images for each year) was acquired in wintef"(@6
August and 28 September (very early spring while landscape is dry anebfga2008; 14' and 3£

August 2010hen the environment was drgnd the trees devoid of leaves'hese were shown to

be the best conditions to extract CC with RADARS&Dand data in the same regidiMathieu et

al., 2013) Landsatc scenes were inventoried from 2007 to 20{tb match the LIDAR dataset
available in 2008 and 2010, with an acceptable difference of plus and minus one year) and acquired
in various seasons to assess the potential effects of differential phenology between trees and
grasses. Specificallyandsaib imagery were acquired for spring (Septembliovember), summer
(December- March), autumn (Aprit May) and winter (June August), where available, of 2007,
2008, 2009 and 2010 from U.S Geology SubhandsatEarth Explorer paal (along path 168 and

row 77). In summer, both tree leaves and grasses are green while in autumn, grasses are dry with
trees remaining green but beginning to lose leaves. In winter, most trees have lost leaves and
grasses are dry while in spring, grasses are fairly dry whilérels first undergo a green flush of
leaves(Archibald and Scholes, 2000nly Landsats imagery with an overall scene cloud cover of
Keizr gl a O2yaARSNBRO® B iladge wad availbibie dafeach 43dahiySn/2008; 2 v
three seasons were achieved in 2007 and two in 2009 and 2010 (@ ableNo suitabld.andsats
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imagery was available for the year 2011 and was thus not included in the analyses. Several years
were congilered to assess the possible model inconsistencies which may results from a high inter
annual variability of rainfall, and associated variability of greenness and phenology. Extensive
airborne 2008 and 2010 LiDAR dataset (total coverage of c.a. 35000 ha and 10000 ha respectively)
were acquired for this study (figur®l) by the Carnegie Airborm@bservatory (CAO) Alpha sensor
(Asner et al., 2008uring ApritMay of 2008 and 2010.

Table4.1: Landsat5, ALOS PALSARMLIDAR data inventory

Sensor scene ID Season | Date of Acquisition
Landsats TM LT51680772007047JSA0CG Summer 16/02/2007
Landsats TM LT51680772007143JSA0C Autumn 23/05/2007
Landsats TM LT51680772007175JSA0Q Winter 24/06/2007
Landsats TM LT51680772007223JSA0Q Winter 11/08/2007
Landsats TM LT51680772008034JSA01] Summer 03/02/2008
Landsats TM LT51680772008098JSA01 Autumn 07/04/2008
Landsats TM LT51680772008242JSA0Q Winter 29/08/2008
Landsats TM LT51680772008274JSA02 Spring 30/09/2008
Landsats TM LT51680772009084JSA0CG Summer 25/03/2009
Landsats TM LT51680772009132JSA0C Autumn 12/05/2009
Landsats TM LT51680772010023JSA0G Summer 23/01/2010
Landsats TM LT51680772010119JSA0C Autumn 29/04/2010
ALOS PALSA ALPSRP137816680 Winter 25/08/2008
ALOS PALSA ALPSRP142046680 Spring 23/09/2008
ALOS PALSA ALPSRP242696680 Winter 14/08/2010
ALOS PALSA ALPSRP245176680 Winter 31/08/2010

CAO LIiDAR CAO 2008 Autumn AprikMay 2008
CAO LIiDAR CAO 2010 Autumn AprikMay 2010

4.4.2 LIDAR Data Processing

1.1m Digital Elevation Models (DEM) and -tifgcanopy surface models (CSM) were created by
processing the raw 2008 and 2010 LiDAR point clouds using REALM (Optech Inc., Vaughn, Canada)
and TerraScan/TerraMatch (Terrasolid Ltd., Jyvaskyla,nB)nlaDAR software. Canopy height
models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM. The 2008
and 2010 LiDAR fractional woodgnopycover metric were then created by first applying a data
mask to the LiDAR CHM image miler to create a spatial array of 0Os (no woody canopy) and 1s
(presence of a woody canopy). Fractional woodgopycover distribution products were calculated

at 25m spatial resolution using equatidti.:
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0 Q00 &b g QP T Equation 4.1

Where625is the area (in ) of a 25m X 25m pixel. A height threshold of 0.5m was applied to the
CHM in order to avoid the inclusion of the grass layer in final product. The 2008 CAO LiDAR data
were validated against field height measurementsapproximately 800 trees. There was a strong
relationship (f = 0.93, p < 0.001), and only a fraction of woody plants belowl Z& were not
detected by the LiDARNesels et al., 2011) Additionally, a LIiDAR derived woocnopycover

product obtained from a new LIDAR campaign done in 2012 correlated well with ground CC data
collected from 37 25m X 25m sites in May/April 2012(%79; Root Mean Square Error=12.4%)

thus this CAO LIDAR sensor technology was considered adequate for calibration and validation

dataset extraction for this study.

4.4.3 SAR Data Processing

The 2008 and 2010 level 1.1 ALOS PALS»RdLintensity datasets (HH, HV) were processed in
GAMMA™ SAR remote sensing software in which a script was developed to achieve the following
steps: multilooking, radiometric calibration (from raw digital numbers to sigma nought backscatter),
geocoding and topographic normalization. Miitdking factas of 2 and 8 was applied to the range
and azimuth, respectively, to best remove unwanted speckle and distortions. This was sufficient to
have the majority of the speckle removed, while preserving image detail, and hence no filtering was
applied. A 20m M was used for the geocoding and topographic normalization. It was computed
from 1:50 000 South African topographic maps (20m digital contours;tsights, coastline and

inland water area datag ComputaMaps;www.computamaps.com with Root Mean Square

planimetric error of 15.24m and a total vertical RMS error of 6.8m. As a final step the imagery was
resampled, via bicubilbg spline interpolation function, by using a DEM oversampling factor of 1.6,

to achievea fixed spatial resolution of 12.5m to create images with a finer spatial detail.

4.4.4 Landsat-5 Optical Data Processing and Derived Products

ThelLandsatmagery, in raw digital number format, underwent atmospheric correction with the use
of ATCOR Multi-spectral sensor atmospheric correction for flat terrain) which converted the raw
digital number data to top of canopy (OPreflectance using a ModtraR®radiative transfer code.
The necessary information (e.g. Min and Max radiance values) frondeFault post May 2003

calibration file was used. Dry rural, fall (spring) rural, -laidude summer and winter rural
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atmospheric models were also utilised with the visibility distance set between 9.0km and 59km
depending on the season and year (histaricSkukuza visibility data obtained from

http://weatherspark.comwere used if no values were automatically recommended by ATCOR).

The TQ@ reflectance of the individual images was used as the main model inputblesiao be
tested. However, additional vegetation indices and image textures were derived from the best
performing Landsatseasonal image for further analyses. This included a number ofleyrelyco
occurrence matrices (GLCM) and spectral vegetatioicésd(e.g. Enhanced Vegetation Index or EVI
and Soil Adjusted Vegetation Index or SA¥Hich have been known to be sensitive to vegetation
structure (table4.2). The selected vegetation indices which use the red,-iméa@red and mid
infrared bands weralso effectively correlated with the vegetation structure of various forested and
woodland environmentgCohen et al., 2003; Freitas et al., 2005; Zheng et al., 2004 soH
adjusted vegetation index (SAVI) was included over other more comintices (e.g. NDVI and
single ratios) as it includes a soil adjustment factor which reduces sensitivity to soil and moisture
conditions in the environmenfHuete and Jackson, 1988; Jiang et al., 2008 a more advanced
vegetation index, the enhancedkbgetation index (EVI) optimises the vegetation signal (especially in
high biomass environments) by reducing the influence of atmospheric effeastla canopy
background signdliang et al., 2008)EVI is also known to be more linearly correlated to leaf area
index (LAI), a major vegetation structural parameter derived from optical data, than other spectral
indices. The notinear vegetation index (NLI) was developed to account for the possibldimesar
relationship between indices and biophysical parame{&@sng et al., 2003) Finally, the moisture
vegetation index (MVI) was chosen as it possesses a higher signal saturation threshold especially in

dense, high biomass environmer{ireitas et al., 2005)

GLCM texture parameters, such as variance and entropy, were also selected as they were reported
to be strongly corrlated with vegetation structuréAsner et al., 2002; Nichol and Sarker, 2C4rig

in some case even better correlated than spectral indites 2005) Preliminary results illustrated

that variance, entropy, dissimilarity and contrast textures, derived from the bands 1 to 5 and 7, were
particularly correlated with CC (ressilhot presented). The combination of these selected indices

and textures could provide more detailed structural CC information than the optical reflectance

bands alone.

111


http://weatherspark.com/

Table4.2 Reflectance, indices and textural optical products derived frairandsat5 data

Type Product Formulae or description if not applicable Reference
Band 1 (456620nm)i Blue
Band 2 (528600nm)i Green
Reflectance Raw TOC reflectance Band 3 (636590nm)i Red

Band 4 (76€900nm)i NIR
Band 5 (155@L750nm)i MIR5
Band 7(20802350nm)i MIR7

. ) . 00YYQQ
Vegetation Index Enhanced Vegetation Index (EVI) | ¢® ® 5OV 9V 00 X® 08 & 6 D (Huete et al., 1997)
00OY o
. . . YQQ (Sims and Gamon,
Vegetation Index Modified Simple Ratio (MSR) 5OY 2002)
YaoPf
. . . 0% YQQ (Goel and Qin,
Vegetation Index Non-linear Vegetation Index (NLI R —
g g (ND iy Y00 1094)
) o ) 0 0YYQQ (Huete and Jacksor
Vegetation Index| Soil-Adjusted Vegetation Index (SAVI —_————®
’ : 9 (SAVD 5 OYYQanB)Y p @ 1988)
Vegetation Index Simple Ratio(SR) %)Q (Jordan, 1969)
Vegetation Index Normalised Difference Vegetation Inde 0oYYQQ (Rouse et al., 1973
(NDVI) OOYY 8)(52
. . . 0 v (Sousa and Ponzon
Vegetation Index| Moisture Vegetation Index (MVI band 7 e
g g ( 5OY 0 ORr 1998)
Variance, Entropy, Dissimilarity & . P (Haralick et al.,
GLCM Textures Contrast (3 X 3 window) Applied to bands 1973)

TQOC= Top ofCanopy NIR = Near Infrared; MIR = Middle Infrare

4.4.5 Data Analysis Grid

To analyse the data of different resolutions, a fixed grid of 205m X 105m cells, with a 50m spacing to

avoid spatial autocorrelation of CC, was used to extract SAR, optical and LiDAR CC products. The grid

was created to match the extent of the LIDAR C&lpet coverage (i.e. the calibration/validation

dataset for CC) and exclude any cells occupying water bodies, main roads, rivers and informal

settlements and especially clouds (in thandsatimagery).

supported by(Mathieu et al., 2013and (Urbazaev et al.,

The resolution of the grid cells was

2013 the resolution which provided the

best tradeoff between the finest mapping resolution and strongest correlation with the LiDAR CC

metrics. The extraan process was conducted in ENVI 4.8 where mean values for each cell in the

grid were extracted. Due to the varying conditions of the diffedesmidsatimagery (i.e. by way of

cloud cover) and the differences in LIDAR coverage between 2008 and 2016taheumber of

observations included in the modelling also vdréd ranged between 1174 and 8804.

4.4.6 Modelling Algorithms, Modelling Scenarios, Model Validation and CC Mapping

A random fores{RF)non-parametric machine learning algorith(8reiman, 2001yvas applied in the

R rattle modelling software with 35% of the data being used for model training and the remaining
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65% being used for model validation. Other v@bwn parametric algorithmssuch as linear

regression, and noparametric algorithms, such as Support Vector machines (SVM), REP Tree
decision tree and Artificial Neural Network, were also tested but preliminary results showed that RF
consistently obtained higher modelling accuracieDue to its use of multiple decision trees, bagging

and internal crossalidation mechanisms, RF is seen as a major improvement over other traditional
decision tree types and when compared to the other fqumrametric algorithms. The algorithm is

easy toimplement and is robust as it only requires two main wdefined inputs (number of trees

0dzZAf G Ay GKS WF2NBaldQ FyR GKS ydzygshalletalf, 20002 54 4 A 6 f ¢
Prasad et al., 2008)

Before the final implementation of RF, efforts were made to test the generalisation of RF modelling

by introducing an additional independent test dataset for model tuning before validation. During
thetuny 3 LIKIF &ST GKS (201Kt ydzYoSNI 2F (GNBSa oO0WyiGaNBSQ
varied to test their influence on accuracy whilst trying to limit the complexity of the RF model. RF

tree complexity included the minimum number of terminal nodesy 2 RS&A1T SQ0 FyR (K
YydzZYo SN 2F GSNXAYLFf y2RS&a GKI G G KBeimaNBOB ARSI Yy Kl O
NEBLISFGAY3 GKS LINRPOSaa (GKNBS (ASdS a2 NBAYA (ilal AMKy2 63
depth and number of terminal nodes) tree architecture with 200 trees within the forest, yielded the
optimum results (refer to Appendix sectioRjgures4A and4B). In the light of these preliminary

results the RF models wsNB I § SR 0l &SR 2y GKS F2ff26Ay 3 LI NI YS
{!w LINBRAOG2NER 61 NUzZ S 27F { Kiderand \WiehédJ200XithNtBeQ & KA O K

trees being allowed to grow unpruned.

For the modelling process, several scenarios were asse3dedoptical reflectance bands served as
input variables which were tested individually (12 individuahdsatimages) inorder to ascertain

the best season for predicting woody fractional cover. All available seasonal images were also
combined for each year (four years in total) in order to investigate any improvements using multi
seasonal datasets. Seven additional scesausing reflectance, texture and vegetation indices were
also proposed in order to test the benefits of more advanced optical metrics. This was only
performed for the best performing optical reflectance baraidy scenario mentioned above. 2008

and 20D L-band SAR datasemnly scenarios served as the scenario of comparison for the optical
only tests. Due to the large number of vegetation indices and textures used in this study, which may

display high degrees of dmearity, a RF variable importance aseire called the permutation

113



accuracy or %IncMSE (percentage increase in mean squared error) was considered to select the top
GKNBS AYRAOS& YR GSEGdZNBE O NAlFo6ftSa FT2N AyOf dz
scenarios. %IncMSE records thegeetage increase in the mean squared errors in the model when

a particular variable is assigned random values while the rengpiwémiables are left unchanged

(Liaw and Wiener, 2002)The higher the resultant error, the more important that particular variable

is to the model.

Finally, the SAR datasets were integrated with the five best performing sedsamddats images

and the combinedmulti-seasonalLandsat5 datasets for each year to quantify the benefits of
combining SAR and optical data for the modelling of CC. The RF validation results of the different
scenarios were expressed in the form of coefficient of determinatid)y (Bot mean square error
(RMSE) and Standard error of prediction (SEP). SEP refers to the standard deviation of the prediction
errors and is a measure of the unexplained variation of a model. The most accurate model, together
with the most relevant independentariables, was implemented to produce a CC map. The ALOS
PALSAR images were resampled to 30m spatial resolution (using pixel aggregated resampling) and
clipped to fit theLandsats image and stacked for mapping. The CC RF mapping was conducted

using theModel-Map module of the R statistical software.

4.5 Results

4.5.1 Individual and multi -seasonal Landsat-5 reflectance compared to SAR

Table 4.3 Individual seasonal Landsd&, multi-seasonal Landsak and individual SAR RF modelled CC validation results

Dataset Acquisition Datg Season of Imagery| R2 | RMSE (%] SEP (%| Total No. Ob’s

16/02/2007* Summer 0.47| 12.64 52.02 8804

23/05/2007* Autumn 0.34| 13.96 58.46 8804

= 24/06/2007* Winter 0.32| 14.25 | 58.76 8804

% 11/08/20071 Winter 0.32| 14.10 58.69 8733

@ 03/02/2008t Summer 0.53| 11.84 49.24 8804

= 07/04/2008* Autumn 0.46| 12.89 52.64 8010

(——U‘ 29/08/2008t Winter 0.37| 13.60 56.73 8804

3 30/09/2008t Spring 0.40| 13.19 53.2 8339

2 25/03/2009t Summer 0.44| 12.76 | 52.86 8804

= 12/05/20091 Autumn 0.50| 12.04 49.6 8697
23/01/20102 Summer 0.64 14.77 46 2098

29/04/20102 Autumn 0.65 13.55 44.43 3201

- g 8 S 20071 All available images 0.58| 11.27 | 47.23 8733
S22k 2008t All available images 0.64| 10.53 43.31 8010
= 3 = 1o 2009t All availablemages | 0.57 11.36 46.92 8697
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20102 All available images| 0.72 12.84 39.75 2098
EE 25/08/2008* Winter 0.80 7.88 32.08 8804
N 14/08/2010? Winter 0.81| 10.17 33.16 3201

* Variable depending on LIiDAR coverage per year (35% training; 65% validation) and LT cloud cover; * 2008 LiDAR d

the reference dataset; 2 2010 LIiDAR dataset for the reference dataset

When examining the individual seasonandsats reflectarce accuracies (tabld.3), the season
which yielded the highest model accuracies varied between years; summer was best in 2007 and
2008, and autumn the best in 2009 and 2010. Amongst all the individual datasets, the April 2010
Landsats reflectance (autum) dataset yielded the highest model accuracies in comparison to the
other individual images (according té &d SEP values). The winter datasets that were available in
2007 and 2008 yielded the poorest modelled CC resutgerall the performance of rjle Landsat
datasets was poor with a SEP varying between 44 and 58%. Combining all treeasdtial images

for each year improved the accuracies by an RMSE-8f6-and SEP of 686 compared to the best
individual seasonal image for that year. Howeuaoth individual seasonal and combined multi
seasonal image yielded significantly lower accuracies than those of the individual SAR images. For
instance, the SAR models produced in 2008 and 2010 had a SEP of 15 and 10% lower, compared to
the bestLandsatseason of that specific year.

results, with a similarfand SEP.

Moreover, both SAR models produced consistent

4.5.2 Optical reflectance, textures and indices compared and integrated with SAR data results

Table4.4: Reflectance, indies and textural Landsab (autumn 2010 imageproduct RF modelled CC validation results

2010 Optical Product(s) R2 RMSE (%] SEP (%) Total No.Obs
Reflectanceonly 0.65 13.55 44.43 3201
Textures only 0.03 23.66 77.96 3201
Indices only* 0.45 17.22 57.16 3201
Reflectance +Texturés 0.67 13.30 43.74 3201
Reflectance + Indices* 0.66 13.52 44,93 3201
Indices* + Textures* 0.47 17.06 55.87 3201
Reflectance ¥extures* + Indices*| 0.68 12.98 43.53 3201
2010 SAR onty 0.81 10.17 33.16 3201

1 Utilized the 2010 LIiDAR dataset as the reference dataset; * Top 3 indices/textures used based on %IncMSE

Table4.5: Integrated SAR and best performing/muieasonal Lands&h reflectance RF modelled CC validation results (per ye

Dataset Acquisition Year Season ofmagery R RMSE (%) SEP (%)| Total No. Obs
& - § s 2007+ SAR + Summer | 0.84 6.89 28.73 8733
< & 2 2008t SAR + Summer | 0.85 6.84 28.24 8010
MU Tl 2009t SAR + Autumn | 0.83 7.09 29.82 8697
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20102 SAR + Autumn 0.88 8.51 26.15 3201
O
=3
(<,,:) é 3 2010 SAR + Autumn 0.88 8.15 26.90 3201
oa
S [ 9 2007t All available imageg 0.85 6.75 28.37 8733
% 9= 2008t All available images 0.85 6.67 27.34 8010
x § = = 20091 All available images 0.84 6.91 28.79 8697
f}:, @ 4 20102 All available images| 0.89 8.32 25.64 2098
04 2008t Winter 0.80 7.88 32.08 8804
= 20102 Winter 0.81 | 10.17 33.16 3201

1Utilized the 2008 LiDAR dataset as the reference dataset and 2008 SAR dataset as one of input variables; 2Utilized th
LiDARJataset as the reference dataset and 2010 SAR dataset as one of input variables; * Optical Products refers to

Reflectance + Textures + Indices scenario in Tallle 4

Image textures and spectral vegetation indices (top 3 of each parameter seleatedliag to the
highest %IncMSE) were added as additional features to the best perfotmamdpats reflectance
dataset (April 2010 according to table3) in order to determine if these improve the prediction of
CC (tablel.4). The optical reflectaneanly scenario yielded the best results, followed by the derived
vegetation indices, and the texturemly produced by far the poorest results. However, the
combination of reflectance and textures yielded marginally better results than the reflectance and
indices combination which suggested that image textures do provide more additional information in
comparison to the indices. Combining all three datasets (reflectance, textures and indices) provided
the highest overall accuracy, however improvement was mafgicompared to the optical
reflectanceonly scenario. Although not presented here, in the interest of brevity, these results were
consistent for other years (2007, 2008 and 2009). Combining the best sedsamdsats
reflectance dataset per year withAR data brought about modest, but significant improvements
(improved SEP of -8P6) in the modelled CC accuracies for the individual years in comparison to
SARonly scenarios (tabled.5). Also, the difference in accuracy between the best seasonal
reflectarce and combined mukseasonal images, integrated with SAR datasets, were minimal
(improved SEP of 0B%). The year 2010 obtained the highest accuraciés(®9; RMSE=8.32%:
SEP=25.64% for the integrated SAR and raelisonal dataset). The combinatiof 2010 SAR data
with 2010 AutumnLandsats reflectance and the three most important vegetation indices and
textures did not improve the combined 2010 SAR and 2010 Autuamadsats reflectance results.

The best tradeoff between accuracy and complexityere given by the 2010 integrated SAR and
autumn season reflectance model&R.88; RMSE=8.51%; SEP=26.15%), as it used a single SAR and

singleLandsat5 image. This model was therefore used to create the regional CC map {igure
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The observed CC wrs predicted CC XY scatterplots (figuted-iil) supported the main findings
from Landsat5 reflectanceonly, SARNIly and integrated SAR backscatter dashdsats reflectance
analyses. The 2008 mutttasonalLandsats reflectance only scatterplot ¢fure 4.3i) illustrated
noticeable overestimation below 25% observed CC mark with major underestimation beyond this
point, according to the 1:1 line. In comparison, the 2008 -&#&R scatterplot (figure4.3ii)
illustrated drastic improvements in reduciniyet severity of CC overestimation and underestimation.
The integration of the SAR and midéasonal reflectance scatterplot (figueiii) however, yielded

a similar trend to the SABnly scatterplot with a slightly tighter clustering of points arouné thl

line.
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Figure4.2: Regional scale CC map of the study area usingaest performing RF integratet-band andsingle date Landsa®
band reflectance model (2010-band & 2010 Autumn LT5 image; coverage excludes extensive cloud tovbke east)
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Figure4.3: Predicted CC versus Observed CC scatterplots for: i) 2008 Igrdisonal. andsat5 Reflectanceonly, ii) 2008 SARNly and iii) integrated 2008 Multseasonal
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