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Thesis Abstract  
 

Savannahs, which are defined as a heterogeneous mixture of herbaceous and woody plant 

components, occupy one fifth of the global land surface and is the largest biome in South Africa.  The 

woody vegetation structure of savannahs is particularly important as it influences the fire regime, 

nutrient cycling and the water cycle of these environments and provides fuelwood to sustain the 

local human populace.  Remote Sensing has been proven in numerous studies to be the preferred 

tool for quantifying and mapping this woody vegetation structure (in this study, defined as woody 

biomass, woody canopy volume and woody canopy cover metrics) over large areas, mainly due to its 

superior information gathering capabilities, wide spatial coverage and temporal repeatability.  Active 

remote sensing sensors such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar 

(SAR) are particularly useful in studying woody biomass and other canopy structural metrics, 

because of their capacity to image within-canopy properties.  Passive optical imagery acquired over 

multiple seasons can also provide tree phenological information which can be used to ascertain the 

best period for monitoring tree structure, i.e. when tree canopies has sufficient leaves while the 

grasses are dry.  The combined strength of these active (SAR and LiDAR) and passive (optical) sensor 

technologies, are yet to be applied to their full potential in the dynamic and heterogeneous 

savannah environment, with a special relevance in Southern African landscapes.   

 

This PhD study aimed to evaluate various methods for estimating and upscaling woody structural 

metrics of South African savannahs using integrated SAR and optical remote sensing datasets and 

LiDAR datasets as training and validation.  Before this aim could be tackled, two current global-scale 

remote sensing woody structural products (25m JAXA ALOS PALSAR Forest/Non-Forest or FNF and 

30m Landsat-based Vegetation Continuous Field or VCF) were evaluated, within the South African 

context, with the help of high resolution airborne LiDAR datasets.  These datasets were resampled to 

ƳŀǘŎƘ ǘƘŜ ǇǊƻŘǳŎǘǎΩ ŎǊƛǘŜǊƛŀ ŀƴŘ ŘŜŦƛƴƛǘƛƻƴ ǳǎŜd to depict forests.  It was found that the FNF product 

grossly under-represented the distribution of forests in savannah environments (20-80% CC ranges), 

due to the inadequate HV backscatter threshold chosen in its creation.  The FNF product also 

showed a limited ability in detecting closed forest cover class (90-100%) and Natural Forest and 

Scrub Forest tree structural classes.  The Landsat VCF product displayed strong CC underestimation 

with increasing variability and mean error from CC values of greater than 30%.  The moderate 

accuracies at the 10-20% CC range (and in the Open Woodland tree structural class) suggests that 

the VCF product could be potentially applicable in low CC environments such as grasslands and 

sparse savannahs but can also marginally detect closed canopy environments (90-100% CC range).  
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These results provide the justification for developing new, locally calibrated woody structural 

products for South Africa.  Next, the aim of this study was addressed, firstly, by developing 

methodologies for the estimation of key woody structural metrics (above ground biomass, woody 

canopy cover and woody canopy volume) for the Greater Southern Kruger National Park Region 

using multi-frequency SAR parameters (X-, C- and L-band backscatter and polarisations).  Secondly, 

the most suitable SAR frequency was then tested against and in combination with various Landsat-5 

TM optical features (textures, vegetation indices and multi-seasonal band reflectance) for improved 

regional modelling of woody canopy cover.  In both cases, In-situ field measurements of woody 

vegetation structure were άǎŎŀƭŜŘ-ǳǇέ ǘƻ ƭŀƴŘǎŎŀǇŜ ŀƴŘ ǊŜƎƛƻƴŀl scales by using LiDAR, SAR and/or 

optical sensor products to produce reliable maps of woody structural metrics.  A Random Forest 

modelling approach was predominantly used to meet the modelling challenges in this study and the 

LiDAR datasets were used for model calibration and validation.   

 

For the multi-frequency SAR analysis, it was concluded that the L-band SAR frequency was more 

effective in the modelling of the CC (R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in 

Southern African savannahs than the shorter wavelengths (X- and C-band) both as individual and 

combined (X+C-band) datasets.  The addition of the shortest wavelengths also did not assist in the 

overall reduction of prediction error across sparse and dense vegetation conditions.  Although the 

integration of all three frequencies (X+C+L-band) yielded the best overall results for all three metrics 

(R2=0.83 for CC and AGB and R2=0.85 for TCV), the improvements were noticeable but marginal in 

comparison to the L-band alone.  The results, thus, do not warrant the acquisition of all three SAR 

frequency datasets for tree structure monitoring in this environment.  For the integrated SAR and 

optical dataset analysis, results showed that Landsat-5 imagery acquired in the summer and autumn 

seasons yielded the highest single season modelling accuracies, depending on the year but the 

combination of multi-seasonal images yielded higher accuracies (R2 between ~0.6-0.7).  The 

derivation of spectral vegetation indices and image textures and their combinations with optical 

reflectance bands provided minimal improvement with no optical-only product combination yielding 

accuracies greater than winter SAR L-band backscatter alone (R2 of ~0.8).  However, there was 

significant, yet modest, improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy 

when 2010 multi-seasonal optical reflectance bands were combined with the L-band backscatter 

variables.  These results showed that future monitoring of woody cover, in Southern African 

savannahs, will require priority access to L-band SAR imagery.  Finally, in order to move towards 

upscaling woody canopy cover to the national scale, guidelines on the optimal quantity of field plots 

and LiDAR coverages, required for model training, were proposed for the country of South Africa.  
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The results have shown that the Savannah-only training dataset yielded high accuracies across 

Grasslands, moderate accuracies across Thickets but poorer accuracies in the Indigenous Forests and 

Fynbos biomes.  Sampling the training data across all available biomes yielded higher accuracies.  

From the LiDAR-simulated field plot analysis, it was concluded that a minimum of 500, 1ha field plots 

would be sufficient for effective modelling of CC at the country-wide scale.  Additional field plots, 

beyond this number (500) would improve the overall accuracies only slightly, but incurred significant 

increases in sampling efforts and costs.  The most frugal LiDAR acquisition strategy was found to 

acquire only four separate 5000ha LiDAR acquisitions, distributed across the five vegetated biomes. 

The study found that much less LiDAR data were required to train the models than originally 

expected, provided that the acquisitions were sufficiently diverse in CC and vegetation type and 

could also be cheaper to acquire than collecting 500 1ha field plots.  Following the lessons learnt 

from the various chapter results, a new and more accurate woody canopy cover map of South Africa 

was introduced which served as a first step towards the establishment of an operational monitoring 

system for the woody component. 
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Chapter 1: Introduction and literature review  
 

This PhD study aims to evaluate various methods for estimating and upscaling vegetation woody 

structural metrics of South African savannahs and forests by using a combination of SAR and optical 

remote sensing.  This study feeds into the long term goal of developing a scientific foundation for 

the national mapping of the woody vegetation structure of South African savannahs and forests as 

only a limited knowledge base exists with no reliable, continuous and up-to-date geospatial data 

products being currently available (DAFF, 2015; Skowno et al., 2016).  With the increase of tree 

cover at a rate of 5-6% per decade and the added threat of bush encroachment encroaching upon 

approximately 10-20 million hectares of land and alien invasive plants spreading at a rate of 

between 5 and 10% per year in South Africa, the creation of such map products is crucial όhΩ/ƻƴƴƻǊ 

et al., 2014; van Wilgen et al., 2012).  In this chapter, Savannahs and the importance of its woody 

component in ecosystem processes and their monitoring will be introduced.  The woody component 

will be broken down into woody structural metrics ς woody biomass, woody canopy volume and 

woody canopy cover ς for purposes of quantification.  Methods which utilise remote sensing and the 

role of multi-sensor data integration will be reviewed as a primary means of monitoring and 

measuring these various woody structural metrics and compared to traditional field-based 

measurements.  Finally the main research aim, objectives and specific research questions, which will 

be addressed in the subsequent analytical chapters, will be introduced.  In this thesis, in order to 

eliminate any potential confusion between the terms savannahs and forests, these terms will be 

used without separation except when mentioned at the biome level.  The reason for this, according 

to the FAO definition of forests (elaborated in Chapter 2), most savannahs systems can be 

potentially classified as forests but not all forests can be savannahs (e.g. Natural forests). 

 

1.1 Savannahs and the importance of its woody component in ecosystem 

and monitoring processes  
 

Savannah woodlands cover half of the African continent and occupy one fifth of the global land 

surface (Scholes and Walker, 1993).  Within the context of South Africa, the Savannah biome is the 

largest and makes up 35% of the country (Van Wilgen, 2009).  Savannahs are broadly composed of 

herbaceous and woody components which are in a constant state of flux (Meyer et al., 2007).  In this 

biome, total woody canopy cover values can range from dispersed trees in open-grasslands (~5%) to 

near-closed canopy woodlands (~60%) and more than 80% in riparian zones (Venter et al., 2003).  

Vegetation height can range between 1 and 20 metres (Low and Rebelo, 1996) and also possess an 
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above ground biomass range of less than 60 tonnes per hectare (Scholes and Walker, 1993).  The 

Savannah biome contains six bioregions (the Central Bushveld, Mopane, Lowveld, Sub-Escarpment, 

Eastern Kalahari Bushveld and the Kalahari Duneveld bioregions) which vary according to their 

geographical locations, geology and soil types and dominant vegetation species (Rutherford et al., 

2006).  Savannahs, additionally, consist of Clay Thorn Bushveld, Mixed Bushveld, Sweet and Sour 

Lowveld Bushveld vegetation types (Mucina and Rutherford, 2006).  Seasonally, savannahs 

experience phenological fluctuations in both herbaceous and woody components which influence 

their associated distribution in the landscape.  In summer, both tree leaves and grasses are green 

while in autumn, grasses are dry with trees remaining green but beginning to lose leaves.  In winter, 

most trees have lost leaves and grasses are dry while in spring, grasses are fairly dry while the trees 

first undergo a green flush of leaves (Archibald and Scholes, 2007).  Consequently, savannahs are 

seen as highly complex in both vegetation structure and composition and are highly heterogeneous 

ecosystems. 

 

Water availability and disturbance factors, such as fire and herbivory, mainly control the balance 

between the herbaceous and woody components in savannahs (Baudena et al., 2015; Sankaran et 

al., 2008).  The distribution of the woody component, in savannahs, is constrained in areas which 

receive a mean annual precipitation of less than 650mm (Sankaran et al., 2005) and under the driest 

conditions (<200mm), savannahs do not occur as the herbaceous component outcompete the tree 

saplings of the woody component (Baudena et al., 2015; Sankaran et al., 2004).  As precipitation 

increases, however, the woody component can outcompete the grassy component with deeper and 

more established root systems than the herbaceous component (Jose and Montes, 1997).  Above 

650mm of mean annual precipitation the woody canopy has a cover above 80% unless disturbance 

factors are present.  Fire is a driver that regulates the tree-grass balance in savannahs by preventing 

savannahs from becoming forested woodlands (Jose and Montes, 1997).  Fire can promote the 

growth of the herbaceous layer by eliminating the woody component (including tree seedling 

recruitment) and also due to the quicker recovery ability displayed by the herbaceous layer 

(Baudena et al., 2015; Hanan et al., 2008).  On the other hand, excessive herbivory of the 

herbaceous layer can promote increased growth of the woody component via bush encroachment 

(Ward, 2005; Wigley et al., 2009).  This study will solely focus on the woody component which has a 

considerable impact on both natural and anthropogenic processes. 
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The savannah woody component impacts the fire regime, biomass production, nutrient cycling and 

the water cycle of these environments (Sankaran et al., 2008).  From an anthropogenic point of view, 

the woody component provides numerous essential ecosystem services such as fuelwood (mostly 

firewood and self-produced charcoal derivatives), medicinal products, construction timber and 

edible fruits (Shackleton et al., 2007), which sustain the needs of the large rural populace in sub-

Saharan Africa and regions of South Africa (Twine, 2005; Wessels et al., 2013, 2011).  In South Africa, 

approximately 800 000 people of the rural populace heavily rely on this woody component as a 

source of income through the craft industry and as well as through the small scale trading of forest 

products (DAFF, 2015).  Overall, this savannah woody component contributes approximately R17 

billion to {ƻǳǘƘ !ŦǊƛŎŀΩǎ ŀƴƴǳŀƭ DǊƻǎǎ 5ƻƳŜǎǘƛŎ tǊƻŘǳŎǘ όD5tύ (DAFF, 2015).  Conversely, the 

densification of the savannah woody component, or bush encroachment, can also severely 

compromise the availability of grazing resources, that are essential to livestock populations and 

related human livelihoods όhΩ/ƻƴƴƻǊ Ŝǘ ŀƭΦΣ нлмпΤ ²ƛƎƭŜȅ Ŝǘ ŀƭΦΣ нллфύ.  Bush encroachment adversely 

affects agricultural productivity and biodiversity (e.g. loss of palatable grass species (Angassa, 2005)) 

of approximately 10-20 million hectares of South Africa (Ward, 2005).  From an economic 

standpoint, neighbouring countries like Namibia, which rely heavily on livestock farming, have 

registered an annual loss in income of more than N$700 million due to bush encroachment with 

approximately 12 million hectares of land already being severely encroached (De Klerk, 2004).   

Factors such as humans (via wood harvesting activities), African elephants and fire (less so than 

elephants and humans), in communal rangelands and protected areas, have also been found to alter 

the woody component by removing large trees which subsequently promotes an increase in shrub 

cover or encroachment due to reduced tree seedling survival rates caused by these factors (Asner 

and Levick, 2012; Asner et al., 2016; Mograbi et al., 2016).  

 

Within the context of climate change, the sequestration of carbon by growing vegetation is 

understood as a significant mechanism for the removal of CO2 from the atmosphere (Viergever et al., 

2008b).  With a mean net primary productivity of 7.2 tonnes Carbon per hectare per year, savannahs 

account for approximately 40% of the global carbon store (Collins et al., 2009; Grace et al., 2006).  

Understanding how carbon is stored as carbon sinks in vegetative biomass and quantifying this 

standing biomass is of paramount importance to understanding of the global carbon cycle.  

Initiatives such as REDD (Reduced Emissions from Deforestation and Degradation) and the Bonn 

Challenge provide incentives to developing countries by linking forest conservation to market-

related monetary values of carbon stock.  Adverse anthropogenic activities such as deforestation, 

from unsustainable harvesting, and the burning of biomass can turn carbon sinks into carbon 
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emission sources (Viergever et al., 2008b).  These activities are especially prevalent in developing 

regions around the world such as the savannah woodlands of South America and Southern Africa.  

Conversely, with the increase in carbon dioxide (CO2) in the atmosphere over the past decade, 

vegetation growth in grasslands and savannahs has increased which trees are growing at a faster 

rate while utilising less resources to grow (Bond and Midgley, 2012; Stevens et al., 2015).  As a 

result, increases in wooded savannahs, in terms of higher biomass and woody plant species 

presence, are predicted in the future according to the current climate condition trajectory (Higgins 

and Scheiter, 2012; Stevens et al., 2015).  Given the importance of the woody component in global 

savannahs and the significant changes it undergoes on short and long-term time scales, it is essential 

to monitor the woody component effectively through time and space.   

 

1.2 The current status of monitoring the woody component in South Africa  
 

Despite the environmental and anthropogenic importance of woody vegetation, particularly in 

savannahs, there is currently no monitoring programme available at the national level for South 

Africa to produce reliable and up-to-date products of the distribution and amount of the woody 

component (DAFF, 2015).  This current inability to monitor the woody component has important 

legal implications as the South African government has a national requirement to report on the 

status of forests on a three year basis (Willis, 2002).  The government also have additional legal 

obligations as signatories to various international treaties such as the Kyoto Protocol, United Nations 

Convention to Combat Desertification, United Nations Forum on Forests and the Food and 

Agriculture Organisation Forest Resource Assessment to map and monitor national carbon stocks 

(DAFF, 2015; DEA, 2010; Main et al., 2016).  Consequently, insufficient spatial and quantitative 

information on the extent, the amount and possible changes in the South African woody 

component, especially in savannahs, has prevented management from sustainably managing, 

monitoring and utilising this woody resource.  At the regional scale, various governmental initiatives 

such as Working for Water have been introduced in 1995 to monitor this woody component by 

reducing the density of established invasive alien plants (IAPs) via mechanical and chemical control 

especially along vital watershed catchments where IAPs restrict and limit water flow (Buch and 

Dixon, 2009; Richardson and Van Wilgen, 2004).  Even after extensive clearing efforts and financial 

investment (approximately R1.8 billion in 2015), spreading rates are estimated to still be between 5 

and 10% per year (van Wilgen et al., 2012).  Similar challenges are being faced by the Working for 

Land project, established in 1997, to curtail bush encroachment via limited and small scale means 

such invasive shrub removal, use of herbicides and the establishment of fire breaks.  Ad-hoc and 
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sporadic studies, of variable temporal and spatial extents (mostly localised), have shown the rate of 

woody cover change to be between -0.131 and 1.275% per annum in Southern Africa with the 

majority reporting a net increase as a result of bush encroachment όhΩ/ƻƴƴƻǊ Ŝǘ ŀƭΦΣ нлмпΤ {ƪƻǿƴƻ 

et al., 2016).  Across a variety of land use and management and rainfall gradients, only conservation 

areas with elephants seem not to be subjected to bush thickening.  The exact spatial extent of such 

spread from both IAPs and bush encroachment is also currently unknown.  From the perspective of 

global initiatives such as REDD+ and the Bonn Challenge, the identification of large, contiguous areas 

of degraded and fragment land is crucial before various forest restoration efforts can be made.   

   

In order to take the necessary steps to create a national monitoring programme of the woody 

component, various challenges still currently remain unaddressed in the scientific literature.  These 

challenges include determining which remote sensing datasets are most appropriate for mapping 

the woody component across Southern Africa, testing for the most effective modelling approaches 

to achieve the best possible accuracies and, finally, determining the optimal amount of training and 

validation data required to achieve the development of such a monitoring programme.  In the 

absence of such a monitoring program, global forest products, derived from global modelled 

datasets, have been drawn upon, often erroneously.  These global forest products are elaborated 

upon in section 1.4.3. 

 

1.3 Woody structural metrics  
 

The woody component can be assessed via a variety of variables such as species composition, 

physiology (i.e. stress and productivity), phenology and structure.  The structural variables of the 

woody component will be the focus of this study.  The following main quantifiable variables were 

chosen as representative measurements or metrics which comprise of the savannah woody 

component: biomass, woody canopy volume and cover.  These variables are by no means exhaustive 

but are capable of providing both two dimensional and three dimensional metrics of the woody 

component.  Each of these woody component variables will be separately explained within the 

context of their definition, ecological importance and techniques used for measurement. 

 

1.3.1 Woody biomass  
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Biomass is defined as the mass of live or dead organic matter and is usually expressed in mass per 

unit area (Bombelli et al., 2009; Brown, 1997)Φ  ¢ƘŜ ƎŜƴŜǊŀƭ ǘŜǊƳ ΨōƛƻƳŀǎǎΩ ƛǎ ƳŀŘŜ ǳǇ ƻŦ ŀōƻǾŜ-

ground biomass (AGB), below-ground biomass (BGB) and dead mass and litter (Ghasemi et al., 2011; 

Lu, 2006).  AGB is generally recognised as the main contributor of the total biomass and will be the 

focus of this study as BGB cannot be studied with any other means beside labour and time intensive 

in-situ sampling.  In heterogeneous environments such as savannahs, AGB estimation is particularly 

challenging because of the complex stand structure as a result of the abundant species diversity of 

the vegetation (Lu, 2006).  There are various methods for estimating AGB which varies depending on 

the spatial scale at which these estimates are predicted.  The first method is an in-situ, destructive 

but direct biomass measurement which involves the manual harvesting of plants, drying them and 

then weighing the biomass.  This is the most accurate and direct method, however it is extremely 

intensive in both labour and time and is usually limited within a small unit area such as at a single 

tree or plot level (Bombelli et al., 2009; Lu, 2006).  The second is an in-situ, non-destructive 

measurement which does not involve the harvesting of plants but requires the collection of plant 

biometric measurements (e.g. height, diameter-at-breast height or DBH etc.) for input into 

allometric equations.  These allometric equations are mathematical functions that relate tree dry 

mass to one or more tree dimensions, such as diameter or height, and can be used to extrapolate 

biomass to the unit ground area (Bombelli et al., 2009; Brown, 1997; Colgan et al., 2013; Nickless et 

al., 2011; Sawadogo et al., 2010).  The final method entails the inference and mapping of regional 

level biomass from remote sensing data and related models.  This particular woody structural 

variable is proven to be vital for governance in light of the REDD+ initiatives as it serves as a direct 

indicator of carbon (Global Forest Observations Initiative, 2016) and is also important for a number 

of applications such the sustainable assessment of fuelwood stocks in communal rangelands 

(Wessels et al., 2013) or the assessment of biomass resources for bioenergy projects (GOFC-GOLD, 

2017). 

 

1.3.2 Woody canopy volume  

 

Woody canopy volume, in its simplest form, can be derived from a simple product of canopy height 

and canopy cover which would indicate the cylindrical volume of vegetation.  Other definitions of 

volume can be linked to various applications such as the forestry industry which relies on estimating 

stem volume or bole volume which represents the volume of the tree stems per unit area, including 

bark but excluding the branches and stump (Santoro et al., 2011).  Woody canopy volume, usually 

derived from volume-based allometric equations using DBH and sometimes height measurements 
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(Abbot et al., 1997) at the in-situ level, can also be measured using remote sensing technologies.  

The one of the methodologies of deriving this woody structural parameter will be covered in greater 

detail in chapter 3.  This variable serves as a valuable proxy of biomass density and distribution 

especially when biomass measurements are not possible due to the lack of available site specific 

allometry, for instance.  It also provides the means of investigating in a synthetic indicator both 

woody cover and height variables which are highly variable across the savannah landscape.  Apart 

from its importance in the forestry industry for wood volume yields and derived woody products 

(Foroughbakhch et al., 2012), higher tree volumes are associated with a wider ecological niche and 

correlates positively with both economic biodiversity value (EBV) and biodiversity indices (Hashemi, 

2011; Merganic et al., 2013). 

 

1.3.3 Woody canopy cover  

 

Woody canopy cover is a simple and widely used structural metric which define the area vertically 

projected on a horizontal plane by woody plant canopies (Jennings et al., 1999).  Canopy cover is 

thus a two dimensional structural metric which indicates the spatial heterogeneity and possible 

fragmentation in the ecological landscape.  When combined with canopy height, it can provide an 

informative indicator of volume and serve as an indirect proxy for biomass (Colgan et al., 2012).  At 

the in-situ level, canopy cover can be measured with the use of various sampling strategies such as 

the vertical densitometer technique (Ko et al., 2009; Stumpf, 1993) which uses a point intercept 

sampling approach.  The point intercept method is a small angle approach but a large angle 

ŀǇǇǊƻŀŎƘ ŎŀƭƭŜŘ ǘƘŜ άƳƻǊǇƘƛƴƎέ ŀǇǇǊƻŀŎƘ (Williams et al., 2003) has also been utilised.  This 

approach morphs data from a circular fixed-area plot to a square one and then uses a torus edge 

correction technique to model the crowns of tree boles which fall outside a fixed plot but have their 

canopies partially covering portions of the plot (Williams et al., 2003).  At the landscape scale, 

however, the canopy cover variable is adequately measured by remote sensing datasets.  Measuring 

canopy cover in both levels will be elaborated upon in greater detail in chapter 3. 

   

1.4 Remote sensing of woody structure  
 

Remote Sensing has been proven in numerous studies to be the preferred tool for the quantification 

and mapping of this woody component mainly due to its superior information gathering capabilities, 

wide spatial coverage and revisit capacity.  In contrast to the limited spatial scope of ground based 
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techniques, remote sensing also has the ability to sense the high spatio-temporal variability of 

woody height, cover and biomass, as well as tree species diversity and plant phenological status ς a 

defining but challenging set of characteristics typical of South African savannahs (Archibald and 

Scholes, 2007; Cho et al., 2012b; Mills et al., 2006).  Additionally, remote sensing is more cost-

effective, repeatable and most importantly, capable of effectively predicting environmental variables 

over large geographical areas.  When predicting regional biomass and other woody structural 

parameters using remote sensing data, electromagnetic radiation (e.g. visible, infrared or 

microwave) interact at different spatial scales with the  woody component via direct (e.g. sensed 

responses such as reflectance) or indirect (e.g. remote sensing derived products such as leaf area 

index or LAI) means (Bombelli et al., 2009; Lu, 2006).  This is usually achieved with the use of models 

which can incorporate multi-scale (from in-situ field measurements to regional remote sensing 

derived parameters) and multi-sensor type (passive and active sensor) data in the analysis.  It is 

important to note however, that the more open African savannah environments are relatively 

understudied in the field of remote sensing in comparison to other environment types such as dense 

forested environments (e.g. tropical and temperate forests) and other biomes (Gwenzi and Lefsky, 

2014; Gwenzi, 2017).  Though limited in the number of available studies, a variety of passive and 

active remote sensing sensor technologies have been employed to assess the savannah woody 

component at various spatial scales: Light Detection and Ranging (LiDAR) (Fisher et al., 2014; 

Mograbi et al., 2015), Synthetic Aperture Radar (SAR) (Mathieu et al., 2013; Mitchard et al., 2012; 

Ryan et al., 2012), optical and integrated sensor platforms (e.g. Carnegie Airborne Observatory or 

CAO system which integrates both hyperspectral and LiDAR sensors on the same platform, (Asner et 

al., 2007)). 

 

1.4.1 Passive remote sensing of woody structure  

 

AGB and other woody structural parameters have been successfully mapped using optical data from 

fine to coarse spatial scales (Boggs, 2010; Castillo-Santiago et al., 2010; Nichol and Sarker, 2011).  

This is made possible as forest structural characteristics (such as tree height, crown diameter etc.) 

can be measured from stereoscopic measurements, spectral and texture orientated modelling 

techniques (Lu, 2006).  In terms of the electromagnetic spectrum, the red edge region has been 

proven to be related to woody structure, health, and leaf and canopy biophysical factors (Cho et al., 

2012a, 2008; Delegido et al., 2011) and also played a role in estimating fresh and dry grass biomass 

(Cho et al., 2006).  Image texture is defined as a function of the local variance in an image which is 

related to the spatial resolution and the size of target scene objects (e.g. tree canopies) (Nichol and 
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Sarker, 2011; Wood et al., 2012).  For example, trees occurring over a bare soil background would 

increase the variance through sunlit and shaded pixels thus creating image texture.  The major 

drawback of optical data, however, is the influence of high spectral variation and shadows at fine 

resolutions, resulting from canopy and topographic effects, and the issue of sensor signal saturation 

(e.g. MODIS sensor data) and mixed pixels, at the medium and coarser resolutions, on AGB model 

development and associated accuracies (Lu, 2006).  Clouds and haze also detrimentally obscure 

optical data which, in African savannahs, are prevalent in summer (due to the rainy season) and 

winter (due to dry season veld fires).  Another challenge is the effects of phenology on optical 

imagery in savannah environments which undergo distinct phenological seasonal changes during 

which the green fractional cover of grasses and woody plants varies considerably (Archibald and 

Scholes, 2007).  These phenological seasonal changes could introduce noise especially during the 

wet or growing season when both woody plants and grasses are green.  Thus, identifying the time 

period during the annual vegetation cycle at which a maximum contrast is achieved between green 

tree canopy and dry grass is important (Zeidler et al., 2012).  These phenological changes also, 

however, experience noticeable inter-annual variability especially during years which experience 

periods of severe drought or high rainfall.     

 

1.4.2 Active remote sensing of woody structure  

 

Active remote sensing sensors such as LiDAR and SAR are particularly useful in studying woody 

biomass and other canopy related structural metrics, because of their capacity to image within-

canopy properties.  Airborne LiDAR systems provide high resolution geo-located measurements of 

ǘƘŜ ǘǊŜŜΩǎ ǾŜǊǘƛŎŀƭ ǎǘǊǳŎǘǳǊŜ όǳǇǇŜǊ ŀƴŘ ƭƻǿŜǊ ǎǘƻǊŜȅύ ŀƴŘ ǘƘŜ ƎǊƻǳƴŘ ŜƭŜǾŀǘƛƻƴǎ ōŜƴŜŀǘƘ ŘŜƴǎŜ 

canopies while SAR systems provide backscatter measurements which are sensitive to forest spatial 

structure and standing woody biomass due to its sensitivity to canopy density and geometry (Hall et 

al., 2011; Mitchard et al., 2011; Sun et al., 2011).  Both sensors have an ability to penetrate 

vegetation canopies with SAR being unrestricted by challenging weather conditions such as dense 

cloud cover which would inhibit LiDAR and optical data acquisitions (Mitchard et al., 2011). SAR 

systems also operate at night, and altogether with all-weather capacity they can provide denser 

ǎȅǎǘŜƳŀǘƛŎ άƎǳŀǊŀƴǘŜŜŘέ ǘƛƳŜ ǎŜǊƛŜǎΦ Iƻǿever, unlike LiDAR sensors, the backscatter signal of SAR 

sensors can saturate (i.e. a reduction in the net backscatter due to the extinction of the signal ς 

(Collins et al., 2009)) depending on factors mainly related to the frequency and polarisation of the 

sensor being used and density of vegetation structures being sensed.  It was found that under these 

conditions of signal saturation, SAR backscatter correlated negatively with biomass as a result of 
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signal attenuation from denser forest canopies (Mermoz et al., 2014).  This would result in a higher 

than expected under-estimation of biomass past the point of saturation.  Given that South African 

savannahs possess a low to medium above ground biomass range of less than 60 tonnes per hectare 

(Mathieu et al., 2013; Scholes and Walker, 1993), it expected that SAR signal saturation would not be 

an issue in this study.  Another disadvantage of SAR, however, is that due to the side-looking nature 

of these sensors SAR backscatter is adversely affected by steep slope and topography in which the 

creation of artefacts such as foreshortening, shadowing and layover effects and backscatter 

calibration error are possible (Otukei et al., 2015; Van Zyl, 1992; van Zyl et al., 1993).  These artefacts 

and calibration error would complicate the analysis of vegetation structure over such terrain.  

 

Although the LiDAR technology is well established and the most suited remote sensing technology 

for mapping structure with high accuracies, airborne-based LiDAR systems are not well-suited to 

regional scale mapping as data acquisition is constrained by operational restrictions such as 

expensive flight campaigns, and access to sensors and data is dependent on the country.  (Popescu 

et al., 2011) and (Lefsky et al., 1999), however, did successfully make use of canopy height metrics 

derived from satellite and small footprint airborne LiDAR to estimate forest AGB.   Few studies have 

also utilised various LiDAR derived canopy metrics (e.g. plot-level and tree-level height and canopy 

cover metrics) to estimate AGB in the South African savannah environment (Colgan et al., 2013, 

2012).  Additionally, space-borne LiDAR missions (e.g. MOLI ς multi-footprint observation LiDAR and 

Imager ς to be launched by JAXA in late 2019 and GEDI ς Global Ecosystem Dynamics Investigation 

LiDAR ς to be installed by NASA on the International Space Station in late 2018) are coarse scale 

sensors with large gaps between samples which are inadequate for producing consistent maps 

across the landscape (the latter is also only a two year mission).  Due to its precision and accuracies 

over a limited coverage, airborne LiDAR data can be extremely useful in creating a large 

representative ground truth dataset, once validated with collected field data, for regional scale 

modelling using coarser datasets (Mathieu et al., 2013; Naidoo et al., 2015).  Compared to other high 

resolution optical imagery, however, airborne LiDAR,  is the most expensive with a cost of 

approximately 1-5 US$ per hectare depending on the total coverage, sensor specifications and 

location of deployment (Hummel et al., 2011; Kelly and Di Tommaso, 2015; Thompson et al., 2013; 

Wulder et al., 2008).  Wall-to-Wall, repeat acquisitions of an entire country, particular as large as 

South Africa (122.1 million ha), is currently not financially feasible, and thus there needs to be a 

trade-off between the area sampled with LiDAR and the total cost incurred (Ene et al., 2016; Wulder 

et al., 2008).  With this in mind, it is thus imperative to establish a much needed guideline for the 



30 
 

quantity and distribution of LiDAR acquisitions required for training and validation of models in a 

national woody component monitoring system.   

 

The concept of polarimetry, i.e. radiowave orientation, in SAR theory has played an important role in 

understanding ecosystem structure (Sagues et al., 2000).  Polarimetric SAR systems emit and receive 

waves potentially in HH, HV, VH and/or VV polarisations with H referring to a horizontal wave 

orientation and V referring to a vertical wave orientation.  This allows for a complete 

characterisation of the scattering properties of various ground targets which in turn, enables the 

extraction of greater structural information.  Some SAR systems offer only single polarimetry ς one 

polarization (e.g. ERS-1), dual polarimetry ς two polarizations (e.g. Sentinel-1), or full polarimetry 

(e.g. RADARSAT-2) when all four polarizations are available.  Additionally, when a system is fully 

polarimetric decomposition theorems (e.g. Freeman-Durden) can be applied to simulate and 

quantify dominant scattering mechanisms (volume, double bounce and single bounce) and relate 

these mechanisms to specific target properties such as volumetric scattering within tree canopies 

etc. (Touzi et al., 2004).  (Le Toan et al., 2011) mapped biomass at a global scale (from 70°N to 56°S 

at 100-200m spatial resolution) by utilising P-band frequency fully polarimetric (HV) SAR backscatter 

data, modelled against in-situ biomass measurements, and interferometric SAR techniques.  As an 

alternative to the modelling of SAR scattering and polarimetric variables, (Balzter et al., 2007) made 

use of polarimetric interferometric SAR (InSAR) techniques, in deciduous woodland, for the direct 

estimation of forest canopy height which allowed for the indirect prediction of AGB.  Polarimetric 

InSAR principles involve the polarimetric separation of scattering phase centres in order to estimate 

tree canopy height (Balzter et al., 2007).  Similar methods, involving X-band and C-band, have been 

explored in tropical savannah environments (Viergever et al., 2008a) but none have been attempted 

in South African savannahs with any reasonable success.  Finally, (Mathieu et al., 2013) tested fully 

polarimetric RADARSAT-2 (C-band) in a Southern African savannah to assess various woody 

structural metrics.  It was found that the HV band was the best single predictor over the other 

polarizations and that the polarimetric decomposition variables did not perform better than the 

simple intensity bands.  This work also suggested that dual polarimetry SAR sensors may be more 

than suitable for assessing vegetation structure in open savannahs.  Similar work conducted by 

(Urbazaev et al., 2015) with dual and fully polarimetric ALOS PALSAR (L-band) data also suggested 

the importance of co- and cross polarised backscatter channels (HH and HV) for woody cover 

assessment in South African savannahs, and confirmed the limited benefits of polarimetric 

decomposition for quantitative retrievals of forest parameters.  

 



31 
 

1.4.3 Global forest remote sensing products  

 

With the increased availability of systematic and frequent acquisitions of high resolution remote 

sensing datasets and the development of integrated large scale processing platforms, global scale 

forest products were able to emerge to map the woody component.  Well-known products include: 

high resolution (30m) global forest cover maps, derived from Landsat Data (Hansen et al., 2013); a 

30m global continuous fields tree cover product, derived from Landsat-based rescaling of MODIS 

data (Sexton et al., 2013); a 25m global forest/non-forest (FNF) classification product derived from 

ALOS PALSAR L-band SAR backscatter intensity datasets (Shimada et al., 2014).  These products were 

developed primarily as a means to highlight the extents of forest loss and gain at the global and 

possibly regional scales which can serve as a proxy for the impact on various ecosystem services such 

as biodiversity richness, carbon and nutrient storages and fluxes, water supply and exchange and 

also various climate implications (Hansen et al., 2013; Sexton et al., 2013).  These global forest cover 

products (e.g. the (Hansen et al., 2013) product and ALOS PALSAR FNF), however, have mainly been 

validated against reference data collected in dense, homogeneous equatorial forested areas of 

Africa and other countries rather than in heterogeneous savannah and forested types with variable 

canopy cover and height profiles.    As a result, most of these global forest products have yet to be 

accurately validated at the regional scale in South Africa.  Due to the lack of available South African 

forest products, created from local training and validation datasets, these global forest products are 

temporally serving the need to monitor the woody component but with unknown local accuracies.  

Assessing whether these products are suitable for the monitoring of the South African woody 

component is thus of utmost importance.    

 

1.5 Multi -sensor and multi -temporal remote sensing data integration  
 

Remote Sensing techniques and derived models have steadily moved from the reliance on a single 

sensor type (e.g. SAR or LiDAR alone) to multi-sensor integration approaches.  These data integration 

approaches amalgamate various sensors and derived features (e.g. optical-based texture, laser pulse 

return and microwave backscattering data), multi-temporal data (datasets acquired at different 

seasons), multi-frequency data (e.g. L- band and C-band SAR) and multi-polarised SAR data (HH, HV, 

VH and VV) in various modelled approaches.  The frequency or wavelength of the SAR sensor can 

have a major influence on the structural features sensed in the ecosystem.   For example, when 

sensing vegetation, the signal of shorter SAR wavelengths (e.g. X-band and C-band) interact with the 

fine leaf and branch elements of the vegetation resulting in canopy level backscattering with very 
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little signal penetration.  The signal of longer SAR wavelengths (e.g. P-band and L-band), on the other 

hand, can penetrate deeper into the vegetation with backscatter resulting from signal interactions 

with larger vegetation elements such as major branches and trunks (Mitchard et al., 2009; Vollrath, 

2010).  Combining the properties of these different SAR frequencies in a multi-sensor approach can 

greatly enhance the sensing of the savannah woody component (Schmullius and Evans, 1997) which 

possesses a combination of fine and large woody elements within individual tree canopies and a 

heterogeneous distribution of large trees and smaller shrubs throughout the landscape.   

 

The change in climate (rainy or dry) and vegetation phenology (green or senescent) throughout the 

seasons of a year can also have a dramatic impact on the scattering and reflecting characteristics of 

multi-sensor remote sensing datasets.  Factors such as ground moisture and leaf-on and leaf-off 

vegetation conditions can either enhance or diminish SAR signal penetration and scattering and the 

reflectance of optical spectra (Global Forest Observations Initiative, 2016; Main et al., 2016; Naidoo 

et al., 2016; Urbazaev et al., 2015; Zeidler et al., 2012).  Understanding these seasonal influences on 

these datasets will shed some light on which temporal frame would be best for sensing the savannah 

woody component. 

 

(Sun et al., 2011) made use of LiDAR and SAR synergies for the mapping of forest biomass in which a 

comparable biomass map was generated using limited ground biomass data and SAR polarimetric 

and coherence variables derived from interferometric pairs.  The advantages of the integrated 

approach was best illustrated by (Lucas et al., 2008) which made use of integrated Compact Airborne 

Spectrographic Imager (CASI) hyperspectral and LiDAR data to retrieve and map forest AGB and tree 

component biomass at the individual tree or tree cluster level and then scale-up to plot or stand 

level.  This was made possible by utilising the optical CASI hyperspectral data as a means to 

delineate crowns and for species identification.  The component biomass for the individual 

delineated trees was then estimated using LiDAR derived height and diameter measurements which 

were used as inputs into the species-specific allometric equations (Lucas et al, 2008).  (Tsui et al., 

2012), on the other hand, made use of multi-frequency SAR data (C-band and L-band data) for 

improved biomass estimations in coniferous temperate forests of Canada.  (Collins et al., 2009) also 

made use of multi-frequency (P band, L band and C band data) fully polarimetric (HH, HV, VH, VV 

modes) SAR data to estimate AGB and carbon storage of Eucalypts in the open-forest savannahs of 

North Australia.  Despite the success achieved in these various studies via combining different SAR 

wavelengths (Mougin et al., 1999; Tsui et al., 2012), the combined strength of both shorter (e.g. X- 
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and C-band) and longer SAR frequency (e.g. L-band) sensor technologies, however, have yet to be 

assessed in the heterogeneous and complex Southern African savannah environment.   

 

Given the sensitivity of optical sensors to photosynthetically active vegetation and the sensitivity of 

SAR backscatter to vegetation structure, their possible integration may yield improved woody 

structure estimates due to complementary information which neither sensor type could provide 

alone.  The integration of optical products has also proven useful in assisting the determination of 

shrub-based and coppicing tree cover (and possibly biomass) which is not easily identified in the 

LiDAR and SAR data products (Ghasemi et al., 2011).  For example, the work by (Moghaddam et al., 

2002) illustrated improve estimation of forest variables by the fusion of SAR (AIRSAR and TOPSAR) 

data and optical multispectral Landsat TM data which yielded higher modelled accuracies than the 

use of each dataset type alone.  Other studies in dense forested environments, savannahs and 

plantations also integrated these two sensor technologies and yielded favourable results (Laurin et 

al., 2013; Lucas et al., 2006b; Moghaddam et al., 2002).   None of these studies, however, have 

investigated the effects of vegetation phenology on optical imagery, especially in savannah 

environments with complex tree and grass phenological seasonal changes.  Integrating optical and 

SAR imagery of the most appropriate phenological window (i.e. maximum contrast between green 

tree canopies and dry grass) could improve the modelling of the woody component in South African 

savannahs.   

 

Despite the success achieved in these various studies, the combined strength of these active (SAR 

and LiDAR) and passive (optical) sensor technologies, however, have yet to be applied to a more 

heterogeneous and complex environment such as Southern African savannahs.  This is evident from 

gaps in the literature for savannah environments in South Africa.  The aim, objectives and specific 

research questions of the thesis will be detailed next. 

 

1.6 Study aim 
 

The overall aim of the thesis was to evaluate various methods of estimating and upscaling woody 

structural metrics of South African savannahs using integrated SAR and optical remote sensing 

datasets and LiDAR datasets as training and validation data.  

Study areas ranging from the Greater Kruger National Park region to the eastern half of South Africa 

were chosen as the focus in this thesis. 
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1.7 Study objectives and chapter breakdown  
 

The objectives of the thesis were:  

 

1) To comprehensively validate current global-scale remote sensing woody structural products, 

within South Africa, using high resolution airborne LiDAR datasets.  This task will serve as an 

important, quantitative benchmark for assessing the performance of these global products 

in South African forests and savannahs and thus providing the justification for the 

methodological development of new savannah-specific products in South Africa.  This 

objective will be addressed in Chapter 2.   

  

2) To develop and assess methodologies for the estimation of key woody structural metrics 

(biomass, woody canopy cover and woody canopy volume) for the Kruger National Park 

region using multi-frequency SAR parameters (backscatter and polarisations) and optical 

features derived from multiple remote sensing sensors.  For this objective, In-situ field 

measurements of woody vegetation structure and biomass are άǎŎŀƭŜŘ-ǳǇέ ǘƻ ƭŀƴŘǎŎŀǇŜ ŀƴŘ 

regional scales by using LiDAR, SAR and optical sensor data to produce maps of woody 

structural metrics.  As a prelude, various parametric and non-parametric modelling 

algorithms were tested in order to ascertain the best approach and these results are 

reported in detail in Appendix 3C.  Two separate analytical chapters addressed this current 

objective. Chapter 3 focused on the woody structure modelling and mapping using multi-

frequency SAR datasets (X-, C- and L-band). Chapter 4 investigated the benefits of combining 

optical data with L-band SAR datasets for estimating woody canopy (fractional) cover.   

 

3) To investigate the scaling up of the woody structural mapping approach (developed in 

objective 2) to national scale while considering the challenges of predicting woody 

vegetation structure across diverse environments (different biomes, vegetation types, 

rainfall gradients and variable topography) and the LiDAR data requirements, (e.g. how 

much? And where?), for successful model training and validation over the entire country.  

This is particularly challenging for a country where the woody component is also dominantly 

present (and biased) across the savannah biome.  The trade-off between the accuracy of 

model training and increasing LiDAR acquisition costs are considered.  Optimal, but 

representative sampling with airborne LIDAR across the diverse vegetation types of South 

Africa is a vital challenge to address when developing a national scale monitoring system.  
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This research objective (to be addressed in Chapter 5), together with the lessons learnt from 

previous chapters, will help shape the requirements and specifications of a national woody 

structure monitoring system.   

 

 

The final chapter, Chapter 6, includes ŀ ǎǳƳƳŀǊȅ ƻŦ ǘƘŜ ǎǘǳŘȅΩǎ ŎƻƴŎƭǳǎƛƻƴǎΣ ǊŜŎƻƳƳŜƴŘŀǘƛƻƴǎ ŀƴŘ 

the ways forward. 

 

1.8 Primary and secondary research questions  
 

Chapter 2 

 

¶ Research Question 2.0: How accurate are two global forest products, the 30m Landsat-

derived Vegetation Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-

Forest (FNF) global products, when validated against high resolution airborne LiDAR datasets 

across South African forests and savannahs? 

- Research Question 2.1: Across which canopy cover ranges do the two products yield the 

highest and the lowest accuracies? 

- Research Question 2.2: Across which vegetation structural type (e.g. grassland, woodland 

and natural forest (Willis, 2002)) do the two products yield the highest and lowest 

accuracies? 

 

Chapter 3 

 

¶ Research Question 3.0: How do various SAR frequencies (X- or C- or L-band) perform in 

predicting woody canopy cover, woody canopy volume and above ground biomass in the 

Southern African savannahs of the Kruger National Park? 

- Research Question 3.1: Does combining SAR backscatter of different frequency (X+C or X+L 

or C+L band or X+C+L-band) improve the predictions of the various woody structural metrics 

over the single SAR frequencies and by how much? 

- Research Question 3.2: What does the examination of the patterns of error, from the 

different SAR frequency models, inform us on how the different SAR frequencies interact 

within South African savannah landscape? 
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Chapter 4 

 

¶ Research Question 4.0: Does the combination of SAR (ALOS PALSAR L-band) and multi-

seasonal optical (Landsat-5) remote sensing datasets improve woody canopy cover 

estimation in comparison to the individual datasets alone? 

- Research Question 4.1: Which season or seasons of Landsat-5 data is/are best for predicting 

woody canopy cover? 

- Research Question 4.2: How does the accuracy of woody canopy cover predictions compare 

when using single and multi-seasonal Landsat versus L-band dual-polarised SAR datasets? 

- Research Question 4.3: Does the integration of optical predictor parameters (e.g. textures, 

vegetation indices, and/or raw reflectance etc.) with L-band SAR data, improve the overall 

modelling accuracies? If so, how do these accuracies compare with the modelling results 

using only the SAR datasets? 

 

Chapter 5 

 

¶ Research Question 5.0: What is the optimal representative sampling of airborne LiDAR data 

and LiDAR simulated field plots, across Savannah-only and all main biomes (Savannah, 

Grassland, Fynbos, Thicket and Indigenous Forest) for the training of models predicting 

woody canopy cover at the country level using ALOS PALSAR L-band SAR data?  Secondary 

objectives also include the investigation of the inclusion of regional environmental variables 

(i.e. digital elevation-based and rainfall variables) for potential model improvements. 

- Research Question 5.1: Does the inclusion of regional ancillary variables such as elevation, 

slope, and aspect and rainfall gradient improve the accuracy of modelling woody canopy 

cover when compared to using only the L-band HH and HV backscatter? 

- Research Question 5.2: What is the impact on model accuracy of having LiDAR data that are 

limited to a single biome, i.e. the Savannah? More specifically, is LiDAR data which is limited 

to the Savannah biome (as specified in (Rutherford et al., 2006)) sufficient for training and 

validation for L-band SAR-based modelling and mapping of woody canopy cover for the 

whole country?  Also, how do these results of using LiDAR from the Savannah only compare 

to those where diverse LiDAR datasets from Fynbos, Thicket, Grassland and Indigenous 

Forest biomes are used? 
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- Research Question 5.3: What is the optimal amount of field plots, as simulated from LiDAR 

datasets, required for modelling and mapping of woody canopy cover with L-band SAR 

ŀŎǊƻǎǎ ǘƘŜ ŎƻǳƴǘǊȅ ŀƴŘ ƛƴ {ŀǾŀƴƴŀƘǎ ƻƴƭȅΚ  ¢ƘŜ ΨƻǇǘƛƳŀƭ ŀƳƻǳƴǘΩΣ ƛƴ ǘƘƛǎ ŎŀǎŜΣ ǊŜŦŜǊǎ ǘƻ ǘƘŜ 

most favourable trade-off between modelling accuracies and sampling effort (i.e. number of 

field plots). 

- Research Question 5.4: What is the optimal amount, in terms of area (hectares) and number 

of acquisitions of LiDAR data required for optimal L-band SAR-based modelling and mapping 

of woody canopy cover within (i) the Savannah and (ii) country-wide, in comparison with the 

accuracƛŜǎ ŀŎƘƛŜǾŜŘ ǳǎƛƴƎ ŀƴ ƻǇǘƛƳŀƭ ƴǳƳōŜǊ ƻŦ ŦƛŜƭŘ ǇƭƻǘǎΚ  ¢ƘŜ ΨƻǇǘƛƳŀƭ ŀƳƻǳƴǘΩΣ ƛƴ ǘƘƛǎ 

case, refers the most favourable trade-off between modelling accuracies and sampling effort 

(i.e. the number, size and total coverage of LiDAR acquisitions while taking into account the 

cost effectiveness of the various LiDAR acquisition specifications). 
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Chapter 2: Assessment of the Performance of Global Forest Cover 

Products in South Africa ɀ Establishing the benchmark  

 

2.1 Abstract  
 

There is a fervent debate on whether global forests are in the state of growth or loss.  Global scale 

forest cover products have provided a means to measure where forest losses and forest gains are 

occurring.  Most of these global forest cover products, however, have yet to be accurately validated 

at the local to regional scale especially within the savannah biome.  This study aimed to assess the 

performance of two 2010 global forest cover products, the 30m Landsat derived Vegetation 

Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-Forest (FNF) global products, 

against an extensive collection of airborne LiDAR data acquired during 2009 and 2013 across South 

Africa (SA), with special focus on detecting forest όŀǎ ǇŜǊ ǘƘŜ ǇǊƻŘǳŎǘǎΩ ŦƻǊŜǎǘ ŘŜŦƛƴƛǘƛƻƴύ in 

savannahs.  The overall strategy was ǘƻ ΨresampleΩ ǘƘŜ [ƛ5!w Řŀǘŀ ǘƻ match the criteria used to 

create the VCF and FNF products.  It was found that the FNF product grossly under-represented the 

distribution of forests in savannah environments (20-80% CC ranges), due to the inadequate HV 

backscatter threshold chosen in its creation.  The FNF product also showed a limited ability in 

detecting closed forest cover class (90-100%) and Natural Forest and Scrub Forest tree structural 

classes.  The Landsat VCF product displayed strong CC underestimation with increasing variability 

and mean error from CC values of greater than 30%.  The moderate accuracies at the 10-20% CC 

range (and in the Open Woodland tree structural class) suggest that the VCF product could be 

potentially applicable in low CC environments such as grasslands and sparse savannahs. Limited 

detection accuracies (~30%) by the VCF, however, were also observed in closed canopy 

environments (90-100% CC range).  Despite the lack of a completely balanced LiDAR acquisition 

coverage across the forested biomes of SA (most LiDAR acquisitions were biased to the Savannah 

biome with limited coverage over dense forests); these results give some insight into the inherent 

flaws of the global products especially over the savannah biome. These results provide the 

justification for developing new, locally calibrated woody structural products for South Africa.  

Keywords: Global forest cover, Landsat VCF, ALOS PALSAR FNF, LiDAR, validation   
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2.2 Introduction  
 

South African forests and savannahs are crucial ecosystems which provide a plethora of goods and 

services (food and energy) which benefit both natural and anthropogenic forces (Chidumayo and 

Gumbo, 2010; Shackleton and Shackleton, 2004; Twine, 2005; Wessels et al., 2011). There is a strong 

debate on whether these forests and savannahs are in the state of growth or loss.  This state of flux 

is documented particularly in heterogeneous savannah environments, in which the woody resources 

are harvested for food or selectively logged to satisfy energy securities, by the local populaces, thus 

creating a perception of forest decline (Pereira et al., 2011; Ryan et al., 2012; Wessels et al., 2013).  

On the other hand, there is the issue of bush encroachment, which threatens the livestock grazing 

potential of Southern African rangelands όhΩ/ƻƴƴƻǊ Ŝǘ ŀƭΦΣ нлмпΤ ²ŀǊŘΣ нллрΤ ²ƛƎƭŜȅ Ŝǘ ŀƭΦΣ нллфύ, or 

the occurrence of forest regeneration (Chazdon, 2008), either assisted or unassisted by humans, 

which thus creates a perception of forest growth.  The emergence of global scale forest cover 

products have provided a means to confirm and measure where forest loss and forest gain is 

occurring at a global scale (Hansen et al., 2013) but whether these products are accurate enough to 

monitor forests in the Southern African region is left to be investigated.  

 

The development of global scale forest cover products was made possible with the increasing 

availability of systematic and frequent acquisitions of high resolution remote sensing datasets 

(which are also ideal for regional monitoring efforts), and the development of integrated large scale 

processing platforms.  Well-known products include: high resolution (30m) global forest cover maps, 

derived from Landsat 7 ETM+ data (Hansen et al., 2013); a 30m global continuous fields tree cover 

product, derived from Landsat-based rescaling of MODIS data (Sexton et al., 2013); a 25m global 

forest/non-forest (FNF) classification product derived from ALOS PALSAR L-band Synthetic Aperture 

Radar backscatter intensity datasets (Shimada et al., 2014). These products were developed 

primarily as a means to highlight the extents of forest loss and gain at the global and possibly 

regional scales which can serve as a proxy for the impact on various ecosystem services such as 

biodiversity richness, carbon and nutrient storages and fluxes, water supply and exchange and also 

various climate implications (Hansen et al., 2013; Sexton et al., 2013).  Additionally, these global 

products play a major role in the greater scientific community as they contribute to global initiatives 

such as REDD+ (Reducing Emissions from Deforestation and forest Degradation) and greatly 

influence environmental management at the regional governance scale (Hansen et al., 2013; Sexton 

et al., 2013; Shimada et al., 2014).  It is believed that such satellite-based global forest cover and 
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change products have actually help establish various environmental policy initiatives such as the 

Kyoto Protocol, REDD+ and the Aichi Biodiversity Targets (Sexton et al., 2015).  Most of these global 

forest products, however, have yet to be accurately validated at the regional scale in South Africa, 

especially within the savannah biome.  The global forest cover products mentioned earlier (Hansen 

et al., 2013; Sexton et al., 2013; Shimada et al., 2014) have mainly been validated against reference 

data collected in dense, homogeneous equatorial forested areas of Africa and other countries rather 

than in heterogeneous savannah and forested types with variable canopy cover and height profiles.  

As a result, when generalised at the continental scale, validation accuracies of these products are 

reasonable with validation sites biased to the dense forested areas (e.g. Figure 13a in (Shimada et 

al., 2014); Figure 2 in (Sexton et al., 2013)).  (Kim et al., 2014) also confirmed that Landsat-based VCF 

global products have a relatively low certainty of forest and non-forest classification in semi-arid 

environments in which sparse and short trees persist such as the Miombo woodlands.  Also, 

surprisingly, the Global Forest Watch web portal which is based on the Landsat and MODIS VCF 

products (Hansen et al., 2013; Townshend et al., 2011) (http:// www.globalforestwatch.org/) does 

not acknowledge the presence of forest in the South Africa savannah Lowveld and is also limited to 

targeting trees greater than 5m in height.   

 

What also compounds matters further, is that these products are derived according to different 

definitions of what constitutes a forest, with different definitions being introduced from various 

institutes and initiatives (e.g. United Nations Framework Convention on Climate Change, UNFCCC, 

versus Convention on Biological Diversity, CBD, versus Food and Agriculture Organization of the 

United Nations, FAO (Schoene et al., 2007)).  The Forest Resources Assessment (FRA) of the FAO, for 

example, defines forest as land spanning more than 0.5 hectares with trees higher than 5m or trees 

able to reach these thresholds in situ and a canopy cover of more than 10% (FAO, 2015) while the 

UNFCCC defines forests more flexibly as a minimum area of land of 0.05-1 ha with crown tree cover 

(or equivalent stocking level) of more than 10 ς 30% (UNFCCC, 2001).  (Sexton et al., 2015) revealed 

that such an ambiguity in the definition of forests can potential result in a discrepancy of 

approximately 19.3X106 km2 in forest coverage (i.e. area of classified forest) at the global scale.  Such 

a discrepancy can adversely affect forest area calculations in regions that have overall less dense 

tree cover such as savannah and shrubland environments (Rocchio, 2015).  Since the savannah 

biome possess total woody fractional cover that can range from dispersed trees in open-grasslands 

(~5%) to near-closed canopy woodlands (~60%) and more than 80% in riparian zones (Venter et al., 

2003), it is expected that forests should be present in such a system regardless of the definition of 

http://www.globalforestwatch.org/


41 
 

forests implemented.  Regardless of the definition utilised in these global forest products, a flexible 

and accurate validation data source is needed for such validation efforts.  Light Detection and 

Ranging (LiDAR) is such a data source and is particularly well suited for woody structural 

measurements, because of its capacity to capture canopy geometry and structure (McGlinchy et al., 

2014; Popescu et al., 2011; Sun et al., 2011).  Additionally, in terms of the measurement of fractional 

tree cover, airborne LiDAR derived metrics have proven to be more accurate than field measured 

metrics derived from field laser, manual collection and hemi-spherical photography methods 

(Nickless et al., 2009).  This accuracy together with the large geographical coverage managed by 

airborne LiDAR sensors, thus results in the availability of a large validation source for remote sensing 

product validation studies.  

  

This study aimed to assess the performance of two 2010 global forest products, the 30m Landsat 

Vegetation Continuous Field (VCF) and the 25m JAXA ALOS PALSAR Forest/Non-Forest (FNF) global 

products, against an extensive collection of airborne LiDAR data collected over years 2009 and 2013 

in South Africa, which served as the ground truth.  These high resolution global forest products have 

yet to be assessed in South Africa - a country where no regionally derived forests products, from 

remote sensing data, are currently available despite being a national requirement for reporting on 

the state of the forests (Willis, 2002).  The global 30m tree cover product created by (Sexton et al., 

2013), however, was not assessed as the 2010 version of the product was not available.  The primary 

focus of the study would be the assessment of both products for the accurate detection of forests, 

ŀǎ ǇŜǊ ǘƘŜ ǇǊƻŘǳŎǘǎΩ ŦƻǊŜǎǘ ŘŜŦƛƴƛǘƛƻƴǎΣ ƛƴ South African savannahs which are largely under-

represented or excluded by such global products.  Based on the validation results, and as a 

secondary objective, product error will be assessed over stratified canopy cover ranges and 

vegetation structural classes, (e.g. woodlands, natural forests and grasslands (Willis, 2002)), in order 

to ascertain the performance of these products according to vegetation type.  Suggestions, also, 

were put forward to help improve these global forest products for the structurally variable South 

African environment.  A variety of forest types (i.e. from savannah Lowveld vegetation to closed 

indigenous forests and plantations) were chosen in South Africa to cover the full expected range of 

canopy cover values and structure in the validation efforts.  This study will ascertain whether these 

global forest products are applicable to the South African region or whether new regional forest 

products will needed to be developed. 
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2.3 Study Area 
 

The eastern half of the country of South Africa, between latitudes 22° and 34° south and longitudes 

25° and 33° east, where forests are dominant, is under investigation for the task of global forest 

product validation.  Of approximately 120 million hectares in area, South Africa possesses a variety 

of biomes, topographic landscape features, climate and geological conditions.  South Africa consists 

of nine main biomes (Mucina and Rutherford, 2006), each possessing a characteristic suite of plant 

and animal species which vary in distribution and according to environmental conditions.  Of these 

biomes, forests are largely present in Savannah, Indian Ocean Coastal Belt (IOCB) and Forest biomes 

with the Savannah biome covering 35% of the South African land surface (Van Wilgen, 2009).  

Savannahs are characterised by a mixture of a grassy ground layer and a upper woody layer of plants 

which are in a constant state of flux depending on rainfall, fire and grazing pressures and occur 

mostly over the Lowveld and Kalahari regions of the country (Low and Rebelo, 1996).  As mentioned 

earlier, Savannahs are of great importance as the woody layer is harvested by the local populace for 

energy provision while the grassy ground layer supports cattle ranging and grazing (Low and Rebelo, 

1996; Ryan et al., 2012; Ward, 2005; Wessels et al., 2013).  This could lead to threats of 

overharvesting of trees, overgrazing of the grass and subsequent emergence of bush encroachment.  

Structurally, Savannahs possess total woody fractional cover that can range from dispersed trees in 

open-grasslands (~5%) to near-closed canopy woodlands (~60%) and more than 80% in riparian 

zones, a general height range of 1-20m and a total biomass mostly less than 100 tonnes per hectare 

(t/ha) (Low and Rebelo, 1996; Mathieu et al., 2013; Venter et al., 2003). The Forest biome (including 

indigenous forest and the IOCB) are less prolific (<1% of SA land surface), occurring in patches rarely 

greater than 1km2 in area and commonly occur along the South Coast, the Indian Ocean Coast and 

the Lowveld escarpment (Low and Rebelo, 1996).  Due to high rainfall (>725mm) in such areas, these 

forests are less affected by fire (except under very dry conditions) (Low and Rebelo, 1996) but are 

susceptible to illegal logging activities of valuable timber, ring-barking resulting from the illegal 

extraction of medicinal bark by surrounding communities and the invasion of alien species (e.g. 

Pinus spp.) (Shackleton and Shackleton, 2004).  Structurally, the vegetation are usually evergreen 

and multi-layered with high woody fractional cover (75-100%), high biomass (>100 t/ha) and tall 

heights (6-20m and greater) (Willis, 2002).  Apart from naturally occurring indigenous forests, forests 

ŀǊŜ ŀƭǎƻ ǊŜǇǊŜǎŜƴǘŜŘ ōȅ ŎƻƳƳŜǊŎƛŀƭ Ǉƭŀƴǘŀǘƛƻƴǎ ǿƛǘƘ ŘƛǎǘǊƛōǳǘƛƻƴǎ Ƴƻǎǘ ǇǊŜǾŀƭŜƴǘ ƻƴ {ƻǳǘƘ !ŦǊƛŎŀΩǎ 

eastern escarpment and within the savannah, grassland and IOCB biomes (Scholes and Biggs, 2004).  

These commercial plantations support alien species cultivars for pole-wood and mulch production, 

for various commercial goods such as paper and furniture, and also for fruit production.  Structurally, 
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depending on the age and plantation type (orchard versus woodlots), the vegetation is mostly 

continuous cover with high biomass yields and height measurements (similar to the Forest Biome).  

Finally, although not typically known to be containing forests, the Thicket Biome possesses 

evergreen, sclerophyllous vegetation that range from closed shrubland canopies to low forests with 

no discernible grassy ground layer (Low and Rebelo, 1996).  The vegetation supported in this biome 

can possess high woody cover (75-100%), which can be impenetrable, with generally low height (1-

2.5m) and biomass levels (Willis, 2002).  One of the biggest threats to this biome is transformation of 

natural land into agriculture and ranching resulting in land degradation (Hoare et al., 2006).  At the 

South African scale, average temperatures are generally mild but can vary according to location and 

proximity to the oceans.  Annual average precipitation is about 450mm with a high-to-low rainfall 

gradient existing from east to west which mainly limits forest distribution.  The map displayed 

below, in Figure 2.1, illustrates the study area and shows the LiDAR dataset coverages used for the 

validation of the global forest products. 
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2.4 Materials and Methodology  
 

Two well-known global forest earth observation products, 2010 30m Landsat VCF and 2010 25m 

ALOS PALSAR FNF (Figure 2.2), were validated at the country level against a geographically extensive 

dataset of airborne LiDAR. The strategy was fairly simple in that the airborne LiDAR derived data 

products, i.e. canopy height model (CHM), were processed and ΨŘŜƎǊŀŘŜŘΩ ǘƻ Ŧƛǘ ǘƘŜ criteria and pixel 

size used to create the Landsat VCF and ALOS PALSAR FNF products.  The LiDAR-based forest 

products were then compared with the global forest products. This takes into account the different 

definitions used to define and map tree cover in the various global forest products. 

 

Figure 2.1: Study area with focus on the LiDAR dataset coverages (see table 2.1 for LiDAR specifications) 
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2.4.1 Global forest products  

 

The 2010 Landsat VCF product was derived from monthly surface reflectance composites, composed 

from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery (particularly Landsat 7 ETM+ bands 

3, 4, 5 and 7) taken throughout the year, derived NDVI, various band-ratios and low- and high-gain 

temperature bands (Hansen et al., 2013, 2011).  The Landsat VCF product was derived from a similar 

methodology used to create the MODIS VCF product (Townshend et al., 2011).  It is composed of 

three main components; percent tree cover, percent non-tree vegetation and percent bare ground; 

modelled with a non-parametric bagged decision tree approach (Hansen et al., 2014, 2011, 2003, 

2002).  The Landsat VCF percent tree cover component defines tree cover as any woody plant with a 

height greater than or equal to 5 metres (Hansen et al., 2011, 2003).  In this study, percent tree 

cover of the Landsat VCF product was considered to be analogous to the woody canopy cover metric 

(CC).  The ALOS PALSAR FNF was derived from dual-polarised (HH and HV) L-band Fine Beam Dual-

polarised (FBD) imagery which were mainly acquired during dry conditions in South Africa (between 

June and September), according to the dual polarised data type Basic Observation Scenario (BOS) 

(Shimada et al., 2014).  Unlike the continuous tree cover product of the Landsat VCF, the ALOS 

PALSAR FNF is purely categorical consisting of three classes: forest, non-forest and water.  The 

product was created from country- and/or continent-specific HV backscatter (dB) thresholding for 

forest separation together with specific HH and HV backscatter (dB) thresholds for non-forested 

surfaces separation and utilised the FAO definition of a forest, which is all contiguous areas where 

the cover of woody vegetation is greater than 10% (in this case, within the 25m pixel resolution of 

the SAR backscatter imagery used for creating the FNF product) (FAO, 2000; Shimada et al., 2014).  

There was no vegetation height threshold used in the creation of the FNF product. 

 

2.4.2 LiDAR validation datasets  

 

The airborne LiDAR validation datasets (totalling 122 052 hectares) were acquired from a variety of 

flight campaigns across the eastern part of South Africa between 2009 and 2013.  These datasets 

were made available through scientific and collaborative agreements by the Carnegie Airborne 

Observatory (CAO), Southern Mapping Company, SANParks Scientific Services, AECOM (UK) and 

ESKOM.  Due to the national scope of the study and the lack of available and extensive airborne 

LiDAR which matched exactly the global forest product acquisition year, a temporal difference 

between the global forest and LiDAR datasets was permitted.  Most forest types do not change 
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extensively (indigenous forests are protected) but only gradually (savannahs through mostly 

selective logging or bush encroachment).  Unfortunately, possible error associated with the 

temporal difference between LiDAR datasets and global forest products, however, could still be 

incurred during the validation process.  The LiDAR datasets used in this study are outlined in Table 

2.1. 

 

2.4.3 Global Forest Product Pre -processing  

 

The Landsat VCF was obtained from the Global Land Cover Facility (http://landcover.usgs.gov/glc/) 

while the ALOS PALSAR FNF was publicly available from the Japan Aerospace and Exploration Agency 

(JAXA) portal (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm).  Both products were 

obtained with no further post-processing being conducted.  The native projections of the products, 

geographic WGS84 and Sinusoidal projection for ALOS PALSAR FNF and Landsat VCF respectively, 

were re-projected to a common geographic projection with a WGS84 datum.  It is important to note 

that preliminary work with the FNF and the ALOS PALSAR global HV mosaic, from which FNF was 

derived from, indicated that was a pixel misalignment between the ALOS products and the LiDAR 

datasets.  This misalignment was apparent in heterogeneous vegetated areas with varying land 

use/cover types (forest patches distributed sporadically across sections of grassland and also along 

urban settlement outskirts).  To address this discrepancy the FNF product was converted to an 

Albers Equal Area projection and shifted by a constant distance of 75m westwards and 50m 

northwards.  After the shift, the FNF products were converted back to a WGS84 geographic 

projection.  Changing to a common projection at the country scale was needed in order to eliminate 

any errors arising from mismatched projections and potential misalignment between LiDAR-derived 

extraction grids and the global forest products. 

http://landcover.usgs.gov/glc/
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
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Figure 2.2: 25m ALOS PALSAR Forest/Non-Forest (left) and 30m Landsat Variable Continuous Field cover 
(right) products 

 

2.4.4 Airborne LiDAR Data Pre -processing  

 

Although the LiDAR sensors and settings used varied, such as scan frequency, laser spot spacing and 

point density (outlined in Table 2.1), a common methodology was applied to all datasets to ensure 

consistency in the extraction of the canopy height models and associated woody fractional cover.  

Most of the raw LiDAR point cloud data were processed in TerraSolid LiDAR processing software in 

which a Digital Elevation Model (DEM) and top-of-canopy surface models (CSM) were created.  DEM 

and CSM were generated at a pixel size varying from 1 to 5 m, depending on the dataset point 

densities.  Canopy Height Models (CHMs), which varied in pixel size from 1 to 5m, were then 

computed by subtracting the DEM from the CSM.  The 2012 CAO datasets were provided already 

processed by the CAO research team, see details, such as software, in Asner et al. 2012.  The 

differences in LiDAR specifications would not be expected to be influential at the coarser resolutions 

of the global forest products.  To match the criteria in which the ALOS PALSAR FNF product was 

created, the LiDAR CHM data were processed to generate forest versus non-forest products 
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considering a canopy cover with a threshold of greater than or equal to 10%, after the extraction 

process, which will be elaborated upon in the next section (2.4.5).  To match the conditions in which 

the Landsat VCF product was created, the LiDAR CHM data was subjected to a tree height threshold 

of greater than 5m.  All pixels which did not meet these specified thresholds were masked out and 

excluded from the rest of methodological workflow.  The LiDAR datasets were kept in the pre-

processed spatial resolution (ranging from 1m to 5m) as the datasets were indirectly resampled to 

match the global forest products during the data extraction process with the use of extraction grids 

(to be elaborated upon further in the next section).   
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Table 2.1: Summary of LiDAR datasets used, the year acquired, sensor specifications, coverage, environmental description and provider information 

LiDAR dataset Year 
Scan 

frequency 

Laser spot 
spacing 

(along/across 
track) 

Point density 
Final CHM 
Resolution 

Area 
coverage 

Province Description Provider(s) 

CAO 2012 50 kHz 0.56m 6.4 points per m² 1m 63 000 ha Mpumalanga Majority savannah with communal rangelands 
Carnegie Airborne 

Observatory 

KNP 2012 70 kHz 0.5m 10 points per m² 1m 17 000 ha Mpumalanga Savannah riparian vegetation AECOM (UK) 

EROS 2013 
150 kHz 
(max) 

0.30m 12 points per m² 1m 6 700 ha 
Kwa-Zulu 

Natal 
Mixed consisting of azonal vegetation, forest 

plantations plus savannahs and grassland 
CAD Mapping/ESKOM 

Dukuduku 2013 
300 kHz 
(max) 

0.30m 10 points per m² 1m 2 100 ha 
Kwa-Zulu 

Natal 
Majority indigenous coastal forest PROMAP/ESKOM 

Boulders 2010 100 kHz 0.67m 2.26 points per m² 1m 900 ha Gauteng Highveld bushveld with urban cover AOC/ESKOM 

Gumeni Nkomati 2010 100 kHz 1.10m 0.83 points per m² 2m 742 ha Mpumalanga Mostly savannah with small tree patches AOC/ESKOM 

Nkomazi Figtree 2010 100 kHz 0.81m 1.53 points per m² 1m 659 ha Mpumalanga Lowveld shrubs with majority agriculture AOC/ESKOM 

Majuba AS058 2010 100 kHz 1.19m 0.71 points per m² 5m 7 085 ha 
Kwa-Zulu 

Natal 
Thornveld, shrub and grassland with small 

dense tree patches 
Fugro/ESKOM 

Albany Kowie 2010 100 kHz 1.56m 0.41 points per m² 2m 262 ha Eastern Cape Majority grassland and thicket 
Southern Mapping 
Company/ESKOM 

Applebosh 
Ndwedwe 

2009 70 kHz 0.98m 1.05 points per m² 2m 650 ha 
Kwa-Zulu 

Natal 
Small patches of plantations with dense veld 

and sugar cane cropland 
Southern Mapping 
Company/ESKOM 

Colenso Danskraal 2011 100 kHz 1.27m 0.62 points per m² 5m 1 675 ha 
Kwa-Zulu 

Natal 
Majority thornveld 

Southern Mapping 
Company/ESKOM 

Grahamstown 2011 100 kHz 1.08m 0.86 points per m² 2m 400 ha Eastern Cape Majority grassland and thicket 
Southern Mapping 
Company/ESKOM 

Massa Ngwedi 2010 100 kHz 0.95m 1.11 points per m² 1m 6 981 ha Limpopo 
Combination of shrubby rangeland and 

savannah 
Southern Mapping 
Company/ESKOM 

Mfinizo 2010 100 kHz 1.41m 0.5 points per m² 2m 278 ha Eastern Cape Grassland with dense patches of bushveld 
Southern Mapping 
Company/ESKOM 

Ndumo 
Nondubuya 

2011 70 kHz 0.87m 1.31 points per m² 2m 3 175 ha 
Kwa-Zulu 

Natal 
Bushveld and thicket with evergreen tree patch 

Southern Mapping 
Company/ESKOM 

Prairie Marathon 2009 70 kHz 1.20m 0.69 points per m² 2m 4 573 ha Mpumalanga 
Mixed consisting of dense bushveld, grassland 

and patches of plantations/orchards 
Southern Mapping 
Company/ESKOM 

Taweni 2010 100 kHz 1.34m 0.55 points per m² 2m 282 ha Eastern Cape Grassland with dense patches of bushveld 
Southern Mapping 
Company/ESKOM 

Witkop Tabor 2009 70 kHz 1.53m 0.43 points per m² 2m 5 590 ha Limpopo Mixed with agricultural fields and rangelands 
Southern Mapping 
Company/ESKOM 
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2.4.5 Data extraction process  

 

25 by 25m and 30 by 30m grid cells were aligned to the pixels of the ALOS PALSAR FNF and Landsat 

VCF products respectively. These grids were then clipped to the extent of the available LiDAR CHM 

datasets.  Thus, these grids were used to extract the global forest product and the corresponding 

LiDAR data values for each cell.  Any cells within the grid which felled within or overlapped with the 

LiDAR coverage edges, urban and informal settlements/built-up areas, major water bodies and other 

artefacts present within the LiDAR data (e.g. power lines) were manually identified from a Google 

9ŀǊǘƘ ƛƳŀƎŜ ōŀŎƪŘǊƻǇ ŀƴŘ ŜȄŎƭǳŘŜŘ ŦǊƻƳ ǘƘŜ ǾŀƭƛŘŀǘƛƻƴ ǇǊƻŎŜǎǎ ǘƻ ƳƛƴƛƳƛǎŜ ŜǊǊƻǊ ŎŀǳǎŜŘ ōȅ ΨƳƛȄŜŘΩ 

pixels.   LiDAR woody canopy cover (CC), in percentage, was derived per cell, with the use of 

Equation 2.1 below, and considered woody vegetation above a height threshold of 0.5m (mainly for 

the FNF product rather than the VCF product) to avoid the influence of grass in the CC calculations.  

 

ὒὭὈὃὙ ὅὅ Ϸ
     Ȣ          

         
 ὢ ρππ                  

Equation 2.1 

 

The total number of LiDAR pixels in a grid cell differs depending on the spatial resolution of the 

LiDAR CHM and the 25 by 25m (e.g. 625 1m LiDAR pixels) or 30 by 30m grid sizes (e.g. 900 1m LiDAR 

pixels) used for matching the corresponding LiDAR derived CC to the respective ALOS PALSAR FNF 

and Landsat VCF products.  Finally for the ALOS PALSAR FNF product comparison, the CC forest 

ǘƘǊŜǎƘƻƭŘ ƻŦ җмл҈ ǿŀǎ ŀǇǇƭƛŜŘ ǘƻ ǘƘŜ [ƛ5!w ŘŜǊƛǾŜŘ // ǾŀƭǳŜǎΣ ŦǊƻƳ ǘƘŜ нрƳ ōȅ нрƳ ƎǊƛŘǎΣ ǘƻ ŎǊŜŀǘŜ 

the LiDAR derived FNF values, i.e. a Forest (CCҗмл҈) and Non-Forest (CC<10%) reclassification. 

 

2.4.6 Global Product Accuracy Assessment  

 

The data extracted from the individual LiDAR datasets and corresponding global product coverages 

have been combined for an overall assessment.  Due to the nature of the different global forest 

ǇǊƻŘǳŎǘǎ ŘƛŦŦŜǊŜƴǘ ǾŀƭƛŘŀǘƛƻƴ ǘŜŎƘƴƛǉǳŜǎ ƘŀǾŜ ōŜŜƴ ƛƳǇƭŜƳŜƴǘŜŘ ǘƻ ōŜǎǘ ŀǎǎŜǎǎ ǘƘŜǎŜ ǇǊƻŘǳŎǘǎΩ 

accuracy using LiDAR-derived CC.  For the categorical ALOS PALSAR FNF product, summarised 

confusion matrix statistics (particularly producer accuracies) together with overall accuracies, forest 

and non-forest accuracies have been derived.  The continuous Landsat VCF CC product was 

correlated against LiDAR derived CC, from which the coefficient of determination (R2), root mean 
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square error (RMSE), bias and standard error of prediction (SEP) was derived.  For a quantitative 

measure of the extent of overestimation and underestimation in the Landsat VCF product across the 

observed CC range, the LiDAR CC ς Landsat VCF CC difference values were arranged into box plots 

over the 10% incremental CC classes ranging from 0-100%.   

 

To evaluate the performance of both products considering vegetation types, the validation dataset 

was classified according to woody cover (CC) and structural classes.  For the FNF product, the LiDAR 

CC data was reclassified or stratified into 10% incremental classes from the 0-100% range (i.e. 10 

classes in total e.g. 0-10%, 10-20%, 20-30% etc.).  The total number of correctly classified data 

records within each CC incremental class was divided against the total number of records in the 

particular classes and multiplied by 100 to ascertain the percentage accuracy of the FNF product 

within the different CC class increments.  For the vegetation structural assessment of the FNF 

product, LiDAR CC and vegetation height record information was categorized according to structural 

classes proposed by (Willis, 2002) for categorizing forest structure in southern Africa, including 

dense tall natural forests, a range of open woodlands, and short thickets.  This classification is 

presented in Figure 2.3.  As with the CC incremental class assessment, the total number of correctly 

classified data records within each structural class (according to the LiDAR CC  and height ranges) 

was divided against the total number of records in the particular classes,  and multiplied by 100 to 

ascertain the percentage accuracy of the FNF product within the different vegetation structural 

classes.  Due to the continuous nature of the Landsat VCF CC and LiDAR CC values, the LiDAR and 

VCF CC range were both reclassified into the 10% CC incremental classes for assessment, which 

followed the same methodology as described with the FNF product above.  Since the VCF measures 

vegetation greater than or equal to 5m in height, for coherence this threshold was also applied to 

the vegetation structure class (Figure 2.3) thus resulting in fewer classes being represented than in 

the FNF product. 
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Figure 2.3: Classification of vegetation types according to structure (canopy cover and height) (Willis, 2002). The LiDAR 
canopy cover and CHM products were used to reproduce this classification scheme for the extracted data. 

 

As additional support to the product assessments via CC and vegetation structural classifications, 

product comparison maps (LiDAR vs FNF and LiDAR vs Landsat VCF) were also created to ascertain 

the visual distributions of error, i.e. extents of underestimation and overestimation, throughout the 

various landscape types.  For a more regional assessment of the products, an ALOS PALSAR L-band 

derived CC map (R2=0.81; RMSE=9.89%) was also utilised for comparison purposes (SAR vs FNF and 

SAR vs Landsat VCF).  This SAR product was derived according to the methodologies carried out in 

Chapters 3 (section 3.4.5) and 4 (section 4.4.6).  The lower Kruger National Park region, in the 

Savannah Lowveld, was chosen as the area of focus.   
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2.5 Results 

 
This section was divided into two sub-sections: the FNF and the VCF product validation results.  In 

order to interpret these results, the LiDAR data is considered as the ground truth. 

 

2.5.1 ALOS PALSAR FNF validation results 

 

Table 2.2: Summarised FNF validation results across stratified LiDAR-derived CC ranges 

CC Class 
Classified from 
LiDAR (ground-

truth) 

Correctly detected by 
FNF as Forest (F) or 

Non-Forest (NF) 

Grand 
Accuracy 
of FNF % 

0-10%  (NF) 738300 732321 99.19 

10-20% (F) 278774 1570 0.56 

20-30% (F) 276011 2398 0.87 

30-40% (F) 231228 3339 1.44 

40-50% (F) 225997 4454 1.97 

50-60% (F) 176511 4594 2.60 

60-70% (F) 153686 5500 3.58 

70-80% (F) 100774 5282 5.24 

80-90% (F) 92683 8354 9.01 

90-100% (F) 164437 48622 29.57 

Total Forest (F) 1700101 84113 4.95 

Total Non-Forest (NF) 738300 732321 99.19 

Grand Total 2438401 816434 33.48 

 

From the summarised confusion matrix results (table 2.2), it was evident that the FNF product 

detected very well Non-Forest areas (99% for CC<10%) but performed poorly by detecting only 5% of 

actual forests (CC>10% according to FAO definition) across the LiDAR datasets.  When analysing the 

results at stratified CC levels (table 2.2) and the detection of forest, it was clear that the FNF 

performed best at the 90-100% CC range, but still only yielded a marginal 30% forest detection 

accuracy.  The product performed especially poorly throughout the 10-90% CC range with a less than 

5% forest detection rate being obtained between the 10-70% CC ranges.  The forest detection rate 

tended to increase with the CC values between the 10-100% CC ranges. In general, the high accuracy 

of the Non-Forest class and the large number of Non-Forest observations in the dataset (738300) 

resulted in pushing up the overall classification accuracy of the FNF product (33.48%).  The results 

from table 2.3 and Figure 2.4, below, indicate the FNF product detection accuracies in various LiDAR-

derived vegetation structural classes. 
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Table 2.3: Summarised FNF validation results across various LiDAR-derived vegetation structural classes 

Structure Class 
Classified from 
LiDAR (ground-

truth) 

Correctly detected 
by FNF as Forest 
(F) or Non-Forest 

(NF) 

Grand Accuracy 
of FNF% 

Bushland (F) 233019 11659 5.00 
Closed Shrubland (F) 10725 486 4.53 
Grassland (NF) 75501 74823 99.10 
Grassland/herbland (NF) 579303 574063 99.10 
High (F) 23 0 0.00 
Natural Forest (F) 41031 11208 27.32 
Open Bushland (F) 306811 2188 0.71 
Open Shrubland (F) 253849 4502 1.77 
Open Woodland (F) 225353 617 0.27 
Scrub Forest (F) 121444 31562 25.99 
Shrubland (F) 90199 1802 2.00 
Thicket (F) 83920 13720 16.35 
Wooded Grassland (NF) 83496 83435 99.93 
Woodland (F) 333727 6369 1.91 

Total Forest (F) 1700101 84113 4.95 

Total Non-Forest (NF) 738300 732321 99.19 

Grand Total 2438401 816434 33.48 

 

 

Figure 2.4: Summarised FNF validation results across various LiDAR-derived vegetation structural classes as outlined by 
(Willis, 2002) (% values refer to the FNF detection accuracy of that vegetation structural class where red cells = 
accuracies >90%, orange cells = accuracies between 15-ол҈Σ ȅŜƭƭƻǿ ŎŜƭƭǎ Ґ ŀŎŎǳǊŀŎƛŜǎ Җр҈ύ  
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According to the vegetation structural class results, table 2.3 and Figure 2.4, the FNF product 

achieved the highest detection accuracies (~99%) for all classes with CC below 10%, grassland, 

grassland/herbland and wooded grassland classes which were the Non-Forested classes according to 

ǘƘŜ ǇǊƻŘǳŎǘΩǎ ŘŜŦƛƴƛǘƛƻƴΦ  Scrub Forest and Natural Forest structural classes, i.e. forested classes with 

medium to high vegetation height and high CC, obtained accuracies of 26% and 27% respectively 

while thickets, i.e. forested classes with low vegetation height and high CC, obtained accuracies of ~ 

16%.  The Closed Shrubland class, which is a forested class with high CC but very low vegetation 

height (<1m), yielded a very low detection accuracy of 4.5%.  Other classes, which were structural 

classes within the 10-80% CC ranges, obtained very low detection accuracies of 5% and less, 

whatever the tree height profile.  The High tree structural class yielded 0% detection accuracy but 

this structural class rarely occurs.  Overall, the structural classification shows that forested class 

detection decreased with CC, and was possibly more affected by cover than height.  

 

The spatial patterns of FNF product, and the corresponding ground truth product (i.e. LiDAR), are 

compared at the local and regional scale in figure 2.5. 
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At a larger scale (Figure 2.5ii), the FNF product showed a sensibly better agreement with actual 

forest class within the main densely forested zones along the South African escarpment (see blue 

encircled areas).  Patches of zonal and intra-zonal indigenous forests and commercial plantations are 

present here (Mucina and Rutherford, 2006) but not to the extent represented by the FNF.  A 

Figure 2.5: i) ALOS PALSAR FNF (left) versus LiDAR derived FNF (right) across the CAO LiDAR dataset; ii) ALOS PALSAR FNF (left) and L-band 
ALOS PALSAR FBD derived FNF (right), using LiDAR training, (R

2
=0.81; RMSE=9.89% - this product will be detailed in chapters 3 and 4) 

across the entire Kruger National Park extent [the red and blue encircled areas indicates areas of interest for discussion] 



57 
 

potentially higher backscatter due to the topography of the escarpment may have boosted the 

detection of forests in such features.  Outside the escarpment, however, most veld areas (i.e. areas 

within and along the Kruger National Park boundary) were classified as non-forest by the FNF.  

According to (Mucina and Rutherford, 2006), these veld areas consisted of mopane, sour bushveld, 

granite lowveld and sandy bushveld vegetation types, typical of the savannah biome, which were 

known to possess cover greater than 10%.  These trends corroborate the previous results in which 

the FNF product lack the ability to detect the 10-80% CC range and the vegetation structural classes 

found in this range (e.g. Bushveld and Woodland classes etc.) while showing some detection 

potential in the high CC (80-100%) and dense structural classes (e.g. Scrub Forests and Natural 

Forests).  The FNF product however, did also yield erroneous patches of water within the Kruger 

National Park extents as these areas were confused with areas of basaltic open grasslands.  Locally 

as shown with the LiDAR tracks (Figure 2.5i), the FNF product displayed very little of the forest class 

compared to the amount of forest actually present in the CAO LiDAR maps which falls squarely in 

savannah biome.  The red encircled area in the FNF product, a dense forested ridge, only showed 

limited evidence of forest which coincided, to some degree, with the LiDAR product (between 80-

100% CC range along the ridge, according to the LiDAR).   

 

2.5.2 Landsat VCF validation results  

 

Figure 2.6: (i) Density scatterplot of LiDAR derived CC versus Landsat VCF CC across the complete extracted dataset [the 
dotted red line represents the 1:1 line while the solid black line represents the data trend line]. (ii) Landsat VCF product 

i) 
ii) 

Bias = -6.05 
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error (i.e. LiDAR CC ς VCF CC) over a range of CC intervals [negative values indicate CC overestimation while positive 
values indicated CC underestimation by the Landsat VCF product; centre cross = mean value; box = standard error and 
whiskers = standard deviation] 

 

Figure 2.6i) and ii) illustrated the correlation between LiDAR derived CC and VCF CC as well as the 

level of over- and underestimation of the VCF product across the complete CC range.  The density 

scatter plot of figure 2.6i) indicated a generally poor relationship with an R2 of 0.32, an RMSE of ~12 

% and an SEP greater than 100%.  The general trend was also hard to distinguish due to the large 

discrepancies between the corresponding LiDAR and VCF CC values especially at higher CC ranges.  

The CC difference box plot of figure 2.6ii), together with figure 2.6i), illustrated that the VCF product 

overestimated CC values (0-10%) slightly between the 0-20% range with general underestimation 

(10-40%) occurring past this point to higher CC values.  The standard deviation and standard error 

values increased greatly towards higher CC values (30-100%).  R2, RMSE and SEP statistics were 

initially ascertained across the individual stratified CC ranges and vegetation structural classes (see 

Appendix 2A for example) but the results were poor (i.e. low R2 with high RMSE and SEP values) with 

no discernible patterns emerging.  Thus a classification approach appeared to be more useful for 

detailed analyses of the VCF product at various CC and vegetation structural classes.   

 

Table 2.4: Summarised VCF validation results across stratified LiDAR-derived CC ranges 

CC Class 
Classified from LiDAR 

(ground truth) 
Correctly classified by 

VCF 
Grand Accuracy of VCF 

% 

0-10% 541181 188283 34.79 
10-20% 136964 76674 55.98 
20-30% 50130 10098 20.14 
30-40% 22577 1454 6.44 
40-50% 10595 988 9.33 
50-60% 6517 905 13.89 
60-70% 4508 168 3.73 
70-80% 3693 219 5.93 
80-90% 6945 353 5.08 
90-100% 5988 1793 29.94 

Grand Total 789098 280935 35.60 

  

Table 2.5: Complete VCF CC versus LiDAR CC confusion matrix across fixed CC ranges 

  LiDAR CC 

VCF CC 0_10 10_20 20_30 30_40 40_50 50_60 60_70 70_80 80_90 90_100 Grand Total 

0_10 188283 29172 7675 2591 886 415 204 138 275 429 230068 

10_20 288431 76674 25247 9247 3423 1531 648 361 447 486 406495 

20_30 43850 19842 10098 5222 2458 1275 699 406 431 382 84663 

30_40 7112 3777 2260 1454 889 581 385 227 274 198 17157 

40_50 7649 3761 2191 1604 988 695 513 340 545 431 18717 
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50_60 4338 2643 1643 1443 957 905 774 707 1264 1093 15767 

60_70 473 320 271 243 198 174 168 173 342 289 2651 

70_80 368 332 292 289 250 250 220 219 562 439 3221 

80_90 145 109 119 126 117 141 156 178 353 448 1892 

90_100 532 334 334 358 429 550 741 944 2452 1793 8467 

Grand Total 541181 136964 50130 22577 10595 6517 4508 3693 6945 5988 789098 

Producer's Acc. 34.79 55.98 20.14 6.44 9.33 13.89 3.73 5.93 5.08 29.94   

 

 

The stratified CC results of the VCF, table 2.4, showed trends such as low detection accuracy at the 

0-10% LiDAR CC range (~35%).  Between this 0-10% LiDAR CC range, according the confusion matrix 

(table 2.5), the bulk of the error of the VCF (~60% of the error) was evident between the 10-20% and 

20-30% VCF CC classes but classes up to 50-60% class also contributed to this error.  The VCF 

product, also, yielded moderate to low accuracies in the 10-30% CC range (56% and 20.14% for the 

10-20% and 20-30% LiDAR CC classes respectively).  For the VCF product, detection accuracies 

remained fairly low (<10%) across the 30-90% LiDAR CC range.  Across this LiDAR CC range, the bulk 

of the VCF error (according to table 2.5) fell in much lower VCF CC classes (e.g. in the 10-20 and 20-

30% VCF CC classes across 40-60% LiDAR CC range) which confirmed the general underestimation of 

the VCF product between  30-90% LiDAR CC range.  The VCF product obtained an accuracy of 30% in 

the detection of vegetation with a 90-100% LiDAR CC range.  Finally, the overall classification 

accuracy obtained by the VCF product was approximately 36%. 

 

Table 2.6: Summarised VCF validation results across various LiDAR-derived vegetation structural classes 

Structure Class 
Classified from LiDAR 

(ground truth) 
Correctly classified 

by VCF 
Grand Accuracy 

of VCF % 

Grassland/herbland 386280 146189 37.85 

Wooded Grassland 154901 42094 27.17 

Open Woodland 208877 88062 42.16 

High 1180 181 15.34 

Woodland 24927 2263 9.08 

Scrub Forest 72 0 0.00 

Natural Forest 12861 2146 16.69 

Total 789098 280935 35.60 
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Figure 2.7: Summarised VCF validation results across various LiDAR-derived vegetation structural classes as outlined by 
(Willis, 2002) (% values refer to the VCF detection accuracy of that vegetation structural class where red cells = 
accuracies >20%, orange cells = accuracies between 10-20%, yellow cells = accuracies <10%). The red 5m height line 
indicates the limit of VCF product in which all classes coloured grey (below 5m height) was excluded.  

 

Table 2.6 and Figure 2.7 illustrated the detection accuracy results across the various vegetation 

structural classes which were greater than or equal to 5m in vegetation height, as specified by the 

steps used to create the VCF.  As with the stratified CC range results, the VCF yielded 38% and 27% 

accuracies for detecting grassland/herbland and wooded grassland vegetation structural classes 

which possessed low CC (<10%) and medium to high height ranges.  The VCF product also yielded a 

moderate detection accuracy of 42% for the Open Woodland class (CC ranging from 10-40% and 

with a medium to high height range).   On the high CC and height range, the VCF yielded 15% and 

17% detection accuracy for the High and Natural Forests respectively while 0% accuracy was 

observed for the Scrub Forest class which mostly fell below the 5m height mark resulting in very few 

samples. 

 

Local and regional scale Landsat VCF products (Figures 2.8i and 2.8ii) and their assessment against 

more accurate map products (i.e. LiDAR and SAR based CC maps) were introduced to understand the 

geographical distribution of this product error. 
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At the local scale (Figure 2.8i), a trend of VCF CC overestimation is clearly shown when compared to 

the observed LiDAR derived CC.  The observed LiDAR derived CC product was created by 

incorporating the 5m height threshold used to create the Landsat VCF product.  This corroborates 

the trends displayed in figures 2.6i) and ii) at the 0-20% CC range.  The VCF product also lacks the 

Figure 2.8: i) Landsat VCF CC (left) versus LiDAR derived CC (right) across the CAO LiDAR dataset; ii) Landsat VCF CC (left) and L-band ALOS 
PALSAR FBD derived CC (right), using LiDAR training, (R

2
=0.81; RMSE=9.89%) across the entire Kruger National Park extent [the red and blue 

encircled areas indicates areas of interest for discussion] 

ii) 

i) 
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spatial detail of the low CC classes in comparison to the LiDAR CC product which has also been 

degraded to match the VCF conditions (vegetation height threshold of җ5m, 30m pixel size).  

Although the class difference of approximately 10% is noticeable between VCF CC and LiDAR derived 

CC, the VCF product does illustrate patterns of CC variability, though limited, across the landscape, 

as indicated by the LiDAR.  Regarding Figure 2.8ii, it is important to note the SAR derived CC product 

was created without implementing the 5m height threshold which was used to create the VCF due 

to poor modelling results of the SAR datasets when modelled using LiDAR cal/val datasets with the 

5m height threshold applied.  Despite this discrepancy, the main trends observed between the 

products were fairly comparable.   At the regional scale (Figure 2.8ii), VCF results illustrate some of 

the major patterns of high CC classes (> 70%) being represented along the South African escarpment 

in the modelled SAR CC product (see blue encircled areas).  Additionally, the VCF product represents 

well some patches of low CC classes (< 30%), which correspond with the modelled SAR CC product, 

both along the grasslands of Kruger National Park and within rangeland patches outside the Kruger 

boundary (see red encircled areas).  The southern portion of the regional VCF product resembled 

more of the patterns displayed in the corresponding portion of SAR derived CC map.  This could be 

related to the wetter and greener vegetation conditions which were readily captured by the Landsat 

imagery while the drier conditions in the north led to a poorer representation of the vegetation 

signal.  At the extreme northern tip of the Kruger National Park (both above and to the right of the 

highest positioned blue circle), however, there was a large CC difference between the VCF and the 

SAR product (10% CC in the VCF compared to between 50-70% CC in the SAR).  According to Google 

Earth, the area to the right of the blue circle is a vegetated escarpment feature with a nearby 

riparian zone emerging while the area above the blue circle is dominated by mopane.  A 

combination of topographic effects and the presence of dense vegetation may have led to higher CC 

classes while the phenological differences of the underlining Landsat imagery, used to create the 

VCF product, may have contributed to the low CC values in that area.  

 

2.6 Discussion 
 

This study sought to assess two global forest cover products, the 25m ALOS PALSAR FNF and 30m 

Landsat VCF, using environmentally diverse LiDAR dataset coverages across the forested regions of 

South Africa.  The main focus was to quantify how well these products detect the presence of 

ŦƻǊŜǎǘǎΣ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ƛƴŘƛǾƛŘǳŀƭ ǇǊƻŘǳŎǘǎΩ ŦƻǊŜǎǘ ŘŜŦƛƴƛǘƛƻƴǎΣ mostly within the savannah biome 

and other forest types present in South Africa.  The products were also assessed across stratified CC 
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ranges and across particular vegetation structural classes (Willis, 2002) to ascertain if performance is 

consistent across vegetation types.   

 

The FNF product only detected 5% of actual forests across the LiDAR datasets with majority 

contributions to the accuracy, though low, falling in the 90-100% CC range and Natural Forest and 

Scrub Forest structural class types.  The fact that low lying vegetated areas with 90-100% canopy 

cover values (e.g. the Closed Shrublands class) were not detectable by the FNF product indicated 

ǘƘŀǘ ǘƘŜ ǇǊƻŘǳŎǘ ǿŀǎ ƴƻǘ ǎŜƴǎƛǘƛǾŜ ŜƴƻǳƎƘ ǘƻ ŎƭŀǎǎƛŦȅ ǾŜƎŜǘŀǘŜŘ ƻǊ ΨŦƻǊŜǎǘŜŘΩ ŀǊŜŀǎ ƭƻǿŜǊ ǘƘŀƴ мƳ ƛƴ 

height.  This poor result of the FNF, however, could be compounded by the reduced effectiveness of 

LiDAR sensors to capture vegetation less than 1m (Wessels et al., 2011).  This can also be attributed 

to the large wavelength of the L-band SAR sensor (~23cm) which may have passed through these 

small vegetative elements such as leaves and stems (Naidoo et al., 2015; Vollrath, 2010).  The FNF 

product yielded the poorest detection accuracy of 5% and less for the 10-80% CC range; together 

with the various associated woodland, shrubland and bushland structural classes; which illustrated 

that the forest within the savannah biome is not detected.  This suggested that the FNF product 

largely under-represents the distribution of forests especially in savannah environments, which 

possess an average CC of 35% (Venter et al., 2003).  Since savannahs cover roughly half of the 

African continent and occupy one fifth of the global land surface (Sankaran et al., 2005; Scholes and 

Walker, 1993; Venter et al., 2003), this result is not favourable especially for the applications of 

carbon assessment and change detection studies.  The FNF product obtained 99% accuracy in 

detecting non-forested areas with the highest accuracy being observed in the 0-10% CC range and 

within grassland structural types.  Though it has been considered that the contrasting backscatter 

responses between forested and non-forested surfaces could have contributed to this high detection 

accuracy of non-forest areas, it was the HV threshold used in the FNF product creation (Shimada et 

al., 2014), which was too high, that contributed mostly to this observation.  An in-depth assessment 

of this threshold, involving Figure 2.9, will be conducted in the following paragraph.  The poor ability 

of the FNF product to detect forests in savannahs, and the underperformance of the FNF product in 

the 80-100% CC ranges and in the Natural Forest and Scrub Forest classes, was also the result of the 

selection of the FNF threshold used to define forest versus non-forest in the African continent 

(Figure 2.9).  Figure 2.9 correlated the LiDAR CC with the ALOS PALSAR HV backscatter (i.e. the global 

mosaic data used to create the FNF product), extracted over the complete LiDAR dataset coverage. 
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Figure 2.9: LiDAR derived woody canopy cover versus ALOS PALSAR HV backscatter (dB) extracted over the complete 
LiDAR dataset coverage [the red line indicates the -15.6dB threshold value (Shimada et al., 2014) used to create the FNF 
over the continent of Africa while the orange box indicates the bulk of the LiDAR CC values captured by the FNF 
according to the CC values greater than and equal to the HV dB threshold] 

 

For the continent of Africa, a threshold range of -15.6dB HV backscatter, represented by the red line 

in Figure 2.9, was used for the FNF product creation (Shimada et al., 2014).  This threshold was 

derived by ascertaining the cross-over point between forest and non-forest HV backscatter 

cumulative histograms collected across various regions of interest (Shimada et al., 2014).  

Backscatter values greater than and equal to threshold was classified as forest and the backscatter 

values less than the threshold was considered as non-forest (excluding the HH backscatter 

thresholding for urban class separation and waterbody classification outlined in (Shimada et al., 

2014)).  According to Figure 2.9, a small, limited portion of the upper observed CC values (50-100%) 

was captured by the FNF product which supported the limited representation of the major 

distribution of forested areas (Tables 2.2 and 2.3; Figure 2.5) and almost no representation of the 

20-50% CC range.  Figure 2.9, supported by table 2.2, also showed that the HV threshold of -15.6dB 
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contributed to the very high detection accuracy of the non-forest class (99% accuracy for CC values 

<10%).  Obviously due to the inherent variability of the SAR signal with e.g. moisture, structural type, 

species, etc., and as shown by the point spread, it is clearly challenging to select a single HV dB 

threshold, especially across the continent of Africa, which covers the complete CC range in 

heterogeneous savannah environments.  Hypothetically, and with the retrospective guidance of 

Figure 2.9, a single optimized HV threshold of -19dB can be recommended for improved forest 

detectability in savannah environments limited to the Southern African region.  By adjusting the HV 

threshold to -19dB, and applying it to the 2010 ALOS PALSAR HV global mosaic data, FNF 

classification accuracies improved noticeably with an overall accuracy of 68.05%, a forest detection 

accuracy of 59.26% and a non-forest detection accuracy of 97.40% (see Appendix 2B).   

 

The Landsat VCF product displayed underestimation past the 30% CC mark with increasing error 

margins towards the 90% CC mark.  This increasing error margin was also documented in (Pengra et 

al., 2015).  This trend of CC underestimation by the VCF (>30%) product was well documented in 

forested environments (Gao et al., 2014; Sexton et al., 2013; Song et al., 2013), in the MODIS VCF 

version, but not in great extents in African savannah environments.  (Hansen et al., 2011) suggested 

that the lack of growing season imagery, in the Landsat archive over a particular area, could be one 

of the ŎŀǳǎŜǎ ƻŦ ǘƘŜ ±/CΩǎ ǳƴŘŜǊŜǎǘƛƳŀǘƛƻƴ ƻŦ ŦƻǊŜǎǘ ŎƻǾŜǊΦ  ±/C ǇǊƻŘǳŎǘ ƻǾŜǊŜǎǘƛƳŀǘƛƻƴ ŀǘ ǘƘŜ ƭƻǿŜǊ 

CC ranges (<30%), though minimal, was also corroborated by (Pengra et al., 2015).  Within the 

context of South Africa, the signal noise related to grass present in open land types such as open 

woodlands and wooded grasslands etc., and the presence of trees less than 5m in height still 

captured by the Landsat imagery, could also have contributed to increased CC estimates from the 

VCF.  This observation could be supported by the confusion matrix result (table 2.5) where the 

majority of the VCF error within the 0-10% LiDAR CC class fell in the higher neighbouring VCF CC 

classes (i.e. in the 20-30% VCF CC classes).  In general, the Landsat-based VCF product did improve 

CC accuracies across agricultural areas, over the MODIS VCF derivative, but still experienced noted 

inaccuracies over woody cover areas which have a mixed tree-shrub gradient (Sexton et al., 2013).  

The author of this thesis recommends that more extensive ground-truth datasets, i.e. LiDAR-based 

metrics, especially over medium to dense forested areas and/or specific bioregions, would need to 

be incorporated to train the regression tree algorithm used to create the VCF product.  Additionally, 

the characterisation of CC in the VCF product was successfully improved by integrating multi-source 

and multi-resolution map products (Song et al., 2013).  The addition of a water mask, at the product 

development stage, will also help improve the VCF by distinguishing low CC values and water bodies 

(Montesano et al., 2009).  The moderate accuracies at the 10-20% CC range and in the open 
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woodland tree structural class suggests that the VCF product could be potentially applicable in low 

CC environments such as grasslands and sparse savannahs but can also detect, to some extent, 

closed canopy environments (90-100% CC range).       

 

In closing, regardless of the chosen definition of forests and product creation protocols, it is clear 

that forests, especially within the savannah biome, are severely underrepresented in both the VCF 

and FNF global forest cover products.  The outcomes of (Sexton et al., 2015) illustrated the need for 

a standardisation of definition of forests as well as the movement towards quantitative CC products 

like (Hansen et al., 2013).   

 

2.7 Conclusions 
 

This study sought to validate the accuracies of two global forest cover products, the 30m Landsat 

Vegetation Continuous Field (VCF) and the recently introduced 25m JAXA ALOS PALSAR Forest/Non-

Forest (FNF) global products, against an extensive collection of airborne LiDAR data.  The primary 

focus of the study was to assess both products for the accurate detection of forests, as per the 

ǇǊƻŘǳŎǘǎΩ ŦƻǊŜǎǘ ŘŜŦƛƴƛǘƛƻƴǎΣ ƛƴ Southern African savannahs which are not clearly presented or even 

excluded by such global products.  It was found that the FNF product grossly under-represented the 

distribution of forests in savannah environments (20-80% CC ranges), due to the inadequate HV 

backscatter threshold chosen in its creation for the depiction of FNF across South Africa.  With this 

HV threshold, however, the FNF product most accurately detected the Non-forest class (0-10% CC 

range), but this class also included wide tracks of forested lands.  The FNF product also showed 

limited use in detecting closed forest cover class (90-100%) and Natural Forest and Scrub Forest tree 

structural classes.  The Landsat VCF product displayed strong CC underestimation with increasing 

variability and mean error from CC values greater than 30%.  The moderate accuracies at the 10-20% 

CC range and in the Open Woodland tree structural class suggest that the VCF product could be 

potentially applicable in low CC environments such as grasslands and sparse savannahs.  There was, 

however, limited detection ability by the VCF in closed canopy environments (90-100% CC range).  In 

the light of these results, a fixed definition of forests is necessary and a more accurate forest 

product, which has been specifically calibrated from locally collected datasets, will need to be 

developed to capture the full CC range found in the heterogeneous South African savannahs. 
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Chapter 3: Savannah woody structure  modelling  and mapping  using 

multi -frequency (X -, C- and L-band)  Synthetic Aperture Radar (SAR)  

data 

 

3.1 Abstract  
 

Structural parameters of the woody component in African savannahs provide estimates of carbon 

stocks that are vital to the understanding of fuelwood reserves, which is the primary source of 

energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over 

utilisation.  The woody component can be characterized by various quantifiable woody structural 

parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each 

been useful for different purposes.  In contrast to the limited spatial coverage of ground-based 

approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. 

woody canopy height, cover and biomass, as well as species diversity and phenological status ς a 

defining but challenging set of characteristics typical of African savannahs.  Active remote sensing 

systems (e.g. Light Detection and Ranging ς LiDAR; Synthetic Aperture Radar - SAR), on the other 

hand, may be more effective in quantifying the savannah woody component because of their ability 

to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds 

ŀƴŘ ǎƘŀŘƻǿǎΦ  !ŘŘƛǘƛƻƴŀƭƭȅΣ ǘƘŜ ǾŀǊƛƻǳǎ ŎƻƳǇƻƴŜƴǘǎ ƻŦ ŀ ǇŀǊǘƛŎǳƭŀǊ ǘŀǊƎŜǘΩǎ ǎǘǊǳŎǘǳǊŜ Ŏŀƴ ōŜ ǎŜƴǎŜŘ 

differently with SAR depending on the frequency or wavelength of the sensor being utilised.  This 

study sought to test and compare the accuracy of modelling, in a Random Forest machine learning 

environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) 

in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and 

L-band (ALOS PALSAR) radar datasets.  Training and validation data were derived from airborne 

LiDAR data to evaluate the SAR modelling accuracies.  It was concluded that the L-band SAR 

frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), 

TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African savannahs than the shorter 

wavelengths (X- and C-band) both as individual and combined (X+C-band) datasets.  The addition of 

the shortest wavelengths also did not assist in the overall reduction of prediction error across 

different vegetation conditions (e.g. dense forested conditions, the dense shrubby layer and sparsely 

vegetated conditions).  Although the integration of all three frequencies (X+C+L-band) yielded the 

best overall results for all three metrics (R2=0.83 for CC and AGB and R2=0.85 for TCV), the 

improvements were noticeable but marginal in comparison to the L-band alone.  The results, thus, 
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do not warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in 

this environment. 

Keywords: Woody structure, Savannahs, SAR, Multi-frequency, LiDAR, Random Forest   

 

3.2 Introduction - Background, Aims and Objectives  
 

Structural parameters of the woody component in African savannahs provide estimates of carbon 

stocks that are vital to the understanding of fuelwood reserves, which is the primary source of 

energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over 

utilisation (Wessels et al., 2013, 2011).  The woody component in African savannahs is an important 

physical attribute for many ecological processes and impacts the fire regime, vegetation production, 

nutrient and water cycles (Silva et al., 2001).  The density of woody plants can also severely 

compromise the availability of grazing resources, valuable for livestock populations and related 

livelihoods, through bush encroachment (Wigley et al., 2009).  Within the context of climate change, 

the sequestration of carbon by growing vegetation is a significant mechanism for the removal of CO2 

from the atmosphere (Falkowski et al., 2000; Viergever et al., 2008).  Understanding how carbon is 

stored as carbon sinks in vegetative biomass and thus quantifying this standing biomass is central to 

the understanding of the global carbon cycle.  Vegetation clearing (e.g. for cultivation) and 

degradation (e.g. for timber or fuelwood) and the burning of biomass, which are prevalent in 

developing regions and savannah woodlands of Southern Africa, can alter carbon stocks and 

emissions (Falkowski, 2000; Viergever et al., 2008b).  Based on the important environmental 

implications revolving around woody vegetation, there are growing initiatives aiming at forest and 

woodland conservation that require its active inventorying, mapping and subsequent monitoring 

such as the Reducing Emissions from Deforestation and Forest Degradation programme (REDD+) 

(Asner et al., 2013; Corbera and Schroeder, 2011; Kanowski et al., 2011).  

 

The woody component can be characterized by various quantifiable woody structural parameters, 

such as woody canopy cover (CC), tree height, above ground biomass (AGB) or total woody canopy 

volume (TCV), each been useful for different purposes.  AGB is defined as the mass of live or dead 

organic matter above the ground surface (excluding roots etc.) and is usually expressed in tonnes 

per hectare or t/ha (Bombelli et al., 2009).  Woody canopy cover (i.e. the percentage area occupied 

by woody canopy) is a key parameter used in monitoring vegetation change and can be combined 

with tree height to estimate approximate AGB (Colgan et al., 2012).  Lastly, total woody canopy 
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volume indicates the volume of vegetation present within the vertical profile and serves as an 

alternative proxy for biomass density and distribution.  Further, these metrics, both 2D (CC) or 3D 

(TCV and AGB) in nature can provide useful information regarding the prediction of density, habitat 

requirements and biodiversity assessments for conservation (Bradbury et al., 2005; Jung et al., 2012; 

Mueller et al., 2010).   

 

Remote Sensing has been used in numerous studies as the preferred tool for quantifying and 

mapping woody structural features due mainly to its superior information gathering capabilities, 

wide spatial coverage, cost effectiveness and revisit capacity (Lu, 2006).  In contrast to the limited 

spatial coverage of ground-based approaches, remote sensing also has the ability to sense the high 

spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species 

diversity and phenological status ς a defining but challenging set of characteristics typical of African 

savannahs (Archibald and Scholes, 2007; Cho et al., 2012b; Mills et al., 2006).  Woody structural 

parameters have been successfully mapped using passive optical data at fine and coarse spatial 

scales (Boggs, 2010; Castillo-Santiago et al., 2010) by making use of textural (the local variance of an 

image related to its spatial resolution ς (Nichol and Sarker, 2011)) and/or spectral (e.g. spectral 

vegetation indices related to vegetation structure ς (Johansen and Phinn, 2006)) approaches.  

Passive optical data are, however, adversely affected by high spectral variation, which refers to the 

change in spectral properties or character of a target, due to seasonal dynamics, clouds and haze. 

These spectral variations are prevalent in the rainy season of African summers with veld fires in the 

dry winter, and in shadowed areas, which results from terrain topography and tree canopies, at fine 

resolutions and in mixed wood-grass pixels at the medium and coarser resolutions.  Active remote 

sensing systems such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR), on 

the other hand, may be more effective in quantifying the savannah woody component because of 

their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere 

and clouds and shadows. 

 

Airborne LiDAR systems provide high-resolution geo-ƭƻŎŀǘŜŘ ƳŜŀǎǳǊŜƳŜƴǘǎ ƻŦ ŀ ǘǊŜŜΩǎ ǾŜǊǘƛŎŀƭ 

structure (upper and lower storey) and the ground elevations beneath dense canopies. Although 

airborne LiDAR provides detailed tree structural products it relies on the availability of aircraft 

infrastructure, which is not always available in Africa.  Satellite LiDAR is also currently not available. 

On the other hand, SAR systems provide backscatter measurements that are sensitive to forest 

spatial structure and standing woody biomass due to its sensitivity to canopy density and geometry 
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(Mitchard et al., 2011; Sun et al., 2011).  A SAR-based approach offers an all-weather capacity, when 

using SAR intensity, to map relatively large extents of the woody component, which cannot be easily 

achieved with airborne LiDAR (Mitchard et al., 2011).      

 

Polarization, which refers to the orientation of the emitted and received signal, and frequency of 

SAR data play important roles in sensing vegetation structure.  Multi-polarized SAR systems emit and 

receive in HH, HV, VH and/or VV with H referring to a horizontal wave orientation and V referring to 

a vertical wave orientation.  This allows the more complete characterisation of the scattering 

properties of ground targets which in turn, enables the extraction of greater structural information.  

For instance, HV or VH are better linked to canopy structure because of the volumetric water 

content in the canopies architecture (Schmullius and Evans, 1997) which brings about volumetric 

ǎŎŀǘǘŜǊƛƴƎ ǿƛǘƘƛƴ ǘƘŜ ŎŀƴƻǇȅ ŀƴŘ ƛǘǎ άǊŀƴŘƻƳέ ǎŎŀǘǘŜǊŜǊǎΣ ǿƘƛŎƘ ǘŜƴŘǎ ǘƻ ŎƘŀƴƎŜ ǘƘŜ ǇƻƭŀǊƛȊŀǘƛƻƴ ƻŦ 

ǘƘŜ ŜƳƛǘǘŜŘ ǿŀǾŜ όŜΦƎΦ I ǘƻ ± ƻǊ ± ǘƻ IύΦ  ¢ƘŜ ǾŀǊƛƻǳǎ ŎƻƳǇƻƴŜƴǘǎ ƻŦ ŀ ǇŀǊǘƛŎǳƭŀǊ ǘŀǊƎŜǘΩǎ ǎǘǊǳŎǘǳǊŜ 

can be sensed differently with SAR depending on the frequency or wavelength of the sensor being 

utilized.  For example when sensing vegetation, the signal of shorter SAR wavelengths, such as X-

band and C-band, interact with the fine leaf and branch elements of the vegetation resulting in 

canopy level backscattering with limited signal penetration.  The signal of longer SAR wavelengths, 

such as P-band and L-band, on the other hand, can penetrate deeper into the vegetation with 

backscatter resulting from signal interactions with larger vegetation elements such as major 

branches and trunks (Mitchard et al., 2009; Vollrath, 2010).  Consequently, the L-band frequency has 

been proven in numerous studies to be the most preferred (Carreiras et al., 2013; Mitchard et al., 

2012; Ryan et al., 2012; Santos et al., 2002) and the most effective (Lucas et al., 2006a) in estimating 

woody structure, particularly AGB with a higher saturation level at 80-85 tonnes per hectare 

compared to the shorter wavelengths, in forested and savannah woodland environments. However, 

since woodlands and savannahs possess a sporadic combination of fine and large woody elements 

within individual tree canopies, and a heterogeneous distribution of large trees and smaller shrubs 

throughout the landscape, we hypothesized that combining the capabilities of these different SAR 

frequencies under a multi-sensor approach may enhance the sensing of the savannah woody 

element (Schmullius and Evans, 1997).  Variƻǳǎ ǎǘǳŘƛŜǎ ƘŀǾŜ ΨŦǳǎŜŘΩ ƻǊ ƛƴǘŜƎǊŀǘŜŘ ƳǳƭǘƛǇƭŜ {!w 

frequency and polarimetric datasets for modelling and mapping of tree structural attributes across 

various environments from the coniferous temperate forests of North America to mangrove forests 

and to the open-forest woodlands of Australia (Collins et al., 2009; Mougin et al., 1999; Tsui et al., 

2012).  Despite the success achieved in these various studies via combining different SAR 

wavelengths (Mougin et al., 1999; Tsui et al., 2012), the combined strength of both shorter and 
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longer SAR frequency sensor technologies, however, have yet to be assessed in the heterogeneous 

and complex Southern African savannah environment.       

 

This study sought to test and compare the accuracy of modelling woody above ground biomass 

(AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a 

combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar 

datasets.  Training and validation data were derived from airborne LiDAR data to evaluate the SAR 

modelling accuracies.  The research questions were: 

1) How do various SAR frequencies (X- or C- or L-band) perform in predicting woody structural 

parameters (CC, TCV and AGB) in southern African savannahs? 

2) Does combining SAR backscatter through different frequency combinations or scenarios 

(X+C or X+L or C+L band or X+C+L-band) improve the predictions of the various woody 

structural parameters and by how much? 

We hypothesized that the combination of shorter wavelength, ~3cm X-band and 

~5cm C-band, with longer wavelength, ~23cm L-band, SAR datasets, in a modelling 

approach, will yield an improved assessment of woody structure. This idea is based on the 

assumption that X- and C-band SAR signals interact with the finer woody structural 

constituents such as leaves and finer branchlets, typical of the shrubby/thicket layer, while 

the L-band SAR signal interact with the major tree structural components such as trunk and 

main branches which are typical of forested areas.   

3) Finally, through the examination of the patterns of the prediction error, within the 

landscape for the different SAR frequency models, can the hypothesis, proposed above, be 

confirmed?  

More specifically, the investigation of the interactions of the different SAR 

frequencies, and their possible combinations, across the different vegetation patterning and 

structural classes, such as grasslands, thickets and forests, will pin-point the effective 

application of the different SAR frequencies and their possible combinations in Southern 

African savannah landscapes. 

The study is broken down into various sections.  Section 3.3 describes the study area under 

investigation.  Section 3.4 and subsections focus on the material and methodology which outlines 

the remote sensing datasets used, field datasets collected, LiDAR and SAR pre-processing and metric 

generation, modelling protocols, mapping and finally validation and error assessment. Section 3.5 
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describes the modelling, mapping and error results while sections 3.6 and 3.7 discuss the main study 

outcomes and concluding remarks, respectively.  

 

3.3 Study Area 
 

The Kruger National Park regional study area is located in the Lowveld region of north-eastern South 

!ŦǊƛŎŀΣ ǿƛǘƘƛƴ ǘƘŜ ǎŀǾŀƴƴŀƘ ōƛƻƳŜ όомϲллΩ ǘƻ омϲрлΩ 9 ƭƻƴƎƛǘǳŘŜΣ нпϲооΩ ǘƻ нрϲллΩ { ƭŀǘƛǘǳŘŜύΦ  The 

study area included portions of the southern Kruger National Park, the neighbouring Sabi Sands 

Private Game Reserve, and the densely populated Bushbuckridge Municipal District (BBR) (Figure 

3.1).   The area is characterised by short, dry winters and a wet summer with an annual precipitation 

varying from 235mm and 1000mm, and is representative of southern Africa savannahs.  This rainfall 

range, together with grazing pressures, fire, geology, mega-herbivore activity and anthropogenic use 

(fuelwood collection and bush clearing for cultivation) govern the vegetation structure present in 

this biome.  The vegetation comprise particularly of Clay Thornbush, Mixed Bushveld and Sweet and 

Sour Lowveld Bushveld (Mucina and Rutherford, 2006).  The woody vegetation in the region is 

generally characterized as open forest with a canopy cover ranging from 20-60%, a predominant 

height range of 2 to 5m and biomass below 60 t/ha (Mathieu et al., 2013).  The Sabi Sands Wildetuin 

consists of a group of private owners with a strong eco-tourism based approach to conservation with 

the Kruger National Park being more geared towards large-scale public conservation via the inclusion 

of large tracts of land for protection.  The communal rangelands of BBR are primarily utilised for 

livestock ranching, fuelwood harvesting and various non-commercial farming practices (Wessels et 

al., 2013, 2011).  This study region was selected to represent the differences in the woody structure 

(e.g. riparian zones, dense shrubs, sparse tall trees etc.) and spatial patterns of the different land 

management and disturbance regimes (communal rangeland management, private game reserve 

and national park management), varying vegetation types (lowveld savannah and mixed forest fringe 

species) and geological substrates (granite and gabbro). 

 

 

 

 

 



73 
 

 

Figure 3.1: The Southern Kruger National Park region and the spatial coverage of all implemented remote sensing datasets.  The solid red line indicates the coverage of the 2009 
RADARSAT-2 scenes while the solid gold line indicates the two scenes of the 2010 ALOS PALSAR dual-pol imagery. The dashed grey line indicates the five scenes of the 2012 TerraSAR-X 
StripMap imagery. The shaded black areas represent the coverage of the 2012 CAO LiDAR sensor tree cover product. The red squares indicate the 38 sample sites where field data 
collections took place. 
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3.4 Materials and Methodology  
 
The general methodology sought to develop woody structural metric models between collected field 

data and airborne LiDAR data for detailed localised metric maps (25m spatial resolution to match the 

field data plots). These LiDAR derived metric products (CC, TCV and AGB) were then used as the 

ground truth for model up-scaling at the regional scale using multi-frequency SAR intensity 

backscatter datasets (X-, C- and L-band).  This was achieved by integrating the LiDAR and SAR 

datasets with the use of a sampling grid and the extracted values were subjected to modelling using 

the Random Forest (RF) algorithm (Breiman, 2001).  Different SAR frequencies were modelled in the 

form of various SAR frequency combination scenarios.  The SAR-derived woody structural metrics 

were then validated using the LiDAR-derived woody structural metrics (CC, TCV and AGB) to 

ascertain error statistics and error distribution.      

 

3.4.1 Remote sensing data 

 

Five TerraSAR-X X-band dual-polarized (HH and HV), four RADARSAT-2 C-band quad-polarized (HH, 

VV, VH, and HV) and two ALOS PALSAR L-band dual-polarized (HH and HV) SAR intensity datasets 

(summarized in Table 3.1) were acquired to cover the study transect shown in Figure 3.1.  Only dual 

polarized SAR data (HH and HV) was used because the HV polarization parameter is known to better 

model the structure of woody vegetation through volumetric backscatter interactions, while HH is 

also reported as been sensitive to structure although to a lesser extent than the cross-polarized 

band (Collins et al., 2009; Mathieu et al., 2013; Mitchard et al., 2009).  Further, HH/HV was the 

common polarization configuration available for all three sensors.  Winter seasonal SAR acquisitions 

were chosen because winter in the Lowveld is the dry season and exhibits the lowest level of 

moisture in the landscape.  The tree leaves are off along with dry soil and dry grasses.  This reduced 

the chance of interference of the SAR signal with variable moisture content while allowing a greater 

penetration of microwaves into the canopies.  In the same region (Mathieu et al., 2013) reported the 

best retrieval of woody structural parameters with RADARSAT-2 data acquired in winter. An 

extensive airborne LiDAR dataset (total coverage of c.a. 63000 ha) were acquired for this study 

(Figure 3.1) by the Carnegie Airborne Observatory-2 AToMS sensor during April-May 2012.  For our 

datasets, the LiDAR was operated at a pulse repetition frequency of 50 kHz with a 0.56m laser spot 

spacing and an average point density of 6.4 points per m2 from a flying altitude of 1000m above 

ground level (Asner et al., 2012). In comparison with the LiDAR dataset, the SAR images were 

acquired during the winter 2009 (RADARSAT-2), 2010 (ALOS PALSAR), and 2012 (TerraSAR-X). 
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Unfortunately, the last ALOS PALSAR winter scenes were acquired during 2010 in the study area and 

no RADARSAT imagery were available closer to 2012. 

 

3.4.2 Field data  

 

Field data were collected in April ς May, and November ς December 2012 across 38 sampling sites 

(in Figure 3.1).  These sites provided ground truth data to model and validate the LiDAR derived 

woody structural metric products to be used to model the SAR-based woody structural metrics.  

Ground sampling sites were located to represent the diversity in woody structure of the different 

vegetation types, management regimes, and geological substrates mentioned above.  Each site 

covered a 100m X 100m area and vegetation measurements were taken from four clustered 25m X 

25m sampling plots (with minimum distance > 50m, identified from geostatistic range assessments, 

(Wessels et al., 2011)), located at each of the four corners of the site (Figure 3.2).  The 100m X 100m 

sites were positioned using high resolution imagery from Google Earth as well as earlier LiDAR 

datasets acquired in 2008 ς 2010 to ensure that they are representative of the surrounding 

landscape. 

 

Field AGB estimates were derived from height and stem diameter measurements using an allometric 

biomass estimation equation ((Colgan et al., 2013) ς Equation 3.1 in Appendix 3A).  The allometric 

equation was developed following destructive harvesting of 17 savannah tree species present in the 

study area (Number of trees sampled =707; R2 = 0.98; relative Root Square Error = 52%; ranging from 

0.2 ς 4531 kg per tree, (Colgan et al., 2013)). Tree height was measured using a height pole and Laser 

vertex/rangefinder, while stem diameter was measured using callipers and Diameter above Breast 

Height (DBH) tape.  Stem diameter was measured at 10cm above the ground and for multi-stemmed 

plants every individual stem was measured as separate individuals (e.g. species such as 

Dichrostachys cinerea).  

 

Due to logistical and time constrains associated with measuring every tree within the sample plot 

ǘǿƻ Ƴŀƛƴ ǎǘŜƳ ŘƛŀƳŜǘŜǊ ΨȊƻƴŜǎΩ ǿŜǊŜ ƛŘŜƴǘƛŦƛŜŘ ƛƴǎƛŘŜ ǘƘŜ ǎƛǘŜ ǘƻ ƛƴŎǊŜŀǎŜ ǎŀƳǇƭƛƴƎ ŜŦŦƛŎƛŜƴŎȅ ǿƘƛƭŜ 

still yielding representative quantities of biomass estimates (Figure 3.2).  The first diameter zone was 

the 25m X 25m plot where all trees with a stem diameter of 5cm and greater were recorded, 

provided that they had a height of 1.5m or greater, and the second diameter zone was a 10m X 10m 

area positioned at the inner corner of the 25m X 25m plot where all trees with a stem diameter 
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between 3 and 5cm and greater than 1.5m were also recorded. This allowed catering for a few sites, 

mostly in the communal lands, where most of the AGB consisted of dense stands of multi-stemmed 

plants (coppicing) with low DBH (Matsika et al., 2012).  A total of 152 25m X 25m biomass plots were 

ǎŀƳǇƭŜŘΦ  LƴŘƛǾƛŘǳŀƭ ǘǊŜŜ ƭŜǾŜƭ !D. ǿŀǎ ŘŜǊƛǾŜŘ ǳǎƛƴƎ /ƻƭƎŀƴΩǎ ŀƭƭƻƳŜǘǊƛŎ Ŝǉǳŀǘƛƻƴ (Colgan et al., 

2013).  AGB was then calculated for each diameter zone by summing the relevant tree level AGB 

values which was then subjected to particular AGB up-scaling factor (Equation 3.2 in Appendix 3B).  

The complete plot level AGB was calculated by summing all the corrected AGB subtotals for the stem 

diameter zones.    

 

One or two sampling plots were chosen for most sites for CC data collection ς the north east 25m X 

25m plot and/or the south west 25m X 25m plot (DBH zone 2 ς Figure 3.2).  CC values were 

estimated following the vertical densitometer protocol (Ko et al., 2009; Stumpf, 1993), conceptually 

a point intercept sampling approach, and one of the most time-efficient techniques to implement.  

The point intercept method is a small angle approach well suited to measure the vertical canopy 

cover ς i.e. vertical projection of canopy foliage onto a horizontal surface ς, and as such is the most 

directly comparable with cover derived from remote sensing imagery such as LiDAR (Fiala et al., 

2006).  The sampling procedure involved laying down transects along a fixed 25m measuring tape 

orientated from north to south and moving from west to east within the subplot at 2m increments 

(Figure 3.2).  Along these transects, the presence of canopy cover was determined using a 5m pole 

placed vertically above each sampled points every 2m along the transects.  At each sampled point 

the presence of cover was coded as Y.  For plot level canopy cover, in terms of percentage at the 

25m X 25m scale, the CC presence and absence data were subjected to the formula below (Equation 

3.3):   

Plot level CC (%) = ό᷾¸κмсфύ X 100      Equation 3.3 

Where Y represents the presence of cover data.  The value 169 represents the total number of 

sampling points in a 25m X 25m plot conducted at 2m sampling increments.  A total of 37 (25m X 

25m) plots of CC were recorded during the field campaign.     
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Figure 3.2: Ground sampling design including ground tree biomass and tree cover collection protocols (50m spacing 
between sample plots coincide with the auto-correlation distance ς refer to data integration of section 3.4.5) 
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* Note: DBH refers to Diameter above Breast Height (DBH) 

25m 0m 



78 
 

3.4.3 LiDAR data processing, woody structural metrics and validation  

 

Two LiDAR datasets were utilised to derive the LiDAR tree structure metrics.  For the first dataset, 

~1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw LiDAR point clouds according to the steps outlined in (Asner et al., 2012).  Canopy 

height models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM.  For 

the second dataset, the raw point cloud data were further processed to pseudo waveforms, in which 

the LiDAR hits or returns falling within a cube placed above the ground were binned into volumetric 

pixels (voxels of 5m X 5m horizontal X 1m vertical) and weighted relative to the total number of hits 

within the vertical column (the result ς LiDAR slicer data) (Asner et al., 2009). 

 

Three woody structural metrics were derived from the processed LiDAR datasets. The derivation of 

the three metrics excluded all woody vegetation below a height threshold of 0.5m as to exclude the 

grassy savannah component.  The Carnegie Airborne Observatory (CAO) LiDAR data were validated 

against field height measurements of approximately 800 trees.  There was a strong relationship (R2 = 

0.93, p-value < 0.001) but a fraction of woody plants below 1.5-1.7m were not detected by the LiDAR 

(Wessels et al., 2011).  This would introduce a source of error in the modelling process.  However, 

since our objective was to investigate the potential contribution of short microwaves (X-band and/or 

C-band) in detecting the shrubby layer we still preferred to use a 0.5m height threshold over a higher 

height threshold at 1.5m.  In addition, all metric products have been resampled and computed at the 

25m spatial resolution to correspond with the ground data measurements (plot size of 25m X 25m) 

collected in the field for metric validation.  These metrics are described in detail below: 

1) Woody Canopy Cover (CC) is defined as the area vertically projected on a horizontal plane by 

woody plant canopies (Jennings et al., 1999).  The metric was created by first applying a data 

mask to the LiDAR CHM image in order to create a spatial array of 0s (no woody canopy) and 

1s (presence of a woody canopy).  A percentage woody canopy cover distribution image 

όǎǳƳƳƛƴƎ ŀƭƭ ǘƘŜ мΩǎ ŀƴŘ ŘƛǾƛŘƛƴƎ ōȅ снр ŀƴŘ ǘƘŜƴ ǇŜǊŎŜƴǘŀƎŜύ ǿŀǎ ŎŀƭŎǳƭŀǘŜŘ ŀǘ ŀ ǎǇŀǘƛŀƭ 

resolution of 25m.  This metric was validated against the 37 25m X 25m CC ground truth 

plots (Figure 3.3).  Results yielded a strong, positive, unbiased relationship (R2=0.79) with a 

low Root Mean Squared Error (RMSE) (12.4%) and Standard Error of Prediction (SEP) (23%).   
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2) Total Canopy Volume (TCV) is a metric which approximates the area under the curve of the 

pseudo waveform (i.e. a plot displaying the LiDAR return frequency-by-height; (Muss et al., 

2011)) and indicates the volume occupied by vegetation matter within the vertical profile.  

The metric was computed from the pseudo waveform LiDAR data (i.e. voxel) by the addition 

of the within-canopy LiDAR returns at different heights or slices (incrementally increasing by 

1m) above 0.5m (Asner et al., 2009), and the value was converted to hectare.  The TCV 

LiDAR metric was not validated with ground collected data as a suitable field sampling 

approach was yet to be defined for this type of savannah environment.  However, in 

(Mathieu et al., 2013), the TCV metric, in comparison to all the other metrics, was best 

correlated with RADARSAT-2 backscatter and was thus considered a suitable metric in this 

study. 

   

3) Above ground woody biomass (AGB) is defined as the mass of live organic matter present 

above the ground surface (Bombelli et al., 2009) and is expressed in this study as tonnes per 

hectare (t/ha).  The AGB LiDAR derived metric was modelled using a linear regression, 

ground estimated AGB (within 25m field plots) and a simple HGT X CC LiDAR metric (where 

Figure 3.3: Validation results of field-measured woody Canopy Cover (CC) versus LiDAR derived CC (above 0.5m height, 
Number of observations =37) 
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HGT is the mean top-of-canopy height and CC is the canopy cover of a 25m pixel resolution) 

(Colgan et al., 2012).  65% of the 152 ground estimated AGB was used for model 

development while the remaining 35% was used for model validation.  The validation results 

of ground versus LiDAR AGB (Figure 3.4) indicate a moderate positive correlation (R2=0.63).  

With the use of allometric equations from (Colgan et al., 2013) for ground AGB estimation, 

the RMSE (19.2 t/ha) and SEP (63.8%) is, however, high with underestimation at high 

biomass levels by the LiDAR.  Due to the intensive and time consuming nature of sampling 

these very high biomass plots, an insufficient number of these plots may have been sampled 

to suitably train the model which thus led to such a deviation from the 1:1 line at the high 

biomass levels in Figure 3.4.  In the absence of better biomass estimates, the LiDAR derived 

AGB metric was deemed sufficient for the modelling and validation. 

 

 

3.4.4 SAR data and processing 

 

The SAR intensity images (X-, C- and L-band) were pre-processed according to the following steps: 

multi-looking, radiometric calibration (conversion oŦ Ǌŀǿ ŘƛƎƛǘŀƭ ƴǳƳōŜǊǎ ƛƴǘƻ ǎƛƎƳŀ ƴŀǳƎƘǘ όˋ0) 

backscatter values), geocoding, topographic normalization of the backscatter and filtering.  These 

steps were compiled in the form of scripts in GAMMATM radar processing software (Gamma Remote 

Sensing, Copyright © 2000-2011) for the Dual Polarised TerraSAR-X X-band (StripMap, Level 1b, 

Figure 3.4: Validation results of field-measured Above Ground Biomass (AGB) versus LiDAR derived AGB (above 0.5m height, 
Number of observations =53) 
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Multi Look Ground Range Detected), Fine Quad Polarised RADARSAT-2 C-band (Single Look Complex) 

and Dual Polarised ALOS PALSAR L-band (Level 1.1) data.  A 20m Digital Elevation Model (DEM) and a 

90m Shuttle Radar Topography Mission (STRM) DEM were both used for the geocoding and 

orthorectification of the X-, C- and L-band SAR imagery.  The 20m DEM was computed from South 

African 1:50 000 scale topographic maps (20m digital contours, spot-heights, coastline and inland 

water area data ς ComputaMaps; www.computamaps.com) with Root Mean Square (RMS) 

planimetric error of 15.24m and a total vertical RMS error of 6.8m.  The 90m (3 arc sec) STRM DEM 

was gap-filled using Aster Global Digital Elevation Map data and was derived from 20m interval 

contour lines extracted from 1:50 000 topographical maps.  An automated hydrological correction 

was applied to correct inaccuracies along river lines and tributaries (Weepener et al., 2011).  The 

multi-looking factors and filtering were chosen to best minimize the effect of speckle while not 

deteriorating the spatial detail captured by the sensors. 4:4, 1:5 and 2:8 range and azimuth multi-

looking factors were implemented for the X-, C- and L-band datasets respectively.  All datasets were 

resampled, using a bicubic-log spline interpolation function, to their final map geometry resolutions.  

This was achieved by applying a DEM oversampling factor (DEM resolution / Final image resolution) 

to the multi-ƭƻƻƪŜŘ {!w ŘŀǘŀǎŜǘǎ ǿƘƛŎƘ ǿŀǎ ǎŜǘ ƛƴ ǘƘŜ άƎŎψƳŀǇέ ƳƻŘǳƭŜ ǳƴŘŜǊ ǘƘŜ D!aa! 

Differential Interferometry and Geocoding package.  The original pixel size, multi-looking factors 

used in the pre-processing, modified pixel size (after multi-looking) and the final pixel size (i.e. map 

geometry) of the different SAR datasets were summarised in Table 3.2.  Finally, a Lee filter (3 pixel X 

3 pixel filtering window) (Lee, 1980) was applied to the images.  It is important to note that the full 

extents varied for the different SAR datasets due to sensor coverage programming and specifications 

(Figure 3.1). 

 
Table 3.1: SAR and LiDAR datasets acquired and utilised for the modelling of woody structural metrics  

Imagery Sensor Mode 
Incidence 

angle 
Acquisition 

time Season 

1 

TerraSAR-X 
X-band ß 

StripMap Dual 
Polarized (HH & 

HV) 

38.1-39.3° 08/09/2012 

Late Winter 
2012 

2 21.3-22.8° 23/08/2012 

3 37.2-38.4° 28/08/2012 

4 36.2-37.4° 19/09/2012 

5 39.1-40.2° 30/09/2012 

1 

RADARSAT-2 
C-band ¥ 

Quad Polarized 
(HH, HV, VH, 

VV) but only HH 
and HV used 

34.4 - 36.0° 13/08/2009 

Winter 2009 
2 39.3 - 40.1° 06/08/2009 

3 32.4 - 34.0° 06/09/2009 

4 37.4 - 38.9° 30/08/2009 

1 ALOS PALSAR 
L-band ̀  

Dual Polarized 
(HH & HV) 

34.3° 
14/08/2010 

Winter 2010 
2 31/08/2010 

AGB (kg) Product 
CAO LiDAR ̅  

 

Discrete 
Footprint 

 

Nadir 
 

1/04/2012-
24/05/2012 

End summer 
2012 

CC (%) Product 
TCV Product 

ß: http://www.geoimage.com.au/satellite/TerraSar ; ¥: http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-

tableau.asp Τ ˋΥ http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm ; ȹ: Asner et al., (2012) 

http://www.computamaps.com/
http://www.geoimage.com.au/satellite/TerraSar
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
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Table 3.2: Original, modified and final SAR pixel size changes during multi-looking and pre-processing steps 

 
 

3.4.5 Data integration, modelling protocols and mapping  

 

Before modelling could be conducted the different datasets had to be processed to a common 

spatial grid.  A sampling grid strategy was implemented as the relationship between dependent 

(LiDAR) and independent (SAR backscatter intensity) datasets were not evident on a pixel-by-pixel 

basis mainly due to issues of SAR speckle and pixel-level inaccuracy of co-registration between 

datasets.  This strategy also served as a means of extracting information from various remote 

sensing datasets of varying spatial resolutions (see Table 3.1 and Table 3.2) without the need for 

pixel level fusion procedures.  A regular spatial grid made up of 105m resolution cells at 50m 

distance spacing was created in QGIS 2.2 (Quantum GIS, Copyright © 2004-2014) and applied over 

the datasets.  The choice of the cell size was informed by (Mathieu et al., 2013), who tested various 

grid sizes ranging from 15m and 495m with RADARSAT-2 C-band data, and reported the 105m grid 

size as the resolution which provided the best trade-off between the finest spatial 

resolution/mapping scale and strongest correlation with the LiDAR woody structure parameters.  

Similar results (50-125m grid size) were reported with ALOS PALSAR L-band data in the region 

(Urbazaev et al., 2015).  The 50m distance spacing between the grid cells was chosen to avoid 

autocorrelation effects arising from the inherent distribution of the vegetation structural parameters 

across the landscape (Wessels et al., 2011).  Informal settlements, the main roads and water 

surfaces such as rivers and dams were masked and excluded from the analysis.  Mean values within 

each cell were extracted for the SAR (X-HH, X-HV, C-HH, C-HV, L-HH and L-HV) and LiDAR metric 

datasets (CC, TCV and AGB).  Due to the differences in spatial coverage of the multi-frequency SAR 

datasets in relation to the LiDAR coverage (Figure 3.1), a varying number of data records (21170 

records for X-band, 17980 records for C-band and 21467 records for L-band) were obtained during 

aggregation to the 105m grid.  Various data mining, regression and machine learning algorithms 

(linear regression, support vector machines, REP decision trees, artificial neural network and random 

forest) were tested in (Naidoo et al., 2014) and  Random Forest (Breiman, 2001) was found to be the 

SAR Dataset 
Original Pixel Size 

[m] (Range X 
Azimuth) 

Multi-Looking 
factors (no. Looks 

for Range X 
Azimuth) 

Modified Pixel 
Size [m] (after 
multi-looking) 

Final Pixel Size 
[m] (map 

geometryύ ̅

ALOS PALSAR FBD 9.37 X 3.23 2 X 8  18.74 X 25.84 12.5 X 12.5 

RADARSAT-2 SLC 4.70 X 5.10 1 X 1  4.70 X 5.10  5 X 5 

TerraSAR-X StripMap MGD 2.75 X 2.75 4 X 4  11 X 11 12.5 X 12.5 

 ̅Resolutions used in the modelling stage but all were resampled to 12.5m for mapping 
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most robust and efficient, in terms of running time and accuracies (Ismail et al., 2010; Prasad et al., 

2006).  The article of (Naidoo et al., 2014) is available in Appendix 3C in its entirety.  Unlike other 

traditional and fast learning decision trees (e.g. Classification And Regression Trees or CART), RF is 

insensitive to small changes in the training datasets and are not prone to overfitting (Ismail et al., 

2010; Prasad et al., 2006).  Additionally, RF is less complex and less computer intensive in 

comparison to the high levels of customisation required for Artificial Neural Networks (ANN) and the 

ƭƻƴƎ ΨƭŜŀǊƴƛƴƎΩ ƻǊ ǘǊŀƛƴƛƴƎ ǘƛƳŜs for Support Vector Machines (SVM) (Anguita et al., 2010). RF 

requires two main user-defined inputs ς ǘƘŜ ƴǳƳōŜǊ ƻŦ ǘǊŜŜǎ ōǳƛƭǘ ƛƴ ǘƘŜ ΨŦƻǊŜǎǘΩ ƻǊ ΨƴǘǊŜŜΩ ŀƴŘ ǘƘŜ 

ƴǳƳōŜǊ ƻŦ ǇƻǎǎƛōƭŜ ǎǇƭƛǘǘƛƴƎ ǾŀǊƛŀōƭŜǎ ŦƻǊ ŜŀŎƘ ƴƻŘŜ ƻǊ ΨƳǘǊȅΩ (Ismail et al., 2010; Prasad et al., 2006).   

 

RF was applied, using R rattle data mining software (Togaware Pty Ltd., Copyright © 2006-2014), to 

the data with 35% of the data being used for model training and the remaining 65% being used for 

model validation.  For the modelling process, the SAR frequency datasets were selected as the input 

(independent) variables while the LiDAR derived metrics were selected as the target (dependent) 

variables.  The random forest modŜƭǎ ǿŜǊŜ ōǳƛƭǘ ǳǎƛƴƎ ǘƘŜ ŘŜŦŀǳƭǘ ǎŜǘǘƛƴƎ ǇŀǊŀƳŜǘŜǊǎ όΨƴǘǊŜŜǎΩ Ґ рлл 

ŀƴŘ ΨƳǘǊȅΩ Ґ ҞІ {!w ǇǊŜŘƛŎǘƻǊǎύ ŀƴŘ ǘƘŜ ǘǊŜŜǎ ǿŜǊŜ ŀƭƭƻǿŜŘ ǘƻ ƎǊƻǿ ǿƛǘƘƻǳǘ ǇǊǳƴƛƴƎΦ tǊŜŘƛŎǘŜŘ 

versus observed scatterplots and validation scores were outputted to calculate the model accuracy 

statistics.  The coefficient of determination (R²), Root Mean Square Error (RMSE) and Standard Error 

of Prediction (SEP in % which also known as the Relative RMSE) were computed and the modelling 

algorithm accuracies were compared for the individual SAR scenarios.  RMSE and SEP are considered 

to be more informative in assessing model performance than R2 and its derivatives (e.g. adjusted R2).  

Seven modelling SAR scenarios (X-band only, C-band only, L-band only, X+C-band, X+L-band, C+L-

band and X+C+L-band) were chosen to investigate the relationships between the individual SAR 

frequencies alone and different multi-frequency SAR combinations correlated against the three 

LiDAR metrics.   

 

The best performing RF model, for each woody structural metric, was applied to the relevant SAR 

imagery, which were all clipped to a common coverage, resampled (pixel aggregate) to a common 

resolution of 12.5m to match the coarsest L-band and stacked, by using a mapping script.  This script 

was developed in the R statistical software (Version 2.15.2, The R Foundation for Statistical 

/ƻƳǇǳǘƛƴƎΣ /ƻǇȅǊƛƎƘǘ ϭ нлмнύ ǿƘƛŎƘ ǳǘƛƭƛǎŜŘ ǘƘŜ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǘƘŜ ΨaƻŘŜƭaŀǇΩΣ ΨwŀƴŘƻƳ CƻǊŜǎǘΩ 

and Geospatial Data Abstraction Library (GDAL) modules.  The map products were imported into 

ArcMap 10.1 (ESRI, Copyright© 1995-2014) and displayed in discrete class intervals (total of 6 
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classes) to best illustrate the tree structural metric distribution representative of the entire modelled 

ranges.   

3.4.6 Error assessment  

 

The purpose of this section was to investigate the error produced by the different SAR models under 

varying tree structural scenarios, and to ascertain whether spatial patterns in error were associated 

with specific vegetation structural cohort types (e.g. grassland versus woodland conditions etc.).  

Error statistics and maps were created by subtracting the LiDAR-derived and SAR-derived woody 

(LiDAR ς SAR) structural metric maps for TCV, AGB and CC.  The SAR derived metric maps were 

resampled to 25m, via pixel aggregate, to match the LiDAR metric spatial resolution first before the 

subtraction.  The error statistics for all metrics were documented but the TCV error maps were 

ŎƘƻǎŜƴ ŦƻǊ ǇǊŜǎŜƴǘŀǘƛƻƴ ƻǾŜǊ // ŘǳŜ ǘƻ ǘƘŜ ƳŜǘǊƛŎΩǎ ǘƘǊŜŜ ŘƛƳŜƴǎƛƻƴŀƭ ǇǊƻǇŜǊǘƛŜǎ ǿƘƛŎƘ ǿƻǳƭŘ ōŜǎǘ 

capture the SAR backscatter interactions.  AGB error maps, however,  were not displayed due to the 

high error in the dense forest canopies (plots not displayed but supported by the error observed 

between the ground AGB and LiDAR derived AGB in Figure 3.4, before AGB up-scaling to the SAR).  

For ease of interpretation of the error statistics and maps, the error values were grouped into 5 

main groups using intervals which best covered the error range observed in the different metrics.  

These groups were major overestimation, minor overestimation, negligible error, minor 

underestimation and major underestimation. 

 

Additionally, we assessed the following main vegetation structural cohort types typical of savannah 

landscapes: low cover and variable tree height (e.g. sparse veld), high cover and high tree height 

(e.g. forests) and high cover and low tree height (e.g. bush encroaching shrubs).  The combined use 

of CC and vegetation height metrics best described these structural cohorts than the use of AGB 

and/or TCV metrics.  Box and whisker plots were created from the mean LiDAR-SAR difference 

values (i.e. prediction error), which were extracted from the same sampling (105m) grid used in the 

predictor variable extraction process, and interpreted.  A total of 17559 difference pixel values were 

used to generate the boxplots with the outlier values being removed.  Similar error assessment 

analyses were conducted over different landscape geologies (e.g. granite versus gabbro) and 

topographic features (e.g. crest, slope and valleys) but the error distribution patterns were fairly 

similar without any distinct patterns to comment on.  The complete methodology have been 

summarized and compiled in the form a methodological schema (Figure 3.5). 
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Figure 3.5: Methodology schema describing the data integration and modelling process 
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3.5 Results 

3.5.1 Modelling Accuracy Assessment  

 

Table 3.3: Woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) parameter 
modelling accuracy assessment (validation) results obtained from the Random Forest algorithm according to seven SAR 
frequency scenarios 

  CC (%) TCV (unitless per hectare) AGB (tonnes per hectare) 

SAR Frequency R² RMSE (SEP %) R² RMSE (SEP %) R² RMSE (SEP %) 

X-band only 0.34 18.12 (50.87) 0.35 35534.50 (33.79) 0.32 10.88 (59.82) 

C-band only 0.61 13.20 (38.50) 0.66 24731.06 (24.07) 0.60 7.81 (43.66) 

L-band only 0.77 10.59 (29.64) 0.79 19902.79 (18.88) 0.78 6.05 (32.90) 

X+C-band 0.69 11.71 (33.94) 0.72 22243.64 (21.59) 0.67 7.19 (40.33) 

X+L-band 0.80 9.90 (27.78) 0.82 18609.04 (17.70) 0.81 5.70 (31.35) 

C+L-band 0.81 9.23 (26.94) 0.83 17236.50 (16.77) 0.81 5.45 (30.44) 

X+C+L-band 0.83 8.76 (25.40) 0.85 16443.57 (15.96) 0.83 5.20 (29.18) 

Datasets split into 35% Training and 65% Validation for modelling 
 

 

Table 3.3 illustrates the validation performances of the different SAR predictors, under various multi-

frequency SAR scenarios, in predicting the three woody structural LiDAR metrics (CC, TCV and AGB).  

When examining the individual SAR frequency performances for modelling all three metrics, the 

longer wavelength L-band PALSAR predictors consistently yielded higher accuracies in comparison to 

the shorter wavelength predictors of both X-band TerraSAR-X and C-band Radarsat-2.  The X-band 

TerraSAR-X predictors by far consistently produced the lowest modelling accuracies.  The 

combination of the short wavelength SAR datasets (X- and C-band) improved the tree structural 

modelling over the individual dataset accuracies results but never produced accuracies greater than 

the use of the L-band dataset alone.  The combined use of all three SAR frequencies (X-, C- and L-

band) data in the modelling process consistently yielded the highest accuracies for modelling all 

three structural metrics (refer to the highlighted results for each metric in Table 3.3).  In comparison 

to the results for L-band alone, there was a relative improvement of 10% or greater for all three 

structural metrics in modelling accuracies when the shorter wavelength datasets (X- and C-band) 

were added.  However, the inclusion of the L-band frequency contributed the most to the overall 

accuracies.  Overall, the three metrics were modelled at high accuracies under the multi-frequency 

scenario (X-, C- and L-band) and with similar patterns when considering the various individual 

scenarios. 
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Figure 3.6: Observed versus Predicted Total woody Canopy Volume (TCV) scatter density plots (A-G) (dotted line is 1:1) 
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Figures 3.6A-G illustrates, by way of the 1:1 line, the extent of over-prediction and under-prediction 

by the models which is gradually reduced towards the multi-frequency scenarios.  The TCV results 

were chosen for representation in Figures 3.6A-G as the metric yielded the highest overall modelled 

accuracies and the remaining metrics (CC and AGB) displayed similar trends throughout the different 

SAR frequency combinations.  For TCV (Figures 3.6A-G), general over-prediction is observed at values 

less than ±100000 (no unit) TCV while general under-prediction is observed at values greater than 

this threshold. 

   

3.5.2 Tree Structure Metric and Error Maps  

 

All three metrics were mapped for the study area (Figure 3.7i-iii) using the multi-frequency SAR 

models (X+C+L-band).  Figures 3.7(i-iii) illustrate the spatial distributions of AGB (Figure 3.7i), TCV 

(Figure 3.7ii) and CC (Figure 3.7iii) which overall were very similar with high and low AGB and TCV 

regions coinciding with high and low CC.  The spatial distribution of these metrics, coupled with the 

ŀǳǘƘƻǊǎΩ ƪƴƻǿƭŜŘƎŜ ŀƴŘ ƻōǎŜǊǾŀǘƛƻƴǎΣ ǿƛƭƭ ōŜ ŜƭŀōƻǊŀǘŜŘ ǳǇƻƴ ƛƴ ŘŜǘŀƛƭ ƛƴ ǘƘŜ ŘƛǎŎǳǎǎƛƻƴ ǎŜŎǘƛƻƴ 

(3.6).  Figure 3.у ǎƘƻǿǎ ǘƘŜ !D. ǾǎΦ // ǎŎŀǘǘŜǊǇƭƻǘ ŦƻǊ !hL Ψ!Ω όCƛƎǳǊŜ 3.7), a dense forested site. The 

point cloud generally displays a high correlation between the 2D (CC) and 3D (AGB) variable, but also 

a triangular shape with an increasing base as the CC increases up to 75% (highlight by the white 

labels in figure 3.8).  Hence, dense cover conditions (CC>70%) are characterized by AGB values 

varying from moderate (35-40 t/ha) to high (>60 t/ha), corresponding to a range of tree sizes from 

coppicing thicket and medium sized tree bush encroachment to taller tree forests. 
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Figure 3.7: X+C+L SAR derived tree structural metric maps, for i) Above Ground Biomass (AGB), ii) Total woody Canopy 
Volume (TCV) and iii) woody Canopy Cover (CC), using random forest. Letters A-F represents key areas of interest for 
discussion (for all three metrics). The black boxes represent the rough extents of the LiDAR-SAR CC scenario difference 
ƳŀǇǎ ŦƻǊ !ǊŜŀ ƻŦ LƴǘŜǊŜǎǘǎ Ψ!Ω ŀƴŘ Ψ/ΩΦ 
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Examples of TCV error maps for dense ŦƻǊŜǎǘŜŘ όōƭŀŎƪ ōƻȄ ƴŜŀǊ Ψ!Ω ƛƴ CƛƎǳǊŜ 3.7iii) and sparse gabbro 

όōƭŀŎƪ ōƻȄ ƻǾŜǊ Ψ/Ω ƛƴ CƛƎǳǊŜ 3.7iii) sites were presented in Figures 3.9 and 3.10, respectively.  Total 

CC, TCV and AGB error statistics were calculated to investigate the contributions of the four main 

SAR frequencies scenarios (X-band, C-band, L-band and X+C+L-band) to the modelling and mapping 

error (Table 3.4).  
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Figure 3.8: Scatterplot of Above Ground Biomass (AGB), y-axis, versus woody Canopy Cover (CC), x-axis, under dense cover 
ŎƻƴŘƛǘƛƻƴǎ όǇƭƻǘǘŜŘ ŦǊƻƳ ǇƛȄŜƭǎ ŜȄǘǊŀŎǘŜŘ ŦǊƻƳ ǘƘŜ !ǊŜŀ ƻŦ LƴǘŜǊŜǎǘ Ψ!Ωύ 
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Table 3.4: Total woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) % error across 
the entire LiDAR-SAR coverage for the four main SAR frequency scenarios (Number of observations = 17559) 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15%) 21.02 13.87 12.78 9.43 

Minor overestimation (-15% to -5%) 17.30 16.38 16.74 16.85 

Negligible error (-5% to 5%) 19.52 24.58 31.34 31.84 

Minor underestimation (5% to 15%) 13.87 16.95 19.27 20.08 

Major underestimation (>15%) 28.29 28.21 19.87 21.80 

TCV Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-50k) 7.54 1.69 0.40 0.35 

Minor overestimation (-50k to -10k) 28.58 22.96 22.32 18.57 

Negligible error (-10k to 10k) 4.64 8.26 15.56 16.62 

Minor underestimation (10k to 50k) 32.41 58.43 57.12 60.31 

Major underestimation (>50k) 26.82 8.66 4.60 4.14 

AGB Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15t/ha) 4.53 1.95 0.79 0.65 

Minor overestimation (-15t/ha to -5t/ha) 27.46 18.85 15.47 13.16 

Negligible error (-5t/ha to 5t/ha) 13.29 22.05 36.42 36.05 

Minor underestimation (5t/ha to 15t/ha) 25.07 41.00 37.24 39.70 

Major underestimation (>15t/ha) 29.65 16.15 10.08 10.43 
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i) X-Band TCV Error ii) C-Band TCV Error 

iii) L-Band TCV Error iv) X+C+L-Band TCV Error 

v) LiDAR-derived TCV 

Figure 3.9: LiDAR - SAR scenario difference (error) maps (i-iv) of Total woody Canopy Volume (TCV) for the Xanthia Forest Area of 
LƴǘŜǊŜǎǘ όŎƭƻǎŜ ǘƻ Ψ!ΩύΤ Ǿύ нрƳ [ƛ5!w-derived TCV map 
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i) X-Band TCV Error ii) C-Band TCV Error 

iii) L-Band TCV Error iv) X+C+L-Band TCV Error 

v) LiDAR-derived TCV 

Figure 3.10: LiDAR - SAR scenario difference (error) maps (i-iv) of Total woody Canopy Volume (TCV) for the Gabbro Intrusions Area of 
LƴǘŜǊŜǎǘ Ψ/ΩΤ Ǿύ нрƳ [ƛ5!w-derived TCV map 
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In Table 3.4, there is a noticeable decline in major overestimation and major underestimation with 

an increase in negligible error for all three metrics from shorter wavelengths (X-band to C-band) to 

the longer wavelength (L-band).  For all metrics, the X+C+L-band combined scenario further reduced 

major overestimation and marginally increased negligible error but at the cost of an increase in 

major underestimation in comparison to the L-band results.  The TCV metric, under L-band and 

X+C+L-band scenarios, illustrated the most noticeable reduction in major overestimation and 

underestimation, in comparison to the other metrics, but at the cost of a higher percentage of minor 

underestimation (~60% between 10 000 to 50 000 TCV units).  The greatest percentage increase in 

negligible error (-5t/ha to 5t/ha) was noticed in AGB metric for the L-band and X+C+L-band 

combined scenarios.  More specifically for the TCV metric, under dense forested conditions (Figures 

3.9i-v), the X-band scenario (Figure 3.9i) illustrate major TCV underestimation.  C-band results 

(Figure 3.9ii) indicate an overall decrease of patches of major TCV underestimation but some of 

these have been replaced with major TCV overestimation across less dense patches of large trees 

(see encircled area in Figure 3.9ii).  Further improvement is visible for the L-band scenario (Figure 

3.9iii) with a noticeable increase in the minor TCV underestimation (10 000 to 50 000 TCV units) and 

negligible TCV error (evident in Table 3.4).   Finally, the X+C+L scenario in Figure 3.9iv illustrated 

noticeable increases in the negligible TCV error coverage, especially over the dense green ridge 

visible in the LiDAR TCV of Figure 3.9v, but also indicated an increase in major TCV underestimation 

over dense vegetation patches north of the ridge (see encircle area in Figure 3.9iv).  Patches of major 

TCV overestimation, however, still persist across riparian zones of minor tributaries (rectangle area 

in Figure 3.9iv).  Under sparse vegetated conditions across gabbro intrusions (Figures 3.10-i-v), 

however, X-band and C-band scenarios (Figures 3.10i and 3.10ii) indicate vast extents of major TCV 

overestimation for the sparse vegetation areas and major TCV underestimation for the dense 

forested patches (see encircled area in Figure  3.10i).  The L-band scenario (Figure 3.10iii) illustrates 

a drastic improvement with an extensive increase in negligible TCV error across the Area of Interest 

(AOI).  Across patches of dense vegetation, major TCV underestimation still persists (similar to the 

trend in Figure 3.9).  The X+C+L-band scenario (Figure 3.10iv) also yields favourable results similar to 

the L-band scenario with no visible improvement.  More quantitative results (box-plots, Figures 

3.11i-ii) were introduced next to further assess the individual SAR frequency error contributions 

under different sparse and dense vegetation conditions. 
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i) ii) 

Figure 3.11: Woody Canopy Cover (CC) Error box plots of: i) low LiDAR CC (<40%) and variable LiDAR vegetation height and ii) dense LiDAR CC όҔтл҈ύ ŀƴŘ ǾŀǊƛŀōƭŜ [ƛ5!w ǾŜƎŜǘŀǘƛƻƴ ƘŜƛƎƘǘ όҌΩǾŜ ǾŀƭǳŜǎ Ґ // 
underestimation; -ΨǾŜ ǾŀƭǳŜǎ Ґ // ƻǾŜǊŜǎǘƛƳŀǘƛƻƴΤ ŘŀǎƘŜŘ ƭƛƴŜ ǇŀǊǘƛǘƛƻƴǎ ǘƘŜ ŦƻǳǊ Ƴŀƛƴ {!w ǎŎŜƴŀǊƛƻǎ ŀŎǊƻǎǎ ǘƘŜ Ȅ-axis classes, centre point = mean value, box = standard error and whiskers = standard 
deviation) (Number of pixels = 17559) 
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CC error boxplots of the four main SAR frequency scenarios, Figure 3.11, were chosen to investigate 

error across vegetation structural types, classified from the LiDAR CHM, and including sparse shrubs 

(CC <40% and height <3m) or trees (CC <40% and height >3m) (Figure 3.11i), and dense forested (CC 

>70% and height >3m) or bush encroached (CC >70% and height <3m) conditions (Figure 3.11ii).  In 

general, SAR derived CC is mostly overestimated across sparse vegetation but is underestimated 

across conditions of dense cover which coincides with the main trends of Figures 3.9i-v and 3.10i-v.  

The L-band scenario yielded the lowest overall CC errors (in terms of mean error or variance, or 

both) across both low levels of CC (<40%) and low height (<3m), and dense CC (>70%) across all 

height (<3m to >5m) in comparison to the X-band (highest variability and mean CC error) and C-

band.  Thus under sparse and low vegetation and bush encroaching conditions, it is the L-band which 

yields the lower levels of CC error and not the shorter wavelengths (X-band or C-band) as we may 

have expected.  Also, the inclusion of the shorter wavelength datasets (X-band and C-band) with the 

L-band dataset led to minor improvements in the overall variability and mean of CC error across 

most sparse vegetation structural conditions (except regarding vegetation conditions with CC <40% 

and height >5m which is inconclusive) and across tall dense vegetation conditions (CC >70% and 

height >5m).  Most significant improvement of the addition of the high frequency data occurred for 

the sparse and tallest trees (CC <40% and >3m) conditions. 

 

3.6 Discussion  

 

The modelling results indicated that it was the longer wavelength L-band dataset which contributed 

the most to the successful estimates of all three woody structural metrics.  This finding agrees with 

other studies in the literature across a variety of ecosystem types such as coniferous forests (Dobson 

et al., 1992), boreal forests (Saatchi and Moghaddam, 2000) and temperate forests (Lucas et al., 

2006a).  The results obtained for the L-band can be attributed to its ability to penetrate deeper into 

the canopy, allowing the signal to interact the most with the larger tree constituents such as the 

trunk and branches (Mitchard et al., 2009), and thus produces stronger correlations with the LiDAR 

metrics.  Despite the leaf-off conditions of most trees in winter, the shorter wavelengths (X- and C-

band), 5.6cm for RADARSAT-2 and 3.1cm for TerraSAR-X, may have had a limited penetration of the 

canopy, and generally produced higher errors than the L-band for dense tree canopy (Figure 3.11ii).  

In the case of open woodlands (CC<40, Figure 3.11i), results suggest that some penetration did occur 

through the larger gaps with some good performance of C- and X-band compared to L-band (see 

tree height >3 m). However, C-band may have also been more sensitive to variability of surface 

roughness features (e.g. dense to sparse grass cover, fire scars etc.) which were too small to affect 



97 
 

the coarser L-band (Bourgeau-chavez et al., 2002; Menges et al., 2004; Wang et al., 2013).  This 

interaction of the smaller wavelengths with these surface features may have introduced noise, 

which could have weakened correlations between the SAR signal and the LiDAR metrics.      

 

The integration of the shorter wavelengths (e.g. X-band, C-band and X+C band), with L-band, yielded 

relatively small improvements in comparison to the L-band result alone (a reduction in SEP by ~3% 

and less for some metrics).  The combination of all three frequencies yielded the highest overall 

accuracies for all metrics than each SAR frequency dataset alone.  This result implies that the 

combination of short wavelength and long wavelength SAR datasets (X+C+L-band) does provide 

improved estimation in the modelling of the complete vegetation structure in terms of CC, TCV and 

AGB. As an aside to the modelling results, CC and AGB field data were initially investigated as a 

LiDAR-substitute for SAR model calibration and validation but preliminary results showed poorer 

modelling accuracies (R²<0.60) in comparison to the LiDAR derived results. This demonstrated the 

importance of extensive LiDAR coverage as the preferred source for modelling.     

 

The three metric total percentage error statistics (Table 3.4), the TCV error AOI maps (Figures 3.9-

10i-v) and the CC error box plots (Figures 3.11i-ii) reaffirmed the modelling accuracy observations 

but provided greater insight into the specific SAR frequency contributions to the overall prediction 

error under a variety of woody structural conditions.  The use of L-band alone and its integration 

with the shorter wavelengths reduced the overall metric overestimation error (mean error and 

variability) under sparse vegetation conditions while reducing overall metric underestimation under 

dense vegetated conditions, in comparison to the shorter wavelengths alone and their 

combinations.  These observations thus go against the first part of the main hypothesis made in this 

study which hypothesised the importance of shorter wavelengths for interaction with the finer 

woody structural elements and shrubby vegetation cohorts as L-band appears to be more effective 

in this regard.  The incorporation of the shorter wavelengths with the L-band improved the overall 

metric error budget by reducing the overall mean error and the overall variability of the error under 

most vegetation structural conditions.  Additionally, L-band and X+C+L-band were more suited for 

assessing the 3D metrics (TCV and AGB) than the single 2D metric (CC) with the highest percentage 

of negligible AGB error and lowest percentages of major TCV under- and overestimation being 

observed.  These results can be supported by the fact that the L-band was expected to penetrate 

deeper and interact more with the lower levels of vegetation structure than the X- and C-band but 

the shorter wavelengths may have provided minor assistance to the L-band by interacting with the 
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smaller canopy elements (Rosenqvist et al., 2003).  Further investigation will be needed to ascertain 

the exact cause of these trends but the overall results, however, advocate the suitability of the L-

band over C- and X-band for analysing dense forested environments (>70% CC with an expected 

error ranging from ~7% to ~18%) and thus confirms the second part of the main hypothesis which 

stated that the L-band SAR signal interacts with the major tree structural components (e.g. trunk and 

main branches typical of forested areas) (Carreiras et al., 2013; Lucas et al., 2006a; Mitchard et al., 

2012).  In the absence of L-band data, C-band has proven to be effective in sparser cover, i.e. less 

than 40% CC, savannah environments which coincided with the recommendations made by 

(Mathieu et al., 2013).   

 

Among the three structural metrics, TCV was consistently modelled with higher accuracies, amongst 

all seven SAR scenarios (Table 3.3).  This result concurs with that of (Mathieu et al., 2013).  TCV is a 

metric which indicates the volume of vegetation present within the vertical structure and its higher 

modelled accuracies could be attributed to the leaf-off conditions typical of the dry winter season 

which allowed for greater wave penetration into the canopy for all wavelengths, even the shorter 

wavelengths.  CC and AGB metrics yielded similar R2 values with higher SEP values observed for AGB 

which may be due to the associated error propagated through the allometric equation and the LiDAR 

model (results of Figure 3.4).  Since SAR is a system which utilises penetrating radio waves, the SAR 

signals will be expected to be more related to 3D structural metrics such as TCV and AGB rather than 

to the 2D CC metric (which achieved marginally poorer modelled results).  This is due to the fact that 

CC is a metric for which the 2D horizontal coverage fluctuates seasonally depending on the 

phenological state of the vegetation, at least in comparison to TCV and AGB, which relies on the 3D 

nature of the woody structure which includes height and is thus more consistent across seasons (in 

the absence of disturbance). 

 

The multi-frequency (X+C+L-band) model maps created for AGB (Figure 3.7i), TCV (Figure 3.7ii) and 

CC (Figure 3.7iii) illustrate patterns and distributions resulting from influence of numerous biotic 

(mega-herbivore herbivory and anthropogenic pressures such as fuelwood extraction and cattle 

ranching) and abiotic factors (fire regimes, geology and topographic features) relevant to the study 

area.  In order to discuss the common patterns in CC, TCV and AGB in these maps, it will be 

collectively referred tƻ ŀǎ άǿƻƻŘȅ ǾŜƎŜǘŀǘƛƻƴέΦ 5ŜƴǎŜ ǿƻƻŘȅ ǾŜƎŜǘŀǘƛƻƴ ǇŀǘǘŜǊƴǎ ŀǊŜ ƻōǎŜǊǾŜŘ ƛƴ ǘƘŜ 

protected forested woodlands (Bushbuckridge Nature Reserve) and in the exotic pine plantations 

within the vicinity of A.  Generally, the riparian zones of major rivers and tributaries (e.g. B, the Sabie 
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River catchment) have high values of CC, TCV and AGB compared to lower levels on the hill crests.  In 

contrast to the vegetation occurring on granitic soils, the intrusions of the Timbavati gabbro geology 

group (Figure 3.7 C) have very low woody CC, TCV and AGB.  These geological substrates naturally 

support more open landscapes than the more densely vegetated granite soils.  Rangeland areas in 

and within the vicinity of informal settlements, such as Justicea (F), also showed lower levels of CC, 

TCV and AGB which could be linked to the heavy reliance of the local populace on fuelwood 

collection for energy requirements (Shackleton et al., 1994; Wessels et al., 2013, 2011).  The area of 

interest E (Athole area which consisted of historical rotational grazing camps which are currently 

inactive ς Barend Erasmus, personal communication, 27/02/2013) possesses a sharp fence line 

contrast in tree structure between the dense woody vegetation evident in the northern extents of 

Athole (i.e. north of fence) and the sparse woody vegetation in Sabi Sands Private Game Reserve (i.e. 

south of fence).  The extended absence of grazing and browsing pressures in the old pasture and 

paddock enclosures in the northern reaches of the Athole fence line boundary (Figure 3.7 E) caused 

dense woody vegetation which contrasted sharply with the sparser woody vegetation in the more 

open and highly accessed areas south of the fence boundary.  Additionally, the dense woody 

vegetation associated with the Acacia welwitschii thicket which dominates the ecca shales geological 

group of Southern Kruger National Park (outside map extents) was clearly visible at D (Mathieu et 

al., 2013).  In conclusion, the accuracy and credibility of these maps and their trends have been 

supported by the various observations made durƛƴƎ ŦƛŜƭŘ Ǿƛǎƛǘǎ ŀƴŘ ōȅ ǘƘŜ ŀǳǘƘƻǊǎΩ ƎŜƴŜǊŀƭ 

knowledge of the study area.  The general range of these tree structural metric values also agreed 

with the ranges reported in other related studies conducted in this savannah region (Colgan et al., 

2012; Mathieu et al., 2013). 

 

Although overall modelling and mapping results yielded favourable accuracies, it is, however, 

important to acknowledge the different sources of error which were introduced in this study. The 

first error source was the temporal difference between the acquisition of the SAR predictor datasets 

and the reference datasets such as collected field data and/or LiDAR datasets. This was unavoidable 

due to sensor failure (e.g. ALOS PALSAR in early 2011) and logistical restrictions to the current 

research project (e.g. specific RADARSAT-2 datasets available from collaborations). Although there 

has been documented evidence of big tree loss in the study region (Asner and Levick, 2012), no 

major error was observed in the modelling results, especially when the 2010 L-band model was 

trained and validated using 2012 LiDAR data which produced expected results for this environment 

(Colgan et al., 2012; Mathieu et al., 2013).  This loss in trees which occurred during the different SAR 

dataset acquisitions times (between 2009 and 2012) may have also introduced a certain margin of 
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error in the modelling results.  It was expected, however, that the main structure of the remaining 

vegetation would not have changed prominently enough to extensively vary backscatter target 

interactions between the different acquisition times.  A final source of error was introduced by the 

fact that the LiDAR reference dataset, which was set to target woody canopies with complete 

foliage, was acquired during the wet-dry transition season where the senescence process had just 

started.  This may have resulted in a distorted representation of the woody structural metrics 

expected on the ground.  Understanding these sources of error will help improve future studies by 

promoting the creation of more accurate models.    

 

 

3.7 Concluding Remarks  

 

This study investigated the accuracy of modelling and mapping above ground biomass (AGB), woody 

canopy cover (CC) and total canopy volume (TCV) in heterogeneous South African savannahs using 

multi-frequency SAR datasets (X-band, C-band and L-band including their combinations).  Various 

studies have implemented L-band SAR data for tree structural assessment in a savannah type 

environment (Carreiras et al., 2013; Mitchard et al., 2012) but the use of shorter wavelengths, such 

as C-band, have also been proven to perform relatively well (Mathieu et al., 2013).  This study also 

served to compare the three SAR frequency datasets (X-, C- and L-band) in the same study region of 

(Mathieu et al., 2013) and is the first attempt in an African Savannah context.  It was hypothesized 

that the shorter SAR wavelengths (e.g. X-band, C-band), since interacting with the finer woody plant 

elements (e.g. branchlets) would be useful for mapping the shrubby/thicket layer while the longer 

SAR wavelengths (e.g. L-band) would interact with larger vegetation elements such as major 

branches and trunks typical of forested areas (Mitchard et al., 2009; Vollrath, 2010).  It was thus 

proposed that the combination of these different SAR frequencies would provide a better 

assessment of the savannah woody element than the individual SAR frequencies (Schmullius and 

Evans, 1997). 

 

After reviewing all the modelling and error assessment results, it can be concluded the L-band SAR 

frequency was more effective in the modelling of the CC, TCV and AGB metrics in Southern African 

savannahs than the shorter wavelengths (X- and C-band) both as individual and combined (X+C-

band) datasets.  Although the integration of all three frequencies (X+C+L-band) yielded the best 

overall results for all three metrics, the improvements were noticeable but marginal in comparison 
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to the L-band alone.  The results do not warrant the acquisition of all three SAR frequency datasets 

for tree structure monitoring. Further the addition of the shortest wavelengths did not assist in the 

overall reduction of prediction error specifically of the shrubby layer as hypothesized. With the 

recent launch of the ALOS PALSAR-2 L-band sensor, the use of such L-band based models will be 

critical for future accurate tree structure modelling and monitoring at the regional and provincial 

scale.  The modelling results obtained from the C-band SAR frequency alone, however, does yield 

promising results which would make the implementation of similar models to the free data obtained 

from the recently launched Sentinel-1 C-band sensor (launched in April 2014) viable when L-band 

datasets are not available.  Sentinel-1 data are as far as we know the only upcoming operational, 

free and open access SAR dataset available in the near future, especially in Southern Africa.  Building 

up of seasonal / annual time series may also improve on the performance of single date C-band 

imagery.  The inclusion of seasonal optical datasets (e.g. reflectance bands, vegetation indices and 

textures derived from Landsat platforms), which can provide more woody structural information, 

may also augment the modelling results. 

 

As a way forward beyond this study, in order to reduce the error experienced in the AGB results (at 

field collection, LiDAR and SAR levels), new and more robust savannah tree allometric equations, 

with a greater range of representative tree stem and height sizes, will need to be produced but such 

efforts will require extensive ground level harvesting campaigns.  Due to the success of this study, 

particularly the positive results using L-band SAR data, future work will seek to up-scale these results 

to greater regional and provincial areas using more extensive LiDAR calibration and validation 

datasets. 
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Chapter 4: Integration of Optical and L -band Synthetic Aperture Radar 

(SAR) datasets for the assessment of woody fractional cover in the 

Greater Kruger National Park region  

 

4.1 Abstract  
 

Savannahs consist of mixed tree-grass communities and can be best described as an ecosystem 

possessing a continuous herbaceous and a discontinuous woody layer.  The woody component has 

considerable impact on natural and anthropogenic processes; for instance it impacts the fire regime, 

biomass production, nutrient cycling, soil erosion and the water cycle of these environments while 

providing numerous ecosystem resources, such as fuelwood, building material and non-timber 

products, such as fruit and bark and roots which are used for medicinal purposes.  Woody canopy 

cover or CC is the simplest two dimensional metric for assessing the presence of the woody 

component.  Synthetic Aperture Radar (SAR) sensors are particularly well suited and extensively 

used for woody structural measurements, because it senses the canopy geometry to retrieve 

structural information while optical sensors, which have been used successfully in national CC 

monitoring programmes outside South Africa, relies mostly on an optimum contrast between the 

άƎǊŜŜƴƴŜǎǎέ ƻŦ ǘǊŜŜ ŎŀƴƻǇƛŜǎ ŀƴŘ ǘƘŜ ƎǊŀǎǎ ƻǊ ōŀǊŜ ōŀŎƪƎǊƻǳƴŘ ŦƻǊ // ŀǎǎŜǎǎƳŜƴǘΦ  ¢he objective of 

this study was to evaluate the accuracy of modelling CC using multi-temporal datasets of SAR (L-

band ALOS PALSAR) and optical (Landsat-5 TM) sensor data, both independently and in combination, 

in a Random Forest modelling environment.  This research was based on the assumption that the 

integration of optical and SAR sensor data will yield improved results by allowing for the extraction 

of more detailed structural information and reducing associated uncertainty than the individual 

datasets.  Additional objectives saw the testing of Landsat-5 image seasonality for the preferred 

acquisition season and the inclusion of spectral vegetation indices and image textures, as possible 

optical enhanced predictors, for improved CC modelling. Due to its accuracy, extensive airborne 

Light Detection and Ranging (LiDAR) data was used for model training and validation.  Results 

showed that Landsat-5 imagery acquired in the summer and autumn seasons yielded the highest 

single season modelling accuracies using RF, depending on the year but the combination of multi-

seasonal images yielded higher accuracies (R2 between ~0.6-0.7).  The derivation of spectral 

vegetation indices and image textures and their combinations with optical reflectance bands 

provided minimal improvement with no optical-only product combination yielding accuracies 

greater than winter SAR L-band backscatter alone (R2 of ~0.8).  However, there was significant, yet 

modest, improvement (R2 of ~0.08, ~1.9% of RMSE and ~7.5% of SEP) in accuracy when 2010 multi-
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seasonal optical reflectance bands were combined with the L-band backscatter variables.  This 

research shows that considering the importance of savannahs in the region, future monitoring of 

woody canopy cover will require priority access to L-band SAR imagery from planned missions such 

as SAOCOM, TerraSAR-L, and NISAR.  However, it is recommended by the authors that these results 

be verified in other bioregions, especially those dominated by evergreen canopies such as 

indigenous forest, thickets, and plantations.  Finally, the integration of seasonally appropriate and 

cloud-free Landsat-5 image reflectance and L-band HH and HV backscatter data does provide a 

significant improvement for CC modelling at the higher end of the model performance. 

Keywords: Woody canopy cover, SAR, LiDAR, Landsat-5, textures, spectral vegetation indices, 

Random Forest 

 

4.2 Introduction  
  

Savannahs consist of mixed tree-grass communities and can be best described as an ecosystem 

possessing a continuous herbaceous and a discontinuous woody layer (Sankaran et al., 2008).  

Savannahs cover half of the African continent and occupy one fifth of the global land surface 

(Scholes and Walker, 1993).  The woody component has considerable impact on natural and 

anthropogenic processes, for instance it impacts the fire regime, biomass production, nutrient 

cycling, soil erosion and the water cycle of these environments (Sankaran et al., 2008) while 

providing numerous ecosystem resources, such as fuelwood, building material and non-timber 

products, such as fruit and bark and roots which are used for medicinal purposes (Shackleton et al., 

2007; Twine, 2005).  At the regional scale, the quantification of carbon captured in woody plants also 

plays an important role in understanding the global carbon cycle and fluxes between carbon sinks 

and sources (Valentini et al., 2014; Viergever et al., 2008b).  Monitoring regional woody resources is 

essential to its sustainable management, which is threatened by adverse activities, such as 

deforestation, excessive fuelwood extraction and charcoal production (Shackleton et al., 1994; 

Wessels et al., 2013).  

 

The woody component can be represented by a variety of woody structural parameters such as 

vegetation height, fractional cover, above ground biomass, basal area and canopy volume.  Woody 

canopy cover is the simplest two dimensional metric for assessing the presence of the woody 

component and can be defined as the area vertically projected on a horizontal plane by woody plant 

canopies (Jennings et al., 1999).  When expressed as a percentage per unit area, this metric is 
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referred to as fractional canopy cover or CC.  CC can be combined with canopy height, to provide an 

informative indicator of volume and serve as a direct proxy for biomass (Colgan et al., 2012).  In 

complex environments such as the heterogeneous savannahs of Southern Africa, CC also varies 

considerably across a variety of structural classes (e.g. from tall closed forests to short closed, bush 

encroached shrubs to sparsely distributed tall trees with a short shrub understory ς (Edwards, 

1983)).  In South Africa and southern Africa there is no locally calibrated and validated national maps 

of CC, despite it being recognised as an Essential Biodiversity Variable by the international research 

community (Pereira et al., 2013). 

 

In contrast to the limited spatial scope of ground based techniques, remote sensing is considered as 

the most appropriate tool for assessing woody structure across large areas.  This is due to its ability 

to sense the high spatio-temporal variability, species diversity and phenological status, over large 

geographical scales ς a defining but challenging set of characteristics typical of African Savannahs 

(Archibald and Scholes, 2007; Cho et al., 2012a). Synthetic Aperture Radar (SAR) sensors are 

particularly well suited and extensively used for woody structural measurements, because of their 

capacity to capture within-canopy properties (Collins et al., 2009; Le Toan et al., 2011; Santoro et al., 

2007; Sun et al., 2011).  SAR sensors are useful to regional scale studies due to their all-weather 

capabilities and lack of sensitivity to dense cloud cover and hazy conditions (e.g. fire smoke) which 

limit optical data acquisitions (Mitchard et al., 2011).  Among the different available SAR 

frequencies, the L-band (a longer wavelength between 15 and 30cm) has been proven to be the 

preferred wavelength ((Carreiras et al., 2013; Mitchard et al., 2012; Ryan et al., 2011; Santos et al., 

2002) and most effective in estimating woody structure in forests and savannahs (Lucas et al., 

2006a; Naidoo et al., 2015).  This is due to the fact that the signal of longer SAR wavelengths (e.g. P-

band and L-band) can penetrate deeper into the vegetation and can interact with the major 

constituents of vegetation such as the main branches and trunks (Mitchard et al., 2009).  Recent 

research in southern African savannahs showed that SAR can also provide a good performance to 

retrieve CC, especially L-band imagery (Mathieu et al., 2013; Naidoo et al., 2015). SAR backscatter 

signal, on the other hand, can be influenced by the variability in soil and canopy moisture, and by the 

variability in surface roughness, which may hamper woody canopy assessment in a particular 

environment (Bucini et al., 2009). 

 

Although not known to be adept in sensing three dimensional vegetation structure (e.g. biomass 

where reflectance saturates readily), multi-spectral optical sensors (with visible, near- and mid-
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infrared spectral coverage) are well suited for mapping two dimensional structure such as canopy 

cover at various spatial scales, and in dense tropical forests (Foody et al., 1997; Hansen and 

Loveland, 2012; Hansen et al., 2008), savannahs (Armston et al., 2009; Boggs, 2010; Lehmann et al., 

2013) and finally shrublands and grasslands (Purevdorj et al., 1998; Ramsey et al., 2004).  In contrast 

with the SAR technology which senses the canopy geometry to retrieve structural information, the 

mapping of canopy cover with optical sensors relies mostly on an optimum contrast between the 

άƎǊŜŜƴƴŜǎǎέ ƻŦ ǘǊŜŜ ŎŀƴƻǇƛŜǎ ŀƴŘ ǘƘŜ ƎǊŀǎǎ ƻǊ ōŀǊŜ ōŀŎƪƎǊƻǳƴŘΦ ¢ƘǳǎΣ ǘƘŜ ƛƴǾŜǎǘƛƎŀǘƛƻƴ ŀƴŘ ǳǎŜ ƻŦ 

the time period at which a maximum contrast is achieved between green tree canopy and dry grass 

during the annual vegetation cycle is important (Zeidler et al., 2012).  Textural image products, 

which provide information regarding the local variance, can be used as a measure of the canopy 

roughness, gaps, and associated shadow.  In addition, non-parametric classification algorithms and 

spectral unmixing have been implemented for extracting fractional canopy cover at the regional 

scale (Chen et al., 2004; Foody et al., 1997; Lu, 2006; Nichol and Sarker, 2011).  Optical sensor 

ǘŜŎƘƴƻƭƻƎƛŜǎ ǿƛǘƘ ŜǎǇŜŎƛŀƭƭȅ ƳŜŘƛǳƳ ǘƻ ŎƻŀǊǎŜ ǎǇŀǘƛŀƭ ǊŜǎƻƭǳǘƛƻƴǎ ƻŦ җолƳΣ ƘƻǿŜǾŜǊΣ Ŏŀƴ ōŜ ƭƛƳƛǘŜŘ 

in that they are highly influenced by spectral variation in time and space, mixed pixels and are 

obscured by cloud and shadow (Lu, 2006).  Nevertheless, these optical sensor technologies have 

been adopted into successful national programmes for monitoring temporal woody canopy cover 

changes.  These include the Australian Statewide Landcover and Trees Study (SLATS) (Armston et al., 

2009) and the Australian National Carbon Accounting System ς Land Cover Change Program (NCAS-

LCCP) (Lehmann et al., 2013) which utilised Landsat TM and ETM+ data.  Another programme also 

included the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) for monitoring 

North American forest disturbance using Landsat and ASTER datasets (Hansen et al., 2013; Ju et al., 

2012).  Finally, the Amazon Deforestation Monitoring Project (PRODES) which maps deforestation in 

the Amazon using Landsat datasets (Hansen and Loveland, 2012).  Unfortunately, such national 

programmes are not in place for the savannahs of Southern Africa, despite a very large reliance on 

their ecosystem services (Scholes and Biggs, 2004; Wessels et al., 2013).  The ultimate purpose of 

this research is to identify the possible contribution of Landsat to develop a national system for 

monitoring CC in South African savannahs.   

 

Given the sensitivity of optical sensors to photosynthetically active vegetation and the sensitivity of 

SAR backscatter to vegetation structure, their possible integration could yield improved woody 

structure estimates via the provision of complementary information which neither sensor type could 

provide in isolation.  The integration of SAR and optical technologies for woody structure assessment 

have been successfully applied in previous studies (Lucas et al., 2006b; Miles et al., 2003; 
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Moghaddam et al., 2002), which included dense forested environments, savannahs and plantations 

(Bucini et al., 2009; Shimabukuro et al., 2007; Wang and Qi, 2008), with reasonable accuracies 

(R2>0.60).  Unfortunately, none of these studies have taken into account the effects of phenology on 

optical imagery, especially in savannah environments with complex tree and grass phenological 

seasonal changes.  With this in mind, the objective of this study was to evaluate the accuracy of 

modelling CC, at the 30m spatial resolution, using multi-temporal datasets of SAR (L-band ALOS 

PALSAR) and optical (Landsat-5 TM) sensor data, both independently and in combination.  Airborne 

LiDAR data recorded using the Carnegie Airborne Observatory (CAO) Alpha system (Asner et al., 

2007) was used as a training and validation dataset.  This research was based on the premise that 

the integration of optical and SAR sensor data will yield improved results by allowing for the 

extraction of more detailed structural information and reducing associated uncertainty than the 

individual datasets (Roberts et al., 2007).  There were two main sets of research questions in our 

study.  The first set of questions focused on how the accuracy of CC predictions compared when 

using Landsat versus L-band dual-polarised SAR input data, whether the integration of additional 

optical predictor features (e.g. textures and vegetation indices) improved modelling accuracies in 

comparison to the L-band SAR-based CC results and, finally, whether the integration of optical 

Landsat and L-band SAR data yielded any noticeable improvements in CC modelled predictions.  The 

second research question sought to ascertain the season or seasons in which Landsat-5 data 

predicted CC with the highest accuracies.  This question is related to the fact that savannah 

vegetation undergoes distinct seasonal phenological changes during which the green fractional 

cover of grasses and woody plants varies considerably (Fuller et al., 1997; Scholes and Archer, 1997).  

We hypothesized that the season when trees are completely covered in green foliage, while grasses 

are dry, should be the best period to retrieve CC, since there is limited interference by green grass 

(Archibald and Scholes, 2007).  The identification of phenologically optimised optical imagery may 

improve CC estimation, when integrated with SAR data, in these heterogeneous savannahs where 

there is general dearth of such studies.     

 

This paper is structured into four main sections.  The first section (4.3) outlined the study area and 

associated landscape features and climate.  The second (4.4) outlined the main methodological steps 

taken which included the outlining and pre-processing of the different remote sensing datasets 

utilised, the integration of these datasets and modelling scenarios, the modelling algorithm used and 

accuracy assessment and CC mapping.  The third section (4.5) ŘƛǎǇƭŀȅŜŘ ǘƘŜ ǎǘǳŘȅΩǎ Ƴŀƛƴ ŦƛƴŘƛƴƎǎ 

while the fourth and final section (4.6) discussed these findings within context of multi-temporal 

changes in phenology, Landsat acquisition times and reliable regional monitoring applicability. 
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4.3 Study Area 
 

The region under study includes the southern portion of the Greater Kruger National Park Region, 

{ƻǳǘƘ !ŦǊƛŎŀΣ ǿƘƛŎƘ Ŧŀƭƭǎ ōŜǘǿŜŜƴ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ноϲ офΩ{ ǘƻ нрϲ мфΩ{ ŀƴŘ олϲ ртΩ9 ǘƻ онϲ ммΩ9Φ  ¢Ƙƛǎ 

region consists of the mixture of communal rangelands (Bushbuckridge Municipality District), private 

game reserves (Sabi Sands) and national or provincial parks (southern Kruger National Park, 

Andover) (figure 4.1).  The region covers an extensive range of geologies (e.g. granite, basalt, gabbro, 

tonalite, shale etc.), vegetation types (plantations to Clay Thorn Bushveld, Mixed Bushveld, Sweet 

Lowveld Bushveld and Open Grassland - (Mucina and Rutherford, 2006)), rainfall (mean annual 

precipitation of 1200mm in the west to 550mm in the east- (Shackleton, 2000)), management 

regimes (communal and protected) and disturbance regimes (fire, elephant damage, grazing and 

browsing patterns of herbivores and fuelwood harvesting). 

 

 

 

Figure 4.1: The Southern Kruger National Park study area and coverage of remote sensing modelling datasets  
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4.4 Materials and Methodology  
 

Various scenarios were used to predict CC to determine the respective contribution of the Landsat 

and SAR-based variables. CC derived from very high resolution airborne LiDAR data were used as 

training and validation of the models.  Firstly, models were developed to predict CC using reflectance 

data extracted from Landsat-5 images acquired at different seasons. These Landsat-based modelled 

results were compared to L-band SAR-derived models using ALOS PALSAR dual polarised (HH and 

HV) as input data. Second, the best performing Landsat-5 reflectance model was then expanded to 

include combinations of additional input variables including image texture features and vegetation 

indices.  Finally, the integration of both multi-temporal optical Landsat reflectance and L-band SAR 

datasets were assessed for the possible improvement in CC prediction.  All modelling scenarios were 

implemented using a Random Forest (RF) non-parametric machine learning algorithm (Breiman, 

2001).   

 

4.4.1 Remote Sensing Data 

 

A collection of 2008 and 2010 dual polarised (HH, HV) ALOS PALSAR L-band intensity scenes and 

multi-seasonal Landsat-5 (bands 1-7, excluding the thermal band 6) scenes were collected over the 

study region (table 4.1).  The L-band imagery (2 images for each year) was acquired in winter (25th of 

August and 23rd September (very early spring while landscape is dry and leaf-off) 2008; 14th and 31st 

August 2010) when the environment was dry and the trees devoid of leaves.  These were shown to 

be the best conditions to extract CC with RADARSAT-2 C-band data in the same region (Mathieu et 

al., 2013). Landsat-5 scenes were inventoried from 2007 to 2011 (to match the LiDAR dataset 

available in 2008 and 2010, with an acceptable difference of plus and minus one year) and acquired 

in various seasons to assess the potential effects of differential phenology between trees and 

grasses. Specifically, Landsat-5 imagery were acquired for spring (September- November), summer 

(December - March), autumn (April - May) and winter (June - August), where available, of 2007, 

2008, 2009 and 2010 from U.S Geology Survey Landsat Earth Explorer portal (along path 168 and 

row 77).  In summer, both tree leaves and grasses are green while in autumn, grasses are dry with 

trees remaining green but beginning to lose leaves.  In winter, most trees have lost leaves and 

grasses are dry while in spring, grasses are fairly dry while the trees first undergo a green flush of 

leaves (Archibald and Scholes, 2007). Only Landsat-5 imagery with an overall scene cloud cover of 

Җс҈ ǿŀǎ ŎƻƴǎƛŘŜǊŜŘΦ 5ǳŜ ǘƻ ŎƭƻǳŘ ƻŎŎǳǊǊŜƴŎŜ ƻƴe image was available at each season only in 2008; 

three seasons were achieved in 2007 and two in 2009 and 2010 (Table 4.1).  No suitable Landsat-5 
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imagery was available for the year 2011 and was thus not included in the analyses.  Several years 

were considered to assess the possible model inconsistencies which may results from a high inter-

annual variability of rainfall, and associated variability of greenness and phenology. Extensive 

airborne 2008 and 2010 LiDAR dataset (total coverage of c.a. 35000 ha and 10000 ha respectively) 

were acquired for this study (figure 4.1) by the Carnegie Airborne Observatory (CAO) Alpha sensor 

(Asner et al., 2007) during April-May of 2008 and 2010.  

Table 4.1: Landsat-5, ALOS PALSAR and LiDAR data inventory 

  Sensor scene ID Season Date of Acquisition 

Landsat-5 TM LT51680772007047JSA00 Summer 16/02/2007 
Landsat-5 TM LT51680772007143JSA00 Autumn 23/05/2007 
Landsat-5 TM LT51680772007175JSA00 Winter 24/06/2007 
Landsat-5 TM LT51680772007223JSA00 Winter 11/08/2007 
Landsat-5 TM LT51680772008034JSA01 Summer 03/02/2008 
Landsat-5 TM LT51680772008098JSA01 Autumn 07/04/2008 
Landsat-5 TM LT51680772008242JSA00 Winter 29/08/2008 
Landsat-5 TM LT51680772008274JSA02 Spring 30/09/2008 
Landsat-5 TM LT51680772009084JSA00 Summer 25/03/2009 
Landsat-5 TM LT51680772009132JSA00 Autumn 12/05/2009 
Landsat-5 TM LT51680772010023JSA00 Summer 23/01/2010 
Landsat-5 TM LT51680772010119JSA00 Autumn 29/04/2010 
ALOS PALSAR ALPSRP137816680 Winter 25/08/2008 
ALOS PALSAR ALPSRP142046680 Spring 23/09/2008 
ALOS PALSAR ALPSRP242696680 Winter 14/08/2010 
ALOS PALSAR ALPSRP245176680 Winter 31/08/2010 
CAO LiDAR CAO 2008 Autumn April-May 2008 
CAO LiDAR CAO 2010 Autumn April-May 2010 

 

4.4.2 LiDAR Data Processing 

 

1.1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw 2008 and 2010 LiDAR point clouds using REALM (Optech Inc., Vaughn, Canada) 

and TerraScan/TerraMatch (Terrasolid Ltd., Jyvaskyla, Finland) LiDAR software.  Canopy height 

models (CHM, pixel size of 1.12m) were computed by subtracting the DEM from the CSM. The 2008 

and 2010 LiDAR fractional woody canopy cover metric were then created by first applying a data 

mask to the LiDAR CHM image in order to create a spatial array of 0s (no woody canopy) and 1s 

(presence of a woody canopy).  Fractional woody canopy cover distribution products were calculated 

at 25m spatial resolution using equation 4.1: 
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ὒὭὈὃὙ ὅὅ Ϸ  
В

 ὢ ρππ        Equation 4.1 

Where 625 is the area (in m2) of a 25m X 25m pixel.  A height threshold of 0.5m was applied to the 

CHM in order to avoid the inclusion of the grass layer in final product.  The 2008 CAO LiDAR data 

were validated against field height measurements of approximately 800 trees.  There was a strong 

relationship (r2 = 0.93, p < 0.001), and only a fraction of woody plants below 1.5-1.7m were not 

detected by the LiDAR (Wessels et al., 2011).  Additionally, a LiDAR derived woody canopy cover 

product obtained from a new LiDAR campaign done in 2012 correlated well with ground CC data 

collected from 37 25m X 25m sites in May/April 2012 (R2=0.79; Root Mean Square Error=12.4%) and 

thus this CAO LiDAR sensor technology was considered adequate for calibration and validation 

dataset extraction for this study. 

 

4.4.3 SAR Data Processing 

 

The 2008 and 2010 level 1.1 ALOS PALSAR L-band intensity datasets (HH, HV) were processed in 

GAMMATM SAR remote sensing software in which a script was developed to achieve the following 

steps: multi-looking, radiometric calibration (from raw digital numbers to sigma nought backscatter), 

geocoding and topographic normalization.  Multi-looking factors of 2 and 8 was applied to the range 

and azimuth, respectively, to best remove unwanted speckle and distortions. This was sufficient to 

have the majority of the speckle removed, while preserving image detail, and hence no filtering was 

applied.  A 20m DEM was used for the geocoding and topographic normalization.  It was computed 

from 1:50 000 South African topographic maps (20m digital contours, spot-heights, coastline and 

inland water area data ς ComputaMaps; www.computamaps.com) with Root Mean Square 

planimetric error of 15.24m and a total vertical RMS error of 6.8m.  As a final step the imagery was 

resampled, via bicubic-log spline interpolation function, by using a DEM oversampling factor of 1.6, 

to achieve a fixed spatial resolution of 12.5m to create images with a finer spatial detail.   

 

4.4.4 Landsat-5 Optical Data Processing and Derived Products  

 

The Landsat imagery, in raw digital number format, underwent atmospheric correction with the use 

of ATCOR 2 (Multi-spectral sensor atmospheric correction for flat terrain) which converted the raw 

digital number data to top of canopy (TOC) reflectance using a Modtran®-5 radiative transfer code.  

The necessary information (e.g. Min and Max radiance values) from the default post May 2003 

calibration file was used.  Dry rural, fall (spring) rural, mid-latitude summer and winter rural 

http://www.computamaps.com/
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atmospheric models were also utilised with the visibility distance set between 9.0km and 59km 

depending on the season and year (historical Skukuza visibility data obtained from 

http://weatherspark.com were used if no values were automatically recommended by ATCOR).   

 

The TOC reflectance of the individual images was used as the main model input variables to be 

tested.  However, additional vegetation indices and image textures were derived from the best 

performing Landsat seasonal image for further analyses.  This included a number of grey-level co-

occurrence matrices (GLCM) and spectral vegetation indices (e.g. Enhanced Vegetation Index or EVI 

and Soil Adjusted Vegetation Index or SAVI) which have been known to be sensitive to vegetation 

structure (table 4.2).  The selected vegetation indices which use the red, near-infrared and mid-

infrared bands were also effectively correlated with the vegetation structure of various forested and 

woodland environments (Cohen et al., 2003; Freitas et al., 2005; Zheng et al., 2004).  The soil-

adjusted vegetation index (SAVI) was included over other more common indices (e.g. NDVI and 

single ratios) as it includes a soil adjustment factor which reduces sensitivity to soil and moisture 

conditions in the environment (Huete and Jackson, 1988; Jiang et al., 2008).  As a more advanced 

vegetation index, the enhanced vegetation index (EVI) optimises the vegetation signal (especially in 

high biomass environments) by reducing the influence of atmospheric effects and the canopy 

background signal (Jiang et al., 2008).  EVI is also known to be more linearly correlated to leaf area 

index (LAI), a major vegetation structural parameter derived from optical data, than other spectral 

indices.  The non-linear vegetation index (NLI) was developed to account for the possible non-linear 

relationship between indices and biophysical parameters (Gong et al., 2003).  Finally, the moisture 

vegetation index (MVI) was chosen as it possesses a higher signal saturation threshold especially in 

dense, high biomass environments (Freitas et al., 2005). 

           

GLCM texture parameters, such as variance and entropy, were also selected as they were reported 

to be strongly correlated with vegetation structure (Asner et al., 2002; Nichol and Sarker, 2011) and 

in some case even better correlated than spectral indices (Lu, 2005).  Preliminary results illustrated 

that variance, entropy, dissimilarity and contrast textures, derived from the bands 1 to 5 and 7, were 

particularly correlated with CC (results not presented).  The combination of these selected indices 

and textures could provide more detailed structural CC information than the optical reflectance 

bands alone.    

 

http://weatherspark.com/
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Table 4.2: Reflectance, indices and textural optical products derived from Landsat-5 data  

Type Product Formulae or description if not applicable Reference 

Reflectance Raw TOC reflectance 

Band 1 (450-520nm) ï Blue 

Band 2 (520-600nm) ï Green 

Band 3 (630-690nm) ï Red 

Band 4 (760-900nm) ï NIR 

Band 5 (1550-1750nm) ï MIR5 

Band 7 (2080-2350nm) ï MIR7 

 

Vegetation Index Enhanced Vegetation Index (EVI) ςȢυ ὢ 
ὔὍὙὙὩὨ

ὔὍὙ φ ὢ ὙὩὨ χȢυ ὢ ὄὰόὩρ
 (Huete et al., 1997) 

Vegetation Index Modified Simple Ratio (MSR) 

ὔὍὙ
ὙὩὨ

ρ

ὔὍὙ
ὙὩὨ

ρ

 (Sims and Gamon, 

2002) 

Vegetation Index Non-linear Vegetation Index (NLI) 
ὔὍὙ ὙὩὨ

ὔὍὙ ὙὩὨ
 

(Goel and Qin, 

1994) 

Vegetation Index Soil-Adjusted Vegetation Index (SAVI) 
ὔὍὙὙὩὨ

ὔὍὙὙὩὨπȢυ
 ὢ ρ πȢυ 

(Huete and Jackson, 

1988) 

Vegetation Index Simple Ratio (SR) 
ὔὍὙ

ὙὩὨ
 (Jordan, 1969) 

Vegetation Index 
Normalised Difference Vegetation Index 

(NDVI) 

ὔὍὙὙὩὨ

ὔὍὙὙὩὨ
 (Rouse et al., 1973) 

Vegetation Index Moisture Vegetation Index (MVI band 7) 
ὔὍὙὓὍὙχ

ὔὍὙὓὍὙχ
 

(Sousa and Ponzoni, 

1998) 

GLCM Textures 
Variance, Entropy, Dissimilarity & 

Contrast (3 X 3 window) 
Applied to bands 1-7 

(Haralick et al., 

1973) 

 

 

4.4.5 Data Analysis Grid  

 

To analyse the data of different resolutions, a fixed grid of 105m X 105m cells, with a 50m spacing to 

avoid spatial autocorrelation of CC, was used to extract SAR, optical and LiDAR CC products.  The grid 

was created to match the extent of the LiDAR CC product coverage (i.e. the calibration/validation 

dataset for CC) and exclude any cells occupying water bodies, main roads, rivers and informal 

settlements and especially clouds (in the Landsat imagery).  The resolution of the grid cells was 

supported by (Mathieu et al., 2013) and (Urbazaev et al., 2015) as the resolution which provided the 

best trade-off between the finest mapping resolution and strongest correlation with the LiDAR CC 

metrics.  The extraction process was conducted in ENVI 4.8 where mean values for each cell in the 

grid were extracted.  Due to the varying conditions of the different Landsat imagery (i.e. by way of 

cloud cover) and the differences in LiDAR coverage between 2008 and 2010, the total number of 

observations included in the modelling also varied and ranged between 1174 and 8804.  

 

4.4.6 Modelling Algorithms, Modelling Scenarios, Model Validation and CC Mapping  

 

A random forest (RF) non-parametric machine learning algorithm (Breiman, 2001) was applied in the 

R rattle modelling software with 35% of the data being used for model training and the remaining 

 TOC= Top of Canopy; NIR = Near Infrared; MIR = Middle Infrared 
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65% being used for model validation.  Other well-known parametric algorithms, such as linear 

regression, and non-parametric algorithms, such as Support Vector machines (SVM), REP Tree 

decision tree and Artificial Neural Network, were also tested but preliminary results showed that RF 

consistently obtained higher modelling accuracies.  Due to its use of multiple decision trees, bagging 

and internal cross-validation mechanisms, RF is seen as a major improvement over other traditional 

decision tree types and when compared to the other non-parametric algorithms. The algorithm is 

easy to implement and is robust as it only requires two main user-defined inputs (number of trees 

ōǳƛƭǘ ƛƴ ǘƘŜ ΨŦƻǊŜǎǘΩ ŀƴŘ ǘƘŜ ƴǳƳōŜǊ ƻŦ ǇƻǎǎƛōƭŜ ǎǇƭƛǘǘƛƴƎ ǾŀǊƛŀōƭŜǎ ŦƻǊ ŜŀŎƘ ƴƻŘŜ - (Ismail et al., 2010; 

Prasad et al., 2006)).   

 

Before the final implementation of RF, efforts were made to test the generalisation of RF modelling 

by introducing an additional independent test dataset for model tuning before validation.   During 

the tuniƴƎ ǇƘŀǎŜΣ ǘƘŜ ǘƻǘŀƭ ƴǳƳōŜǊ ƻŦ ǘǊŜŜǎ όΨƴǘǊŜŜΩύ ƛƴ ǘƘŜ ŦƻǊŜǎǘ ŀƴŘ ǘƘŜ wC ǘǊŜŜ ŎƻƳǇƭŜȄƛǘȅ ǿŜǊŜ 

varied to test their influence on accuracy whilst trying to limit the complexity of the RF model.  RF 

tree complexity included the minimum number of terminal nodes όΨƴƻŘŜǎƛȊŜΩύ ŀƴŘ ǘƘŜ ƳŀȄƛƳǳƳ 

ƴǳƳōŜǊ ƻŦ ǘŜǊƳƛƴŀƭ ƴƻŘŜǎ ǘƘŀǘ ǘƘŜ ǘǊŜŜǎ Ŏŀƴ ƘŀǾŜ ƛƴ ǘƘŜ ŦƻǊŜǎǘ όΨƳŀȄƴƻŘŜǎΩύ (Breiman, 2001).  After 

ǊŜǇŜŀǘƛƴƎ ǘƘŜ ǇǊƻŎŜǎǎ ǘƘǊŜŜ ǘƛƳŜǎΣ ǊŜǎǳƭǘǎ ǎƘƻǿŜŘ ǘƘŀǘ ŀƴ ΨǳƴǇǊǳƴŜŘΩ όƛΦŜΦ ƴƻ ƭƛƳƛǘŀǘƛƻƴ ƻƴ ŀ ǘǊŜŜΩǎ 

depth and number of terminal nodes) tree architecture with 200 trees within the forest, yielded the 

optimum results (refer to Appendix section; Figures 4A and 4B).  In the light of these preliminary 

results the RF models was ŎǊŜŀǘŜŘ ōŀǎŜŘ ƻƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǇŀǊŀƳŜǘŜǊǎΥ ΨƴǘǊŜŜǎΩ Ґ нлл ŀƴŘ ΨƳǘǊȅΩ Ґ ҞІ 

{!w ǇǊŜŘƛŎǘƻǊǎ όŀ ǊǳƭŜ ƻŦ ǘƘǳƳō ŦƻǊ ΨƳǘǊȅΩ ǿƘƛŎƘ ǿŀǎ ǎǳǇǇƻǊǘŜŘ ōȅ (Liaw and Wiener, 2002)) with the 

trees being allowed to grow unpruned. 

 

For the modelling process, several scenarios were assessed.  The optical reflectance bands served as 

input variables which were tested individually (12 individual Landsat images) in order to ascertain 

the best season for predicting woody fractional cover.  All available seasonal images were also 

combined for each year (four years in total) in order to investigate any improvements using multi-

seasonal datasets.  Seven additional scenarios using reflectance, texture and vegetation indices were 

also proposed in order to test the benefits of more advanced optical metrics.  This was only 

performed for the best performing optical reflectance bands-only scenario mentioned above.  2008 

and 2010 L-band SAR dataset-only scenarios served as the scenario of comparison for the optical-

only tests.  Due to the large number of vegetation indices and textures used in this study, which may 

display high degrees of co-linearity, a RF variable importance measure called the permutation 
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accuracy or %IncMSE (percentage increase in mean squared error) was considered to select the top 

ǘƘǊŜŜ ƛƴŘƛŎŜǎ ŀƴŘ ǘŜȄǘǳǊŜ ǾŀǊƛŀōƭŜǎ ŦƻǊ ƛƴŎƭǳǎƛƻƴ ƛƴ ǘƘŜ wC Ψ¢ŜȄǘǳǊŜǎΩ ŀƴŘ ΨLƴŘƛŎŜǎΩ ƳƻŘŜƭƭƛƴƎ 

scenarios.  %IncMSE records the percentage increase in the mean squared errors in the model when 

a particular variable is assigned random values while the remaining variables are left unchanged 

(Liaw and Wiener, 2002).  The higher the resultant error, the more important that particular variable 

is to the model.   

 

Finally, the SAR datasets were integrated with the five best performing seasonal Landsat-5 images 

and the combined multi-seasonal Landsat-5 datasets for each year to quantify the benefits of 

combining SAR and optical data for the modelling of CC.  The RF validation results of the different 

scenarios were expressed in the form of coefficient of determination (R2), root mean square error 

(RMSE) and Standard error of prediction (SEP).  SEP refers to the standard deviation of the prediction 

errors and is a measure of the unexplained variation of a model.  The most accurate model, together 

with the most relevant independent variables, was implemented to produce a CC map.  The ALOS 

PALSAR images were resampled to 30m spatial resolution (using pixel aggregated resampling) and 

clipped to fit the Landsat-5 image and stacked for mapping.  The CC RF mapping was conducted 

using the Model-Map module of the R statistical software.   

 

4.5 Results 

4.5.1 Individual and multi -seasonal Landsat-5 reflectance compared to  SAR 

Dataset Acquisition Date Season of Imagery R² RMSE (%) SEP (%) Total No. Obs* 
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16/02/2007¹ Summer 0.47 12.64 52.02 8804 

23/05/2007¹ Autumn 0.34 13.96 58.46 8804 

24/06/2007¹ Winter 0.32 14.25 58.76 8804 

11/08/2007¹ Winter 0.32 14.10 58.69 8733 

03/02/2008¹ Summer 0.53 11.84 49.24 8804 

07/04/2008¹ Autumn 0.46 12.89 52.64 8010 

29/08/2008¹ Winter 0.37 13.60 56.73 8804 

30/09/2008¹ Spring 0.40 13.19 53.2 8339 

25/03/2009¹ Summer 0.44 12.76 52.86 8804 

12/05/2009¹ Autumn 0.50 12.04 49.6 8697 

23/01/2010² Summer 0.64 14.77 46 2098 

29/04/2010² Autumn 0.65 13.55 44.43 3201 
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 2007¹ All available images 0.58 11.27 47.23 8733 

2008¹ All available images 0.64 10.53 43.31 8010 

2009¹ All available images 0.57 11.36 46.92 8697 

Table 4.3: Individual seasonal Landsat-5, multi-seasonal Landsat-5 and individual SAR RF modelled CC validation results 
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When examining the individual seasonal Landsat-5 reflectance accuracies (table 4.3), the season 

which yielded the highest model accuracies varied between years; summer was best in 2007 and 

2008, and autumn the best in 2009 and 2010.  Amongst all the individual datasets, the April 2010 

Landsat-5 reflectance (autumn) dataset yielded the highest model accuracies in comparison to the 

other individual images (according to R2 and SEP values).  The winter datasets that were available in 

2007 and 2008 yielded the poorest modelled CC results.  Overall the performance of single Landsat 

datasets was poor with a SEP varying between 44 and 58%.  Combining all the multi-seasonal images 

for each year improved the accuracies by an RMSE of ~1-2% and SEP of ~4-6% compared to the best 

individual seasonal image for that year.  However, both individual seasonal and combined multi-

seasonal image yielded significantly lower accuracies than those of the individual SAR images.  For 

instance, the SAR models produced in 2008 and 2010 had a SEP of 15 and 10% lower, compared to 

the best Landsat season of that specific year.  Moreover, both SAR models produced consistent 

results, with a similar R2 and SEP. 

 

4.5.2 Optical reflectance, textures and indices compared and integrated with SAR data results  

 

 
 

2010² All available images 0.72 12.84 39.75 2098 

S
A

R 25/08/2008¹ Winter 0.80 7.88 32.08 8804 

14/08/2010² Winter 0.81 10.17 33.16 3201 

2010 Optical Product(s)1 R² RMSE (%) SEP (%) Total No. Obs 

Reflectance only 0.65 13.55 44.43 3201 
Textures only* 0.03 23.66 77.96 3201 
Indices only* 0.45 17.22 57.16 3201 

Reflectance +Textures* 0.67 13.30 43.74 3201 
Reflectance + Indices* 0.66 13.52 44.93 3201 
Indices* + Textures* 0.47 17.06 55.87 3201 

Reflectance + Textures* + Indices* 0.68 12.98 43.53 3201 

2010 SAR only1 0.81 10.17 33.16 3201 

Dataset Acquisition Year Season of Imagery R2 RMSE (%) SEP (%) Total No. Obs 

S
A

R
 +
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sa
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5
 T

M
 2007¹ SAR + Summer 0.84 6.89 28.73 8733 

2008¹ SAR + Summer 0.85 6.84 28.24 8010 
2009¹ SAR + Autumn 0.83 7.09 29.82 8697 

Table 4.4: Reflectance, indices and textural Landsat-5 (autumn 2010 image) product RF modelled CC validation results 

* Variable depending on LiDAR coverage per year (35% training; 65% validation) and LT cloud cover; ¹ 2008 LiDAR dataset for 
the reference dataset; ² 2010 LiDAR dataset for the reference dataset  

Table 4.5: Integrated SAR and best performing/multi-seasonal Landsat-5 reflectance RF modelled CC validation results (per year) 

¹ Utilized the 2010 LiDAR dataset as the reference dataset; * Top 3 indices/textures used based on %IncMSE 
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Image textures and spectral vegetation indices (top 3 of each parameter selected according to the 

highest %IncMSE) were added as additional features to the best performing Landsat-5 reflectance 

dataset (April 2010 according to table 4.3) in order to determine if these improve the prediction of 

CC (table 4.4).  The optical reflectance-only scenario yielded the best results, followed by the derived 

vegetation indices, and the textures-only produced by far the poorest results.  However, the 

combination of reflectance and textures yielded marginally better results than the reflectance and 

indices combination which suggested that image textures do provide more additional information in 

comparison to the indices.  Combining all three datasets (reflectance, textures and indices) provided 

the highest overall accuracy, however improvement was marginal compared to the optical 

reflectance-only scenario.  Although not presented here, in the interest of brevity, these results were 

consistent for other years (2007, 2008 and 2009).  Combining the best seasonal Landsat-5 

reflectance dataset per year with SAR data brought about modest, but significant improvements 

(improved SEP of ~4-5%) in the modelled CC accuracies for the individual years in comparison to 

SAR-only scenarios (table 4.5).  Also, the difference in accuracy between the best seasonal 

reflectance and combined multi-seasonal images, integrated with SAR datasets, were minimal 

(improved SEP of 0.5-1%).  The year 2010 obtained the highest accuracies, (R2=0.89; RMSE=8.32%; 

SEP=25.64% for the integrated SAR and multi-seasonal dataset).  The combination of 2010 SAR data 

with 2010 Autumn Landsat-5 reflectance and the three most important vegetation indices and 

textures did not improve the combined 2010 SAR and 2010 Autumn Landsat-5 reflectance results.  

The best trade-off between accuracy and complexity were given by the 2010 integrated SAR and 

autumn season reflectance model (R2=0.88; RMSE=8.51%; SEP=26.15%), as it used a single SAR and 

single Landsat-5 image.  This model was therefore used to create the regional CC map (figure 4.2). 

 

2010² SAR + Autumn 0.88 8.51 26.15 3201 

S
A

R
 +
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P
ro

d
u
ct

s
  

20102 SAR + Autumn 0.88 8.15 26.90 3201 

S
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R
 +
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2007¹ All available images 0.85 6.75 28.37 8733 

2008¹ All available images 0.85 6.67 27.34 8010 

2009¹ All available images 0.84 6.91 28.79 8697 

2010² All available images 0.89 8.32 25.64 2098 

S
A

R 2008¹ Winter 0.80 7.88 32.08 8804 
2010² Winter 0.81 10.17 33.16 3201 

¹Utilized the 2008 LiDAR dataset as the reference dataset and 2008 SAR dataset as one of input variables; ²Utilized the 2010 
LiDAR dataset as the reference dataset and 2010 SAR dataset as one of input variables; * Optical Products refers to the 

Reflectance + Textures + Indices scenario in Table 4.4 
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The observed CC versus predicted CC XY scatterplots (figures 4.3i-iii) supported the main findings 

from Landsat-5 reflectance-only, SAR-only and integrated SAR backscatter and Landsat-5 reflectance 

analyses.  The 2008 multi-seasonal Landsat-5 reflectance only scatterplot (figure 4.3i) illustrated 

noticeable overestimation below 25% observed CC mark with major underestimation beyond this 

point, according to the 1:1 line.  In comparison, the 2008 SAR-only scatterplot (figure 4.3ii) 

illustrated drastic improvements in reducing the severity of CC overestimation and underestimation.  

The integration of the SAR and multi-seasonal reflectance scatterplot (figure 4.3iii) however, yielded 

a similar trend to the SAR-only scatterplot with a slightly tighter clustering of points around the 1:1 

line. 
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Figure 4.2: Regional scale CC map of the study area using the best performing RF integrated L-band and single date Landsat-5 
band reflectance model (2010 L-band & 2010 Autumn LT5 image; coverage excludes extensive cloud cover to the east)  
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i)  ii)  iii) 

Figure 4.3: Predicted CC versus Observed CC scatterplots for: i) 2008 Multi-seasonal Landsat-5 Reflectance-only, ii) 2008 SAR-only and iii) integrated 2008 Multi-seasonal 
Landsat-5 Reflectance and SAR modelled validation results  

R2 = 0.64 
RMSE = 10.53% 
SEP = 43.31% 

R2 = 0.80 
RMSE = 7.88% 
SEP = 32.08% 

R2 = 0.85 
RMSE = 6.67% 
SEP = 27.34% 




































































































































































