e

UNIVERSITY OF PRETORIA

£
b
ﬂ UNIVERSITEIT VAN PRETORIA
@, YUNIBESITHI YA PRETORIA
4

Digital Forensic Readiness in
Mobile Device Management
Systems

Author Supervisor

Elsabé Ros Professor HS Venter

Submitted in fulfilment of the requirements for the degree
Master of Science (Computer Science)
in the
Faculty of Engineering, Built-Environment and Information Technology
at the
University of Pretoria

i

Abstract

Mobile devices have become very popular, and virtually everyone owns a smart
device. As more employees became owners of smart devices, the organisations were
put under pressure to allow employees to use their smart devices for work purposes,
or alternatively provide employees with smart devices.

Most organisations opted for a Bring Your Own Device policy, where employees
use their own smart devices for work purposes, with the organisation reimbursing
some of the costs. Adopting such a policy introduced risks into the organisations,
since the organisations do not own and do not have direct control over employees’
personal devices.

One of the most widely used solutions to this problem is Mobile Device Manage-
ment (MDM) software, which is installed on employees’ devices and prevent them
from taking actions that may be harmful to the organisation.

This leads us to the problem statement of this research. Since MDM systems are
purely preventative and devices are not owned by the organisation, it is expensive
and sometimes impossible for organisations to retrieve potential evidence from the
devices when an incident occurs.

This research proposes a model to solve this problem by introducing a digital
forensic readiness component into an MDM system. Adding digital forensic readi-
ness to an existing MDM solution reduces costs by collecting evidence when suspi-
cious activity is detected, reducing investigation times and legal costs involved in
collecting evidence.

A prototype was created to show that the proposed model could be implemented
in practice. The prototype shows how this solution can be utilised to collect data
from devices and utilise it in an investigation.

Finally, the research and prototype are critically evaluated, and the benefits and
shortcomings of such a solution are presented. The author also addresses privacy
concerns arising from the data collection component.

Keywords

mobile, mobile device, forensics, forensic readiness, digital forensic readiness, mobile
device management, mdm, bring your own device, byod, android, data collection

il

v

Dedication

To the people whose sacrifices made this possible: my parents and grandparents.
This research is especially dedicated to my grandfather, Evert Jan Bron.

A man who works with his hands is a labourer; a man who works with his hands
and his brain is a craftsman; but a man who works with his hands and his brain
and his heart is an artist.
-Louis Nizer

vi

Acknowledgements

My thanks to everyone who made this possible. Specifically:

e My supervisor, professor HS Venter - thank you for your guidance and
support.

My parents, Martin and Louise Ros for all their support and sacrifices

My employers, for allowing me the freedom to pursue this research

e The University of Pretoria, for its financial support

Finally, the Heavenly Father without whom none of this would be possible

vil

viii

Declaration

I declare that the dissertation, which I hereby submit for a Master of Science
in Computer Science degree at the University of Pretoria, is my own work and
has not previously been submitted by me for a degree at another university. Where
secondary material is used, it has been carefully acknowledged and referenced in
accordance with University requirements. [am aware of the University’s policy and
implications regarding plagiarism.

X

Contents

List of Figures

List of Tables

I Introduction and problem statement

1 Introduction

1.1 Imtroductiono
1.2 Problem statement
1.3 Motivation
1.4 Methodology
1.5 Layout

2 Design Science and Methodology

2.1 Introduction
2.2 Design Science
2.2.1 Constructs
222 Models
2.2.3 Methods
2.2.4 Instantiationso
2.3 Methodology
2.4 Conclusion

II Background

3 Bring Your Own Device

3.1 Introduction
3.2 What is Bring Your Own Device?
3.3 Advantages of adopting a BYOD policy
331 Omnedevice.
332 Costs.
3.3.3 Flexibility
3.3.4 Familiarityo
3.4 Disadvantages of adopting a BYOD policy
3.4.1 Costs for employees
3.4.2 Different devices L.
3.4.3 Security
3.5 Conclusion

X1

xviii

Xix

O O i i W W

o o ©

10
10
11
11
11
12

13

15
15
15

xii CONTENTS

4 Mobile Device Management systems 19

4.1 Introduction 19

4.2 Defining Mobile Device Management 19

4.3 Architecture of an MDM system 20

4.3.1 Server 20

4.3.2 Datarepositoryo 21

4.3.3 Mobile Client 21

4.3.4 Administrator console L. 21

4.4 Deploying an MDM solution 21

4.4.1 Configuration of the MDM system 22

4.4.2 Installation of the mobile client 22

4.4.3 Authentication of the mobile client 22

4.4.4 Instruction from the server to the mobile client 23

4.4.5 Reporting from the mobile client to the server 23

4.5 Threats to MDM systems 23

4.5.1 Spoofing 24

4.5.2 Tamperingo 25

4.5.3 Repudiation oL 25

4.5.4 Information disclosure 25

4.5.5 Denial of service oo 25

4.5.6 Elevation of privilege 26

4.5.7 Malware 26

4.5.8 Users. e 26

4.6 Conclusion 26

5 Digital Forensics and Digital Forensic Readiness 27

5.1 Introduction 27

5.2 Digital Forensics oo 27

5.2.1 Defining Digital Forensics 27

5.2.2 The Digital Forensic process 28

5.2.3 Forensic soundness 31

5.3 Digital Forensic Readiness 32

5.3.1 Defining Digital Forensic Readiness 32

5.3.2 Benefits and Drawbacks of Digital Forensic Readiness 33

54 Conclusion 34

III Model and architecture 35
6 A High-level Model for adding Digital Forensic Readiness to a

Mobile Device Management (DFR-MDM) System 37

6.1 Introduction 37

6.2 Components 37

6.2.1 Server 38

6.2.2 Administrator console 39

6.2.3 Database 39

6.2.4 DMobile client 39

CONTENTS

6.3

6.4

6.2.5 Datastore
Ensuring data integrity
6.3.1 Encryption
6.3.2 Digital signatures
6.3.3 Checksums
Conclusion

7 Methods in a DFR-MDM system

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Introduction
Device registration
Acquiring an authentication token . . .
Loading policies
Collecting data about user activity . .
Uploading collected data
Conclusion

8 Architecture of a DFR-MDM system

8.1
8.2

8.3

8.4
8.5
8.6

8.7

Introduction L.
Mobile client
8.2.1 Mobile application components

8.2.2 Mobile application program flow
Server

8.3.1 Shared components
8.3.2 Functionality
Database
Data store
Application console
8.6.1 Shared components
8.6.2 Administration console
8.6.3 Digital forensic investigations .
Conclusion

9 Evaluation according to ISO 27043

9.1
9.2
9.3
9.4
9.5

Introduction
Concurrent processes
Readiness processes
Investigative processes
Conclusion

IV Prototype

10 Prototype Requirements
10.1 Introduction
10.2 Business and market requirements . . .
10.3 Functional requirements

10.3.1 Mobile functional requirements

xiil

40
40
41
41
42
42

43
43
43
45
47
49
o1
02

53
23
23
54
25
60
61
65
71
73
74
75
76
78
79

81
81
83
84
85
86

X1v

11

A\Y

12

13

14

CONTENTS

10.3.2 Administration functional requirements 93
10.3.3 Investigation functional requirements 93

10.4 Non-functional requirements 95
10.4.1 Performance requirements 95
10.4.2 Operating requirements 96

10.5 Ul requirements 97
10.6 Conclusion 97
Prototype Implementation 99
11.1 Introduction 99
11.2 Prototype demonstrationo 99
11.3 Conclusion 115
Evaluation and summary 117
Evaluation according to requirements 119
12.1 Introduction 119
12.2 Business and market requirements 119
12.3 Functional requirements 119
12.3.1 Mobile functional requirements 119
12.3.2 Administration functional requirements 120
12.3.3 Investigation functional requirements 121

12.4 Non-functional requirements 122
12.4.1 Performance requirements 122
12.4.2 Operating requirements 123

12.5 Ul requirements 124
12.6 Conclusion L 124
Overall Critical Evaluation 125
13.1 Introduction 125
13.2 Defence against threats 125
13.3 Benefits and shortcomings L. 127
13.3.1 Benefits 127
13.3.2 Shortcomings Lo 128

13.4 Privacy concernso 129
13.5 Related worko 130
13.6 Research contribution 130
13.7 Conclusion 131
Conclusion 133
14.1 Introduction 133
14.2 Summary 133
14.3 Revisiting the Problem statement 134
14.4 Future worko 135
14.4.1 Policy definitionso 135

14.4.2 Legal compliance 135

CONTENTS

14.4.3 Mobile platforms 0oL
14.4.4 Expand data collection
14.4.5 Automated data analysis and incident detection
14.4.6 Protection against anti-forensics L.
14.4.7 Modularization of collection capabilities

14.5 Final conclusion

VI Appendices

A Generated report

B

Implementation details

B.1
B.2
B.3
B.4

Introduction
SEIVET e
Mobile client
Console

Source code listings

C.1
C.2

C.3

C4

Introduction
Mobile client
C.2.1 Getdeviceid
C.2.2 Policy helper
C.2.3 Scheduletasks.,
Server . .o ..
C.3.1 Requests
C.3.2 Responses
C.3.3 Verify authentication token
C.3.4 Verify signature oL o
C.3.5 Decode publickey, .
Comsole

C.4.1 Logging audit events

XV

136
136
136
136
136
137

xvi CONTENTS

List of Figures

1.1
2.1

4.1
4.2
4.3

5.1
6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24

Dissertation structure oo
Design science process [38]o

Mobile Device Management components
MDM Authentication flow
MDM Instruction and Report flow

ISO 27043 processes [40]o
Components

Registration Sequence
Authentication Sequence
Policy Loading Sequence
Data Collection Sequence,
Data Upload Sequence

Mobile Client components
Application installation Activity Diagram
Suspicious activity detection Activity Diagram
Periodic activation Activity Diagram
Validating and refreshing authentication token Activity Diagram . .
Refreshing data collection policies Activity Diagram
Uploading data Activity Diagram
Server architecture L
Authentication token verification
Signature verification00
Hash verification
Login e
Device registrationo o
Generate authentication token
Load data collection policies
Receive checksumso oL
Receivedata
Database diagram oL
Data store
Report store
Audit checksum store
Console components
Console login process
Mockup of adding a new policy

XVvii

20
23
24

xviii LIST OF FIGURES

825 Add anew user 7
8.26 Deactivate adeviceo 7
8.27 Change policies associated with user 78
8.28 Report steps 78
9.1 ISO 270143 processes [40] with highlighted processes 82
9.2 Modified figure showing only relevant processes 87
11.1 Administration console login 100
11.2 Administration landing page 101
11.3 Add anew user 102
11.4 Add anew policy 102
11.5 User details page o 103
11.6 The user has policies associated with it 103
11.7 Mobile login 104
11.8 Mobile registration prompt 104
11.9 Mobile landing pageo 105
11.10User has a mobile device associated with them 106
11.11Data count is displayed next to the device 107
11.12Forensic landing pageo 108
11.13Start a new investigationo oL 108
11.14Investigation overview page oL 108
11.15Add user to investigation L. 109
11.16Available data 110
11.17Data entry details oo 110
11.18Investigation with data entries 111
11.19Adding audit entries 112

11.20Investigation covering multiple users, data entries and audit records 113
11.21Closed investigationo 114

List of Tables

8.1
8.2

10.1
10.2
10.3

12.1
12.2
12.3

13.1
B.1

Roles table. 72
Entry table 72
Functional requirements summary 94
Non-functional requirements summary 96
Ul requirements summary 97
Functional requirements 121
Non-functional requirements 123
Ul requirements 124
Common threats against MDM systems 126
Server endpoints 154

Xix

XX

LIST OF TABLES

PART |

Introduction and problem statement

Part 1 introduces the reader to the problem statement of this research, as well as

the motivation and layout. Additionally, the author gives a brief overview of the

design science methodology and describes how this methodology is applied in this
document.

CHAPTER 1

Introduction

1.1 Introduction

The internet is an insecure place. As organisations started to utilise the inter-
net more and more to conduct business, they implemented security measures that
reflected this fundamental insecurity. Since the organisations controlled both the
computing devices and the networks they used to connect to the internet, it was
possible for the organisations to prevent employees from accessing potentially dan-
gerous resources and exfiltrating sensitive information from the company network.

However, as smartphones became more popular and widespread over time, em-
ployers were put under more pressure to either provide employees with work-specific
smartphones or allow them to use their own smartphones.

Since most employees already had some form of smart device, most companies
adopted a Bring Your Own Device (BYOD) policy, allowing employees to use their
personal digital devices, like phones and tablets, for work-related tasks. A BYOD
policy is advantageous for both employer and employee, as the employer has fewer
costs related to devices and the employee does not have to manage multiple devices.

The BYOD policy, however, did introduce risks into organisations. Since the
organisation did not have direct control over employees’ devices, the risk of a third-
party compromising the organisation became much higher. For example, a malicious
actor could infect an employee’s device with a piece of malicious software (malware)
that exfiltrates sensitive information or an employee’s device could introduce mal-
ware (like ransomware [10]) into the organisation’s network.

In response to the threat of external actors and third-party software, companies
put Mobile Device Management (MDM) solutions in place. These systems are
installed on an employee’s personal smartphone to limit the actions they can take
on the device. Employees are typically not allowed to access company resources
without the MDM software installed. However, these MDM systems do not include
a digital forensic readiness component.

The next section presents the problem statement of this research. After that, the
motivation, objectives, methodology and layout of the research is introduced.

4 CHAPTER 1. INTRODUCTION

1.2 Problem statement

The problem statement of this dissertation is that most MDM systems do not
include a digital forensic readiness component, leaving investigators with little to
no device-related historical data when an incident does occur.

Mobile Device Management solutions focus on being preventative, stopping users
from performing potentially unsafe actions. They do this by preventing users from
accessing online resources and applications that have been deemed unsafe. How-
ever, adding a digital forensic readiness component has the potential to make the
software much more powerful, since it allows for a more detailed investigation after
an incident has occurred.

A digital forensic readiness component focuses on gathering data before an inci-
dent occurs, allowing investigators and other a stakeholders a much clearer picture of
the events that lead up to the incident. Such a digital forensic readiness component
does raise some privacy concerns, since it is possible for the digital forensic readi-
ness component to collect highly personal data, but because this problem mainly
occurs in large organisations, it can be controlled using privacy policies and will
not be addressed in depth in this research, as it has been thoroughly addressed in
literature (see for example Kopp [44], Smith and Faley [90] and Watkins et al [99]).

The next section presents the motivation for this research in more detail.

1.3 Motivation

Many companies and organisations deal with sensitive information and, in some
cases, information that is protected by law (intellectual property or personal in-
formation belonging to customers). Keeping this information from falling into the
hands of unauthorised third parties is a complicated task. Many tools and tech-
niques can be deployed to keep external actors from gaining access to this informa-
tion, but defending against employees (also known as an ”insider threat”) is more
complicated.

An employee might have access to sensitive information belonging to their em-
ployer. This problem can be partially mitigated by only giving employees access to
the information they need to do their job. Limiting access to information reduces
the impact on the organisation if a disgruntled employee decided to access sensitive
information for nefarious purposes, but it is still necessary to put controls in place
to allow investigators to form a full picture of an incident.

For example, a competitor acquires some sensitive intellectual property (IP).
Through an internal investigation, a specific employee is implicated in the theft of
this IP. If an MDM with a digital forensic readiness component were in place, the

1.4. METHODOLOGY b}

employer would have been able to prove that the employee did, in fact, arrange
with the competitor to sell the secrets to them.

In summary, the primary motivation for this study is to allow organisations to
collect digital forensic readiness data from the personal devices of people that inter-
act with their sensitive systems and information, in order to effectively investigate
any data breaches.

The next section presents the methodology of this research.

1.4 Methodology

In this research, the author makes use of design science to create various artefacts,
namely constructs, models and methods, as well as instantiations. First, design sci-
ence constructs are created, forming the “language” of the research. Then, models
and methods are created from the constructs, and finally, instantiations of the arte-
facts are created to evaluate their efficiency. Chapter 2 presents the design science
paradigm in more details and expands on how it is implemented in this research.

Next, the layout of this research is introduced to provide the reader with a birds-
eye view of the research.

1.5 Layout

This dissertation is divided into five parts with 14 chapters, as well as three
appendices. Part 1 introduces the reader to the research and contains two chapters.
Chapter 1 introduces the problem statement, along with a motivation and some
objectives for the research.

Chapter 2 introduces the reader to the design science methodology, describing the
various artefacts and processes that form part of this methodology. This chapter
also describes how a design science methodology is applied throughout this research.

Part 2, the background, contains three chapters covering the background infor-
mation necessary to this research.

Chapter 3 does a review of the literature around the Bring Your Own Device
(BYOD) phenomenon. To understand the problem space, it is necessary to survey
the topic of BYOD, since this is the space where the problem is most prevalent. The
author defines “BYOD” and presents the advantages and disadvantages of adopting
such a policy.

6 CHAPTER 1. INTRODUCTION

Chapter 4 gives an overview of Mobile Device Management (MDM) systems,
defining the concept and presenting the architecture of such a system. MDM sys-
tems are used to mitigate some of the risks around BYOD policies, and it is im-
portant to understand these risks and their mitigations, before proposing a digital
forensic readiness solution that can be added to the MDM software. Additionally,
understanding the structure of existing MDM software will make the digital forensic
readiness solution more robust, since the understanding will reflect in the design of
the solution.

Chapter 5 defines digital forensics and presents the digital forensic process. Ad-
ditionally, it covers digital forensic soundness and how data may be collected in a
forensically sound manner. The author also introduces Digital Forensic Readiness
(DFR) and the benefits and drawbacks of implementing DFR in an organisation.

The third part of the research is divided into four chapters that introduces the
solution to the problem stated before.

Chapter 6 introduces a model of a solution to solve the stated problem. The
components of the model are presented. This chapter also describes data integrity
measures and how the data flows through the system.

Chapter 7 introduces and presents the design science methods that enhance the
high-level components that have been introduced in the previous chapter.

Chapter 8 defines an architecture for the model that was presented in the previous
chapters, showing how such a system will look at a high level. The three main com-
ponents (mobile client, server and console) are broken down into sub-components,
and the program flow for each component is analysed. Additionally, this chapter
shows how the data storage components are structured.

Chapter 9 evaluates the proposed model and architecture according to the um-
brella standard for digital forensics, ISO 27043, by examining how it enables the
various processes in this standard.

Part 4 of the research presents the prototype that was implemented using the
solution proposed in Part 3 and contains two chapters.

Chapter 10 starts off the section dedicated to the prototype by defining the re-
quirements that a successful solution will need to adhere to. Business, functional,
non-functional and user interface requirements are identified and analysed.

Chapter 11 introduces a prototype of the solution introduced in the previous
chapters, showing how the digital forensic readiness may be added to an existing
solution. This chapter describes the prototype, showing how the concepts described

1.5. LAYOUT 7

in the previous chapters can be implemented in practice and using a scenario to
demonstrate the prototype to the reader.

The final part of this research, part 5, concludes the research in three final chap-
ters.

Chapter 12 evaluates the solution presented for adherence to the requirements
stated in chapter 10. It analyses how well the prototype aligns to the various
requirements and where additional work is needed to fulfil the requirements.

Chapter 13 critically evaluates the proposed solution. It analyses the ability
of the solution to defend against common threats and identifies the benefits and
shortcomings of the solution. It presents the privacy concerns that came up during
the course of the research, points the reader to related work and describes the
contribution of this research to the state of the art.

Chapter 14 summarises the research, revisits the problem statement and presents
opportunities for future work. The research is concluded with a final statement.

The structure of this dissertation is shown graphically in figure 1.1. The next sec-
tion introduces design science and proposes the methodology used in this research.

CHAPTER 1. INTRODUCTION

P ~ - ~
Chapter 2
. Chapter 1
I: Introduction Hnky Design Science and
Introduction
Methodology
L / .
Ia ¥ "\ Fa "\ Fa "\
Chapter 4 Chapter 5
Il: Background | Emmmy Motile Device Management Digital forensics and digital
Bring Your Own Device . .
systems forensic readiness
L / . J \ J
|-
L 4
P ~ - ~ - ~ - ~
. Chapter 3
Ill: Model and Chapter 6 Chapter 7 Chapter 8 Evaluatio:':cocrding .
architecture High-level model Methods Architecture
\ J .) L) y 15027043
P “ - “
IV: Prototype Cha:ansr 10 Chapter 11 | .
Requirements Prototype
L J \ J
P l ~ - ~ - ~
V: Evaluation Evaluaf;:p:zgiin to G G
and summary . 9 Critical evaluation Caonclusion
L requirements) L) L
Ia ¥ "\ Fa * "\ Fa "\
VI: Appandices Appendix A Appendix B o Appendix C
Generated report Implementation details Source code listings
L . .

Figure 1.1: Dissertation structure

CHAPTER 2

Design Science and Methodology

2.1 Introduction

As mentioned in the previous chapter, the author makes use of a design science
approach to arrive at a solution to the stated problem. This chapter gives an
overview of design science and discusses the methodology followed in this research.
First, the author discusses and describes design science.

2.2 Design Science

Design Science aims to create innovative and creative solutions [96] to non-natural
organisational problems [7]. It creates and evaluates artifacts intended to solve
identified problems for organisations [70] in order to create new and innovative
solution [39].

Design science has two main processes, namely “Construction” (also called Build
and Design) and “Evaluation” [38], and four different artifacts: constructs, models,
methods and instantiations [53]. The artifacts are constructed and evaluated during
the processes in order to solve an unsolved problem [14] as shown in figure 2.1.

Design Science Research

Build and design
- Constructs

- Models

- Methods

- Instantiations

Design
process

Evaluate

Figure 2.1: Design science process [38]

10 CHAPTER 2. DESIGN SCIENCE AND METHODOLOGY

The rest of this section presents the two processes that are followed and four
artefacts that are produced in the design science process.

The two main design science processes are construction and evaluation. The
construction process, also called “build,” refers to the construction of the de-
signed artifacts, showing that it is possible for such an artifact to be built [54, 97].

The evaluation process develops criteria to evaluate the artefacts produced by
the design science process and examines the artefacts that have been produced to
assess them according to the criteria, attempting to quantify how well the designed
solution works [74].

These two processes both involve the artefacts mentioned previously, namely
constructs, models, methods and instantiations. These artefacts are presented next.

2.2.1 Constructs

Constructs, also known as concepts, describes the problem domain. It creates a
shared language and knowledge base that allows for a specialised vocabulary for a
domain [97].

Theses constructs may be formal or informal, depending on the problem domain,
and may include the definition of entities, attributes, relationships and constraints
on the system.

These constructs are fundamental to design science, as they define the terminol-
ogy that is used when discussing and thinking about the problem space. The way
the constructs are defined shapes the way the problem is thought about and, by
extensions, the resulting solutions.

Once the constructs in a solution has been identified, models of the system can
be created. These are presented next.

2.2.2 Models

In design science research, a model defines the relationships between constructs
using propositions or statements. The model may be seen as a solution to a task,

expressing “how things are” or, in the case of a new system, how things should be
[54].

A model shows the structure of reality, but may be vague or inaccurate on the
details, using approximations to simplify the representation to be useful.

2.3. METHODOLOGY 11

Once the constructs and models of a system have been defined, the designer can
start working towards solving tasks by creating methods. Next, these methods are
presented.

2.2.3 Methods

A method is a series of steps that are executed to achieve a task to address a
need. Also known as algorithms, methods are based on the constructs and models
that were used to define the problem space [97].

Methods make use of constructs and models, using them as input or transitioning
between models as it moves through the steps. Methods may also translate between
models and constructs.

The method used may also influence the design of the constructs and models
used in a design science system. If a particular method is desired, the models and
constructs may be defined in such a way that the given method can be used.

Once the constructs, models and methods have been defined, the next step is to
create instantiations, which will be introduced next.

2.2.4 Instantiations

The instantiation is the final result of a design science project. This is the “real-
ization of an artifact in its environment” and brings constructs, models and methods
into operation [54, 97].

Instantiations shows the feasibility and effectiveness of the other artefacts that
have been designed and allows insight into the efficiency of the solution, allowing
for the refinement of the other artefacts in the design science solution.

These artefacts that are produced, along with the processes of “build” and “eval-
uate”, allow a designer to create a solution that solves the problem at hand. Next,
the author analyses how design science is applied to this research by presenting the
methodology of the research.

2.3 Methodology

As mentioned in chapter 1.4 the author makes use of a design science methodology
to solve the problem as mentioned in the previous chapter, namely that MDM
systems are purely preventative.

During the design science “build and design” process, the author identified and
produced the artefacts that was presented in the previous section, namely con-
structs, models, methods and instantiations.

12 CHAPTER 2. DESIGN SCIENCE AND METHODOLOGY

Constructs in the system are identified by means of a literature review. Part II
(chapters 3 to 5) is dedicated to establishing the terminology that is used throughout
the research.

The models and methods for a solution are built and designed in chapters 6
and 8. These chapters build up the relationships between the identified constructs
and outline algorithms to achieve the stated tasks.

Finally, chapter 11 presents and instantiation of the constructs, models and
methods that have been identified, bringing the concept into operation and allowing
the author to evaluate the solution.

In addition to the “Build and design” process, design science also makes provision
for evaluating the artefacts produced from the design process. In chapter 10 the
author identifies a number of requirements to evaluate the finished product.

Chapter 9 evaluates the identified models and methods against the existing
umbrella standard for digital forensics, ISO 27043. Finally chapters 12 and 13
evaluates the whole solution as presented on a number of criteria.

2.4 Conclusion

This chapter presented the discipline of design science and how it is applied to this
research. Using the design science methodology to approach this research allows
the author to apply the scientific method to a non-natural problem.

In the next part of the research, the author gives background information that
is required for the solution to be successful, building up the constructs that are
required for a successful model and instantiation.

PART Il

Background

Part 2 gives a background to the research, presenting Bring Your Own Device,
Mobile Device Management systems, digital forensics and digital forensic
readiness. This part of the research familiarises the reader with the concepts used
throughout the research.

13

14

CHAPTER 3

Bring Your Own Device

3.1 Introduction

As mentioned previously, the growing popularity and ubiquitousness of smart
devices forced organisations to either issue company-owned devices to employees or
to adopt a Bring Your Own Device policy, allowing employees to connect personal
devices to the organisation’s network and access the organisation’s (potentially sen-
sitive) information from those devices.

This chapter describes the concept of Bring Your Own Device and presents the
advantages and disadvantages that go along with adopting such a policy, establish-
ing the design science constructs for the BYOD domain.

3.2 What is Bring Your Own Device?

According to Disterer et al. [26], BYOD can be described as “ the circumstance in
which users make their own personal devices available for company use”. A Gartner
survey found that, unlike laptops, very few workers (23% of those surveyed) receive
corporate-issued mobile devices. This means that the majority of mobile devices in
a corporate environment is personally owned [2, 41].

Adopting a policy of BYOD has several advantages for both the organisation and
its employees. The next two sections cover the advantages and disadvantages of
adopting a BYOD policy. These advantages and disadvantages are listed below and
after that the author analyses each of the advantages and disadvantages individually.

Advantages of adopting a BYOD policy
e One device Employees have to manage only one device.

e Costs for employer The employer does not have to buy a device for all
employees

e Flexibility Employees can work from other locations

e Familiarity Employees can use devices they are already familiar with

15

16 CHAPTER 3. BYOD

Disadvantages of adopting a BYOD policy

e Different devices Employers have to cater for a number of different
devices.

e Costs for employee Employees have to purchase a device that complies
with the organisation’s requirements.

e Security Personal devices are harder to protect and secure than company
equipment.

3.3 Advantages of adopting a BYOD policy

Implementing a BYOD policy has a number of advantages, both from the organ-
isation’s and the employee’s view. This section gives an overview of the advantages
that BYOD offers to both organisations and employees.

3.3.1 One device

The main advantage of BYOD from an employee’s perspective is the fact that
they have to manage only one device, allowing the employee to choose a device with
which they are familiar and comfortable. In addition to selecting a familiar device,
the employee does not have to expend effort into managing both a personal and a
work-related device [26].

3.3.2 Costs

Since the employee uses their personal device for work-related tasks, the organisa-
tion does not have to purchase mobile devices for their employees to use [46, 65]. An
additional factor here is that people tend to take better care of their own property

[89).

3.3.3 Flexibility

Since employees are allowed and even encouraged to access their employer’s sys-
tems and resources from their personal device, employees can now work from other
locations than their office [46, 48].

3.3.4 Familiarity

Employees are familiar with their own devices and will be able to complete tasks
faster and more accurately using their personal devices. This way the loss of pro-
ductivity incurred by learning how to use a new device is avoided [3].

3.4. DISADVANTAGES OF ADOPTING A BYOD POLICY 17

This section presented the advantages of adopting a BYOD policy. When design-
ing a solution to reduce the disadvantages of BYOD, care should be taken not to
negate the advantages.

As outlined, there are numerous advantages to adopting a BYOD policy. How-
ever, there are also several disadvantages to such a decision. The next section
presents some of these disadvantages.

3.4 Disadvantages of adopting a BYOD policy

There are a number of disadvantages to adopting BYOD, both from the em-
ployer’s and employees’ sides. This section analyses some of the disadvantages of
adopting a BYOD policy, as listed previously.

3.4.1 Costs for employees

BYOD shifts the costs of the mobile device to the employee. Not all employees
may be willing to shoulder the costs for a device and any costs arising from usage
of the device, especially if the device is mainly used for work purposes [89].

3.4.2 Different devices

When a company buys devices for their employees, they can pick a device that fits
the needs of the organisation. When employees make use of their own devices, the
employee has the choice of which device to use. This means that the organisation
has to support a large number of different devices with different operating systems
and hardware profiles [3, 65], including devices that have constrained resources or
old versions of software. This puts a burden on the organisation to ensure that all
of these devices can access the organisation’s resources.

3.4.3 Security

Organisations take many steps to protect their systems and data from access
by unauthorised third parties(for example, disk encryption and virtual private net-
works). However, employees may not have the same protections on their personal
devices. These unprotected devices may give a malicious third party an easier way
into an organisation’s network. The possibility of physical theft also exists, which
can also put sensitive information at risk [45].

Allowing (and even encouraging) employees to access the organisation’s systems
with their personal devices creates risks that an organisation has to accept before
continuing with the adoption of a BYOD policy. The rest of this section introduces
the risks involved in allowing employees to use their personal mobile devices.

18 CHAPTER 3. BYOD

Mobile devices that are unsecured or not properly secured can lead to sensitive
systems and data being compromised or manipulated [26]. This compromise can
happen because of a disgruntled employee [3] or by an employee’s device being
compromised [21].

It is also possible for employees to introduce malware, such as spyware or ran-
somware, into an organisation’s systems [11]. Introduction of malware into an
organisation’s network can have widespread repercussions, and great care must be
taken against malware. These disadvantages, and especially the security risks, need
to be kept in mind when designing a solution for organisations that have adopted
a BYOD policy.

3.5 Conclusion

This chapter presented BYOD, as well as the advantages and disadvantages that
adopting such a policy brings. One of the most widely used solutions to reduce the
risks around BYOD is the use of a Mobile Device Management (MDM) solution
[26]. The next chapter is dedicated to examining Mobile Device Management.
Although Mobile Device Management systems solve some of the challenges that are
introduced by a BYOD policy, it does not solve its problems.

CHAPTER 4

Mobile Device Management systems

4.1 Introduction

To mitigate some of the risks that come with personal devices, many organisations
deploy a Mobile Device Management system to personal devices before allowing
them to access the organisation’s network and sensitive resources [26]. Since MDM
systems are integral to the problem and, by extension, to the solution, it is important
to establish the design science constructs for mobile device management.

This chapter defines Mobile Device Management, followed by an overview of the
typical architecture of MDM systems, introducing the components that are present
in these systems. After that, the author presents how such a system would be
deployed to organisations, describing the phases involved in such a deployment.
Finally, the chapter concludes by giving an overview of the threats that can be
leveraged against a Mobile Device Management system.

4.2 Defining Mobile Device Management

There are a number of definitions and descriptions of Mobile Device Management
in existing literature. Much of the literature drops the word “Mobile” and simply
use the phrase “Device Management,” since most devices that require such a system
are mobile. The author will be using the two phrases interchangeably during this
research.

Kravets et al [45] describes Mobile Device Management as the administration,
monitoring, integration and securing of mobile devices to optimise security and
functionality of the mobile devices while protecting the organisation.

Bui et al. mentions that MDM systems are multi-component software solutions
used by the IT departments of an organisation to achieve these goals [16]. The
system is applied across multiple device operating systems and service providers.
These systems are applied to ensure the security of the organisation’s network and
data [72], while simultaneously allowing employees to optimally perform their work

78).

19

20 CHAPTER 4. MDM SYSTEMS

These various MDM definitions have been harmonised by the Open Mobile Al-
liance as part of their initiative to standardize MDM systems [52]. The Open Mobile
Alliance defines Mobile Device Management as follows [4]:

“Device Management refers to the management of Device configuration
and other managed objects of Devices from the point of view of the Man-
agement Authorities. Device Management includes, but is not restricted
to setting initial configuration information in Devices, subsequent up-
dates of persistent information in Devices, retrieval of management in-
formation from Devices, execute primitives on Devices, and processing
events and alarms generated by Devices.”

In addition to the core functions mentioned in the previous paragraphs, many
MDM systems also offer additional functionality, like remote administration, asset
management, remote lockout and installing updates, both at system and application
level [65]. The tools may also offer features such as file synchronisation and in-
application tech support [45].

To allow an MDM system to function optimally, it requires a number of different
components. The next section describes these components and the communication.

4.3 Architecture of an MDM system

Figure 4.1 shows the four main components in an MDM system. The Open
Mobile Alliance identifies three components that are essential to implement a Device
Management (DM) system: a DM server (1), a data repository (2) and a device
client (3) [4]. Rhee et al. add a management console [80] - numbered (4) in
figure 4.1. The following subsections give an overview of these four components.

1: Server

oo

J y L
g IIITIT o) (I
5
PN 3: Mosile

4: Adminisirator client
conscls

o>
=]
[

2:Data
repositary

Figure 4.1: Mobile Device Management components

4.3.1 Server

The Device Management server is a software component that interacts with the
clients installed on mobile devices [87]. This server is responsible for sending the

4.4. DEPLOYING AN MDM SOLUTION 21

device management settings to the client and keeping track of registered devices
[80]. The initial device management settings, as well as updated settings, can be
distributed to the mobile clients either by utilising a direct connection or via a push
notification [79].

4.3.2 Data repository

The data repository is a data store that the Device Management server can read
and write management configurations to [4]. This data repository can also be used
to store the logs from configuration events [16], as well as associations between users
and devices [42].

4.3.3 Mobile Client

The device client (also referred to as an agent, mobile device client or mobile
client) is the component that runs on the mobile device [28]. This component
(also called the agent) is responsible for applying management configurations on
the device and transmitting whether or not the settings were applied back to the
server [45]. The device client is usually OS-specific since it needs to access API’s
that are unique to each operating system [91].

4.3.4 Administrator console

The management console is an application that allows a stakeholder to access
and manage the device management system and settings [32]. This application is
used to modify the device management settings and to fine-tune the MDM system.

Once all the components are in place and configured, the system can be deployed
in an organisation. The next section presents the steps involved in successfully
deploying an MDM solution across an organisation.

4.4 Deploying an MDM solution

Once an organisation has decided to make use of an MDM system, the system
needs to be deployed in the organisation. Rhee et al. [80] identify five discrete steps
in the deployment of an MDM system. These five steps are:

Configuration of the MDM system

Installation of the mobile client

Authentication of the mobile client

Instruction from the server to the mobile client

Reporting from the mobile client to the server

Each of these five steps is presented in more detail in the following sections.

22 CHAPTER 4. MDM SYSTEMS

4.4.1 Configuration of the MDM system

Before the MDM client is installed on the mobile devices, the device management
policies are configured from the administrator consoles. Additionally, the devices
that will be receiving the client software is registered on the server at this point
[80]. This step is mostly executed by the system administrators with input from
other stakeholders.

4.4.2 Installation of the mobile client

In this step, the MDM client is distributed to and installed on mobile devices
[80]. After installation, the client retrieves the device management configuration
from the MDM server.

The Open Mobile Alliance [6] identifies four different methods of receiving (boot-
strapping) the initial device management configuration, namely

e a factory image. The MDM client and configuration is added directly to
the device’s factory image.

e a smartcard. The MDM configuration is loaded securely from a Smartcard
directly onto the devices.

e initiation by the client. The MDM client contacts the server and securely
loads the MDM settings.

e initiation by the server. Before the MDM client is activated, it is registered
with the server. Once the MDM client is activated, the server initiates the
process of setting up the mobile client.

In practice, the factory image and smartcard methods are not used often, as
they require access to physical hardware or proprietary software not owned by the
organisation. More often, the organisation will require the user to install the MDM
client, after which the configuration of the client will be initiated either by the
server or the client.

Once the MDM client has been installed and the MDM client configured, the
MDM client needs to authenticate the user that owns the device. This is presented
in the next section.

4.4.3 Authentication of the mobile client

After the MDM client has been installed, using one of the mechanisms explored in
the previous section, it contacts the MDM server with certain identifying elements
(for example, the device’s unique identifier - the International Mobile Equipment
Identity number, which uniquely identifies every device ever manufactured). If the
devices have been registered on the server as part of the configuration step, the
server can take the additional step of verifying the identifying information [80].

4.5. THREATS TO MDM SYSTEMS 23

Additionally, an employee may be required to log in to the system with their com-
pany credentials to allow the system to associate the device with a specific user [16].
This process is shown in figure 4.2.

interaction Authentication J

MDM client MDM server

2 : devicelnformation

1:start

3 - acknowlede
4 - userCredentials

IS knowiedge T U

Figure 4.2: MDM Authentication flow

4.4.4 Instruction from the server to the mobile client

The Device Management server sends the management settings to each mobile
device client that connects to it. Additionally, the server can also send other com-
mands to the client (for example, remote wipe) [5]. This instruction session is
initiated by the client, although the server may use a notification mechanism to
prompt the client to initiate a session [6]. The instruction process is shown in figure
4.3 (steps 1, 2 and 3).

4.4.5 Reporting from the mobile client to the server

The Device Management client controls the device based on the management set-
tings it received in the previous step and reports back to the server [5]. This may
or may not be part of the instruction journey mentioned in the previous section,
depending on the system configuration [6]. Figure 4.3 shows the communication
flow between a client and the server if the Reporting step is included in the com-
munication.

The purpose of an MDM solution is to protect the organisation’s network and
information from malicious third parties. However, the MDM system itself also
exposes an attack surface and can be exploited to gain access to the exact resources
it was designed to protect. The next section covers some of these threats.

4.5 Threats to MDM systems

MDM systems are usually installed to enhance the security of the devices and to
prevent security incidents. However, the MDM system itself can also become an
attack surface, and the developers of these systems need to be aware of the most
common threats.

24 CHAPTER 4. MDM SYSTEMS

interaction Report J

MDM client . MDM server

1: getCommands

2 : commands

H 3 : runCommands
: 4 - reportResults

Figure 4.3: MDM Instruction and Report flow

Rhee et al [80] divides the threats to MDM systems into six categories. These
six categories are:

e Spoofing

e Tampering

Repudiation

Information disclosure

Denial of service

e Elevation of privilege
Leung [49], adds another to the list, namely
e Malware
and Steiner [92] mentions another threat,
e Users
All of the threats mentioned above attack the confidentiality, integrity or avail-

ability of the MDM system. The rest of this section is dedicated to presenting the
threats listed above and how they apply to MDM systems.

4.5.1 Spoofing

Malicious third parties can attempt to masquerade as a legitimate entity by
replaying old interactions [30]. This entity can pretend to be either the mobile
client, to trick the server into disclosing information, or it can pretend to be the
server, to get the mobile client to perform some action [49]. It is also possible for
a malicious entity to replay some administrator actions to gain access to a higher
level of privilege [98].

4.5. THREATS TO MDM SYSTEMS 25

4.5.2 Tampering

A malicious third party can attempt to modify interactions as they are happening,
for example, to modify key values or to inject malicious commands [49].

A malicious entity can also tamper with the hardware, software or operating
system in a mobile client to allow them to gain access to the device client software
and locally stored data or to prevent the software from functioning correctly [36].

In the case of an MDM system, the user may attempt to circumvent the re-
strictions of the system by modifying the client software or changing the operating
system to prevent the MDM system from functioning correctly.

4.5.3 Repudiation

A malicious user of the system may attempt to hide evidence of their actions by
manipulating the data stored on the mobile client or in the data store. An entity
may also attempt to modify the system to give them privileges that they are no
longer entitled to [80].

It is also possible for a malicious entity to flood the system with data, with the
result that essential data and security-related events cannot be easily distinguished
from the data originating from the attacker [71].

The MDM system is vulnerable to repudiation since it collects data about a
user’s actions. If a malicious entity could generate a large amount of data, they
could make it very time-consuming and nearly impossible to find the relevant data
in the flood of generated data.

4.5.4 Information disclosure

Third parties can gain access to sensitive information by either eavesdropping on
communications or by gaining physical access to the device [49]. A malicious entity
can also attempt to gain access to the data storage directly [30]. Depending on the
intentions of this entity, they may decide to leak this information to other parties
[59].

An MDM solution is vulnerable to information disclosure, since the mobile clients
are not under the direct control of the organisation at all times. This means that a
malicious third party could gain access to information by means of a mobile client.

4.5.5 Denial of service

A malicious entity can manipulate data or communications in an attempt to
prevent the MDM system from functioning as intended. This can be achieved by
either inducing a system failure [100] or by flooding the system with work [71].

26 CHAPTER 4. MDM SYSTEMS

A Denial of Service attack can also be in the form of hindering an ongoing in-
vestigation by corrupting, deleting or otherwise tampering with the system’s data
80].

4.5.6 Elevation of privilege

A malicious entity (either an external party or a user) can manipulate the data
and communications in the system to attempt to gain access to parts of the system
that they should not have access to [69]. This can be used to hamper the function-
ality of the MDM system or the attacker could attempt to remove incriminating
evidence.

4.5.7 Malware

Even with all the checks and balances that an MDM system contains, it is still
possible that a user will install malicious software on their device. This malware
may perform a number of attacks, such as stealing credentials or encrypting the
device and demanding a ransom [30].

4.5.8 Users

One of the main threats from users is the possibility of credential sharing. This
may or may not be with malicious intent, but it still compromises the integrity of
the MDM system [49].

Employees may also try to circumvent the system because of its strictness, per-
ceiving the system as too restrictive. The employees may choose not to access
company resources from their personal devices [92].

4.6 Conclusion

This chapter defined MDM and described the components and flows in a typ-
ical MDM solution. It also presented the ways that an MDM solution may be
threatened.

MDM systems help organisations to protect their data and systems by preventing
employees from accessing malicious and compromised resources. However, these
systems are purely preventative and do not allow for investigations or a historical
overview of device usage. To allow investigators to use evidence from these phones,
another mechanism is required.

The standard approach to investigations is to collect digital evidence after an
incident occurred. However, it is also possible to collect potential evidence before
an incident occurs. This process is known as Digital Forensic Readiness and it, as
well as the Digital Forensic process, is presented in the next chapter.

CHAPTER 5

Digital Forensics and Digital Forensic
Readiness

5.1 Introduction

With the widespread use of computers, mobile phones and other digital devices,
digital evidence is taking a more prominent role in legal proceedings. To deal with
this, the field of Digital Forensics was developed. This chapter gives an overview
of Digital Forensics, as well as the concept of digital forensic readiness, since the
proposed model integrates Digital Forensic Readiness into an existing solution.

5.2 Digital Forensics

This section gives an overview of Digital Forensics, starting with the definition and
then giving a summary of the digital forensic process, as laid out by the International
Organization for Standardization (ISO). This section also presents the concept of
Forensic Soundness.

5.2.1 Defining Digital Forensics

During the First Digital Forensic Workshop, Palmer et al [66] formulated the
following definition for Digital Forensics, which is generally accepted as the standard
definition (see for example Reith et al [77], McKemmish [56], Trenwith and Venter
[94] and Carrier [17]):

“The use of scientifically derived and proven methods toward the preser-
vation, collection, validation, identification, analysis, interpretation, doc-
umentation and presentation of digital evidence derived from digital
sources for the purpose of facilitating or furthering the reconstruction
of events found to be criminal, or helping to anticipate unauthorised
actions shown to be disruptive to planned operations.”

Since digital devices, such as computers and smartphones, are used by the major-
ity of people, it follows that these devices will contain evidence (for example, text
messages or emails) when a crime has been committed.

27

28 CHAPTER 5. DF AND DF READINESS

In summary, Digital Forensics is the process of acquiring and interpreting evidence
from devices, while following a process that will prevent contamination and allow
for the evidence to be admissible in the legal process [23].

There are a number of discrete processes in a Digital Forensic investigation, which
will be presented in the next section.

5.2.2 The Digital Forensic process

A number of processes and frameworks for digital forensic investigations has been
developed, for example, Kohn [43], which defined a framework for investigations,
Martini and Choo [55] focusing on a framework for cloud computing and Cohen
[24] creating a framework for network forensics, as well as many others. All these
disparate frameworks were unified in ISO 27043 [40], which the author will be using
throughout this research.

ISO 27043 [40], the standard for Incident investigation principles and processes,
identifies five different types of processes, namely

1. readiness processes

2. initialisation processes
3. acquisitive processes
4. investigative processes
5. concurrent processes

The ISO 27043 is reproduced in figure 5.1. This section presents the standard,
starting with the readiness processes. For the reader’s convenience, the processes
are numbered in both figure 5.1 and the text.

5.2.2.1 Readiness processes

Readiness processes are the processes that are followed to ensure that an organ-
isation can execute a digital forensic investigation when the need arises. These
processes ensure that systems are in place and staff are trained to handle foren-
sic investigations correctly [19]. The readiness process is divided into twelve sub-
processes:

1. Scenario definition
2. Identification of potential digital evidence sources

3. Planning pre-incident gathering, storage, and handling of data representing
potential digital evidence

4. Planning pre-incident analysis of data representing potential digital evidence

5.2. DIGITAL FORENSICS

Concurrent processes o
Scenario definition

2
<Féentifi[:at’mn of potential digital evidence sources Ii—

/l:lanning pre-incident collection, storage and handling of data
(3)

representing potential digital evidence

(5) 4) L
Planning - . . .
Planning pre-incident analysis of data

1

incident 3 L -
detection representing potential digital evidence

@ Defining system architecture |47

C@llmplementing system architecture

&4

Readiness processes

Implementing pre-incident collection, storage and
manipulation of data representing potential digital evidence

v

Implementing pre-incident |«

analysis of data representing Assessment of
potential digital evidence e implementation
gy L

hanges na .
eeded?

©)

Implement incident detection

@

pr

(12) _
Implementation of
assessment results

]
1]
]
0
@
Q
o g
E g c
& |fa g 8
= =
5 3
2 g 2 8 L
gll2]¢ g
=3 =3 B
3 = g
§]
@60 @
pl
5] Potential digital evidence identification }47
& g @
2 Z g ~ ¥
& 2 @ 18] Potential digital evidence -
=3 5 g collection
L=3 = e %
B 2 & 18
E, é" g Potential digital evidence acguisition }17
a 2
o W =
@ 2|8 3 [; |
— s’ Potential digital evidence transp: i <
] L) |
g ¥
5 21
g' |JPDten1ia1 digital evidence storage|
£
5
2
g 23) ¥
% Potential digital evidence acguisiticn }Q—D
[
g)
2 23]] L . .
] ﬁ Digital evidence examinaticn and analysis
3 2 ¢
§ 24}
5 Digital evidence interpretaticn }Q—D
E
E-. Reparting »
£
£ Presentation >
27
L Investigaticn closure »
v Y Al ¥ v

Figure 5.1: ISO 27043 processes [40]

30 CHAPTER 5. DF AND DF READINESS

5. Planning incident detection
6. Defining system architecture
7. Implementing system architecture

8. Implementing pre-incident gathering, storage, and handling of data represent-
ing potential digital evidence

9. Implementing pre-incident analysis of data representing potential digital evi-
dence

10. Implementing incident detection
11. Assessment of implementation

12. Implementation of assessment results

5.2.2.2 Initialization processes

Initialization processes are the first processes that are executed when a digital
forensic investigation commences [95]. This can include processes such as prepar-
ing evidence collection kits, obtaining search warrants and developing a collection
strategy [13]. There are four initialization sub-processes:

13. Incident detection
14. First response
15. Planning

16. Preparation

5.2.2.3 Acquisitive processes

Acquisitive processes are processes that are executed to identify and obtain
sources of digital evidence, as well as processes that are developed to transport
and store the collected sources securely [61]. Examples of these types of processes
are an investigator walking through the crime scene to identify evidence and mak-
ing physical copies of evidence [13]. There are five sub-processes in the acquisitive
category, namely

17. Potential digital evidence identification
18. Potential digital evidence collection

19. Potential digital evidence acquisition

20. Potential digital evidence transportation

21. Potential digital evidence storage and preservation

5.2. DIGITAL FORENSICS 31

5.2.2.4 Investigative processes

Investigative processes are the processes that are executed to extract the evidence
from the sources that were identified as part of the acquisitive processes [18]. These
processes involve systematic searches, reconstruction based on the evidence, as well
as reporting the findings [13]. The sub-processes of the investigative process are:

22. Potential digital evidence acquisition

23. Potential digital evidence examination and analysis
24. Digital evidence interpretation

25. Reporting

26. Presentation

27. Investigation closure

5.2.2.5 Concurrent processes

In addition to the processes mentioned previously, there are also six processes that
do not neatly fit into any category, since they happen throughout the investigation.
These are processes such as documentation, interacting with other investigations
and managing the information flow [64]. The six concurrent process categories are:

28. Obtaining authorisation
29. Documentation

30. Managing information flow
31. Preserving chain of custody
32. Preserving digital evidence

33. Interaction with the physical investigation

This section presented the Digital Forensics process and the different types of
processes that make up a Digital Forensic investigation. However, the author has
not yet addressed how evidence becomes admissible in legal proceedings, known as
forensic soundness. Next, the author presents the concept of forensic soundness.

5.2.3 Forensic soundness

In the previous sections, the author mentioned in passing that data gathered
as part of a Digital Forensic investigation may be used in legal proceedings. This
concept is known as forensic soundness.

32 CHAPTER 5. DF AND DF READINESS

McKemmish [56] defines forensic soundness as ”[t|he application of a transparent
digital forensic process that preserves the original meaning of the data for produc-
tion in a court of law.”

This means that the process used to capture the evidence should be reliable and
accurate and that it should be possible to test or verify the process. In addition, the
original meaning of the data should be preserved, which means that an investigator
or another party should be able to interpret the evidence correctly [56].

Casey [20] mentions that one of the main ways to achieve forensic soundness is by
documentation. This documentation should chronicle where evidence was found,
how it was collected, who handled it and how and where it was stored. This will
allow legal proceedings to determine the integrity and completeness of the evidence.

Digital Forensics as presented in this section is designed to uncover evidence.
However, due to the volatile nature of some electronics, evidence may be destroyed
by the time the forensic team is called in. In an attempt to address this, the concept
of Digital Forensic Readiness was introduced. This is presented in the next section.

5.3 Digital Forensic Readiness

Digital Forensic Readiness falls into the category of acquisitive processes and is
becoming a more important part of the Digital Forensic strategy of organisations
[68], since not having a Digital Forensic Readiness process has both cost and time
implications.

Tan [93] found that, without Digital Forensic Readiness in place, 2 hours of in-
trusion time (i.e. the attacker spent 2 hours on a compromised system) required
about 40 hours of billable time from an investigation team. These 40 hours does
not include detecting the intrusion, collecting the evidence and restoring the com-
promised system. Proactive identification of potential intrusions reduces the cost
of an investigation [35].

This section defines Digital Forensic Readiness and lists the benefits and draw-
backs associated with implementing a Digital Forensic Readiness process.

5.3.1 Defining Digital Forensic Readiness

4

Grobler et al. [34] defines Digital Forensic Readiness as “...the ability of an
organisation to maximise its potential to use CDE [Comprehensive Digital Evidence]
whilst minimizing the costs of an investigation”. Tan [93] identifies the two goals
of Digital Forensic Readiness as

e Maximizing the usefulness of incident evidence data

e Minimizing the cost of forensics during an incident response

5.3. DIGITAL FORENSIC READINESS 33

That is to say, Digital Forensic Readiness is a process where digital evidence is
collected before an incident occurs [76]. Collecting the evidence beforehand allows
the organisation to perform forensic investigations quicker and with less expense[60],
in addition to a number of other benefits, which is presented in the next section.

5.3.2 Benefits and Drawbacks of Digital Forensic Readiness

Before an organisation decides to implement a Digital Forensic Readiness process,
they need to be aware of the benefits and drawbacks related to Digital Forensic
Readiness. This section analyses the benefits and costs related to implementing
digital forensic readiness.

5.3.2.1 Benefits

There are a number of benefits for an organisation that has implemented Digital
Forensic Readiness, namely

e In the case of legal proceedings, the organisation has evidence to protect
itself. If, for example, an employee conducted illegal activities using their
organisational account, the organisation would be liable unless they possessed
evidence incriminating the employee [27].

e Investigations can be conducted quickly and with a lesser impact on business
operations, since evidence has already been collected [12].

e [t can act as a discouragement against attacks by employees if it is known that
the organisation collects this data, since the knowledge acts as a deterrent for
unlawful activity [81].

e [t demonstrates good corporate governance to governing bodies and stakehold-
ers, protecting the reputation of the organisation and reassuring stakeholders
[58].

e [t can improve the outcomes of legal actions and business disputes, since the
evidence is available immediately and in larger quantities [81].

In addition to all the benefits that a Digital Forensic Readiness process brings,
it also has one significant drawback: cost.

5.3.2.2 Cost of implementing digital forensic readiness

The main drawback for organisations looking to implement Digital Forensic Readi-
ness is the large upfront costs associated with such an endeavour. There are several
main areas of cost:

e Updating organisational policies, such as fair use policies and terms of employ-
ment [12]. Reworking policies can be costly since input from a large number
of stakeholders is required. In addition to the costs of reworking the policy,
there are also costs related to making employees aware of the new policies.

34 CHAPTER 5. DF AND DF READINESS

e Training, especially for the employees that will be implementing and main-
taining the Digital Forensic Readiness process [34]. This training could incur
large costs since a trainer is required that is knowledgeable about the Digital
Forensic Readiness process.

e Installing and implementing tools for gathering and securely storing evidence[81].
The licensing and installation costs for the specialised tools required for digital
forensic readiness could incur a large cost for the organisation.

e Preparation for incidents and implementing evidence retrieval capabilities[81].
Making sure that the employees who will be responsible for managing incidents
are trained correctly, have processes in place and are ready to react will incur
costs for the organisation.

e Obtaining legal advice throughout the process [81]. Legal counsel related to
potential incidents, as well as advice on the digital forensic readiness policies,
can incur large costs for an organisation.

Considering all the benefits listed above, along with the potential cost of such a
program, an organisation needs to make the decision about whether or not it should
be implementing digital forensic readiness. Organisations with the financial means
will find great advantage in implementing a Digital Forensic Readiness process.

5.4 Conclusion

This chapter gave an overview of Digital Forensics and Digital Forensic Readiness,
as well as outlining the drawbacks and benefits around implementing a Digital
Forensic Readiness process, listing factors that an organisation will have to consider
before deciding to implement digital forensic readiness.

Digital Forensic Readiness allows organisations to gather potential evidence pre-
emptively from devices. This means that investigators will have access to the gath-
ered evidence without requiring physical access to a device.

This concludes the background section of this research. The next section intro-
duces the reader to a high-level model and architecture as a start to the solution to
the problem stated in chapter 1.

PART Il

Model and architecture

In the third part of the research, the author presents and elaborates on the model
and architecture of a solution to the problem stated in chapter 1. In addition to
presenting the model and architecture, the author also evaluates the proposed
solution based on the umbrella standard for digital forensics, ISO 27043.

35

36

CHAPTER 6

A High-level Model for adding Digital
Forensic Readiness to a Mobile Device
Management (DFR-MDM) System

6.1 Introduction

In the previous chapters, the author covered background information related to
the problem statement, namely BYOD, MDM and the concepts of Digital Forensics
and Digital Forensic Readiness, creating the design science constructs to be used
when defining the model and methods.

This chapter proposes a high-level model for the problem as stated, which is that
“most MDM systems do not include a digital forensic readiness component, leaving
investigators with little to no device-related historical data when an incident does
occur.” The author presents a model for adding Digital Forensic Readiness to a
Mobile Device Management solution using the design science artefacts defined in
the previous chapters.

The first section focuses on the components in the model, presenting both the
changes that have to be made to existing MDM components and adding the nec-
essary new components to facilitate digital forensic readiness. The second section
presents the measures that the model uses to ensure data integrity, namely utilising
digital signatures, using encryption and using checksums.

6.2 Components

This model builds on the standard MDM model as shown in figure 4.1, with four
components, namely a server, administrator console, database and mobile client.
Adding digital forensic readiness to an MDM system requires changes to all the
existing components. There is also one new component, namely a data store. The
revised model is shown in figure 6.1.

This section describes the changes that have to be made to the system in order
to add Digital Forensic Readiness. First, the author presents the changes that have
to be made to the four existing components (the server, administrator console,

37

38 CHAPTER 6. DFR-MDM MODEL
© Trusted networkboundary | Untusted networks

3: M obile
cliznt

Ak

4: Adminigrator
conale

3: M obile
client
i A | T : —
—— — 31
| S | N
[— — Mabile
e —';-'-"’1
2: U=r 5: Datsdors] _
dabha= ' 3: Mobile
] dient

Figure 6.1: Components

database and mobile client) and after that the author explains the new component,
the data store.

6.2.1 Server

In addition to the functionality required of the server in an MDM system, namely
sending device management settings and keeping track of devices, there are some
additional functionality when adding Digital Forensic Readiness to the system.

First, the data collected from devices has to be associated with a specific user,
as mentioned in the previous chapter. The registration process on the server is
expanded to include device identifiers as well as the public keys that are required
to verify uploaded data.

In addition to associating devices with users, the server also accepts the data
that is uploaded by the devices. Specifically, the server has to verify the digital
signatures of all communications sent by the device, receive both the checksums
and the data and verify the data against the checksums.

Finally, the server provides the data collection policies to the mobile device clients.
These policies are defined by the system administrators and controls how and when
data is collected from mobile devices. The administrators make use of the adminis-
tration console to define the policies. The console is presented in the next section.

6.2. COMPONENTS 39

6.2.2 Administrator console

A standard MDM administrator console allows the system administrators to view
and change the device management rules, which are applied to all the mobile clients
known to the system. To extend the administrator console for Digital Forensic
Readiness, the system allows the administrators to view and edit device collection
policies, as well as viewing the users associated with the mobile devices.

In addition to providing administration capabilities to system administrators, the
administration console also enables digital forensic investigations. It allows digital
forensic investigators to combine data and findings in a report that can be presented
as evidence.

The investigation section of the console allows digital forensic investigators to
start investigations, select users to investigate and associate pieces of evidence with
an investigation. Finally, the console produces a coherent report once an investiga-
tion has been completed.

In order to ensure a high degree of trust, audit logs of all actions taken by the
administrators and investigators are kept. These logs can be added to investigation
reports as further evidence of the integrity of the report.

All the data that can be viewed by the administrators and digital forensic in-
vestigators are stored in a database. In the next section, the author presents the
changes made to the database to support the digital forensic readiness process.

6.2.3 Database

To allow the system to ensure the integrity of the collected data, the database that
previously stored only the device management rules now also stores data related
to users, their keys and the identifiers of the devices associated with the users.
The mechanism to ensure data integrity is discussed later in this chapter and the
structure of the database is presented in greater detail in the next chapter.

The next section outlines the changes to the mobile client, which generates most
of the data that is stored in the database.

6.2.4 Mobile client

In addition to the standard MDM functionality, namely blocking access to dan-
gerous resources and enforcing security policies, the mobile client (also referred to
as a device client) requires a number of changes to achieve the goal of adding Digital
Forensic Readiness.

40 CHAPTER 6. DFR-MDM MODEL

The responsibility of the mobile client is to enforce the data collection policies
specified by the system administrators and upload the data that has been collected
to the server in a forensically sound manner.

To achieve this goal, the device client detects when the user accesses a resource
that is deemed high-risk by the collection policy. After that, the device starts
gathering and sending the data to the server, using encryption and checksums to
preserve the integrity of the data. This process is described in more detail later in
this research.

The final component is the data store, which is used to store the data gathered
by the mobile client. The data store is presented in the next section.

6.2.5 Data store

As mentioned earlier in this chapter, the data store is the one component that is
not present in a traditional MDM system.

Since the data that can be collected from the device clients are varied and may
contain diverse data points, a relational database is not a good fit for storing these
types of data. Instead, the model makes use of a more unstructured data store,
which will allow for the storage of the disparate data points collected from the
device clients.

Since this store contains data that may be used in legal proceedings, it is impera-
tive that it can be proven to be correct. The structure of the data store is presented
in more detail in the next chapter.

This section outlined the components in the model and the changes made to them
to support the goal of adding digital forensic readiness. The next section presents
the mechanisms that the model uses to ensure data integrity.

6.3 Ensuring data integrity

To preserve the integrity and digital forensic soundness of the MDM system and
the data it collects, the storage of the data and the communications between the
server and the client have to be secured. This section presents the three mechanisms
that the model uses to ensure data integrity, namely

e Encryption
e Digital signatures

e Checksums.

6.3. ENSURING DATA INTEGRITY 41

6.3.1 Encryption

To ensure that third parties cannot intercept or tamper with data while it is in
transit, all communication is encrypted. This model makes use of both symmetric
and asymmetric encryption. Symmetric encryption makes use of one shared
secret key that is used to both encrypt and decrypt the data while asymmetric
encryption makes use of one key to encrypt the data and another key to decrypt
it [71].

This model makes use of a widely used mechanism where asymmetric cryptog-
raphy is used to establish a session key and symmetric cryptography to secure
communications once a session key has been established.

Specifically, the client generates a symmetric key and encrypts it using the server’s
public key and transmits the encrypted value to the server. The server then decrypts
the key using its private key. Once both parties are in possession of the symmetric
key, they encrypt traffic using a symmetric encryption algorithm. Since the server’s
private key is known only to the server, the symmetric key cannot be decrypted
by any parties eavesdropping on traffic and therefore the traffic is safe, since the
server’s private key is only known to the server [73].

The next section presents digital signatures, which also makes use of asymmetric
keypairs but to ensure integrity rather than secrecy.

6.3.2 Digital signatures

A digital signature is a mechanism that serves the same purpose as a traditional
signature. Only the sender can produce it, but other parties can easily recognise it
as being produced by the sender. Pfleeger and Pfleeger [71] identifies two primary
conditions that a signature must meet, namely that it should be unforgeable and
authentic, i.e. only the sender should be able to produce the signature and any
receiver should be able to verify that the sender created the signature. Additionally,
it should not be alterable or reproducible, i.e. once a message has been signed,
changing the message will invalidate the signature and the re-sending of a previous
message will be detected by the receiver, preventing replay attacks and attempts to
submit false data to the system.

This model makes use of an asymmetric keypair to sign messages sent from the
client to the server. The client signs the message using its private key, and the
server verifies the message using the client’s public key (section 7.2 outlines how
the server come to be in possession of the client’s public key). This mechanism
ensures that the signatures are unforgeable and authentic since only the client has
access to the private key that is used to generate the signatures.

The next section presents the final element mechanism that the model uses to
ensure integrity and authenticity, namely checksums.

42 CHAPTER 6. DFR-MDM MODEL

6.3.3 Checksums

Checksums, more accurately known as cryptographic hash functions, are used
to ensure the integrity of a piece of data. The checksum of the data is computed
and stored along with the data. Then, whenever the integrity of the data has to
be verified, the checksum of the data can be recomputed and compared with the
stored value. The checksum function is designed in such a way that a change of
even a single bit will result in a completely different checksum value [71]. Making
use of checksums ensures data integrity and prevents tampering and the submission
of altered data.

This section presented the three mechanisms that the model use to ensure security
and integrity, namely encryption, digital signatures and checksums.

6.4 Conclusion

This chapter proposed a high-level model for adding digital forensic readiness to
an MDM system. It outlined changes to existing components in the MDM system,
as well as new components that has to be added. It presented the mechanisms used
by the model to ensure the integrity of the data, namely encryption, checksums,
and digital signatures.

As mentioned in chapter 2, once the models of a system have been defined, the
methods can be created. These algorithms are presented in the next chapter.

CHAPTER 7

Methods in a DFR-MDM system

7.1 Introduction

Design science methods are a series of steps that are executed to achieve a partic-
ular task. These methods are based on the constructs and models which has been
outlined in the previous chapters.

In the previous chapter, the author defined a high-level model with various com-
ponents. This chapter introduces the methods that make use of those components
to add digital forensic readiness to a Mobile Device Management system.

There are five main methods that need to be executed for the proposed model to
achieve the goal as stated in chapter 1. These five processes are:

1. Device registration

2. Acquiring an authentication token

w

. Loading policies

4. Collecting data about user activity

(S

. Uploading collected data

This section describes the processes listed above, showing how the components
interact through these different processes to achieve the stated goals. The first
interaction is associating a device with a user through device registration, which is
presented next.

7.2 Device registration

The first process that is executed happens when a user logs into a new device for
the first time. During this process, the device is associated with the user, and the
required keys are exchanged. To ensure the integrity of the data that is exchanged
during this process, it has to be executed on a trusted network. This process is
shown in figure 7.1.

43

44 CHAPTER 7. METHODS IN A DFR-MDM SYSTEM

; ‘ Maobile client
User

Device Registration / !
! 1 login{username, password) _!

' 2 deviceld = getDeviceld()
| 3 keyPair = generatekeyPair()

| 4 registerDevice(username, password,
' " deviceld, keyPair publickey)

L]
=

| 5 hashedPassword = hash(password) E

! 6 verify(username, hashedPassword) _!

o

I 7 userld or FAILURE

|12 SUCCESSFFALURE !

Figure 7.1: Registration Sequence

First, the mobile client prompts the user for their username and password (fig
7.1 step 1). The user’s credentials are required to link the mobile device to the user
on the MDM system.

After the user has been identified, the client obtains a unique identifier for the
device (this can either be randomly generated or obtained from the device) (fig 7.1
step 2) and generates a public/private keypair (fig 7.1 step 3). The device stores
this keypair securely. In most modern devices the task of generating and storing
this keypair is delegated to the operating system because the operating system
can execute the process in a protected environment. As mentioned previously, this
generated keypair is used to secure all other communication between the device
client and the server.

The device client sends the user credentials, a unique identifier and public key to
the remote system (fig 7.1 step 4), encrypted using SSL/TLS. Since this process is
executed in a trusted environment, encrypting traffic using SSL/TLS is sufficient.
The server verifies the user’s login credentials (fig 7.1 steps 5, 6 and 7). If a user’s
credentials are incorrect, the user is notified of the fact (fig 7.1 step 8).

Once the user’s credentials have been verified, the system associates the given
device identifier and public key with the user (fig 7.1 steps 9 and 10) and notifies
the user that the registration has been successful (fig 7.1 steps 11 and 12).

7.3. ACQUIRING AN AUTHENTICATION TOKEN 45

Once a device has been registered, the client software on the device can start
to perform its functions. To prevent malicious third parties from interfering, the
mobile client needs to be authenticated by the server before the server accepts any
other data. Since the mobile client runs in the background, it cannot prompt the
user for credentials every time, and another authentication method is required. This
authentication process is presented in the next section.

7.3 Acquiring an authentication token

Any communication between the client and the server must be authenticated to
prevent third parties from tampering with the data in the system. Since one of the
requirements of this mobile client is to interfere with normal usage of the mobile
device as little as possible, the client cannot prompt the user for their username
and password every time it attempts to connect to the server.

Authentication of interactions when the device client is running in the background
is achieved through the use of an authentication token. This token is generated when
the user logs in, and the token is valid for a specific period. Once the period of
validity has expired, the user is prompted to log in, and a new token is generated.
Since the token on the device client and the token stored on the server has to match
for authentication to succeed, it is also possible to invalidate a token from the server,
should it be necessary.

The sequence for the authentication process is shown in figure 7.2. Note that the
first time this token is generated, is directly after the registration process and as
such, the user will not be prompted for their login credentials again.

The first step in generating an authentication token for a user is prompting them
for their username and password (fig 7.2 step 1). The mobile client then retrieves
the private key that has been stored on the device during registration (fig 7.2 step 2)
and encrypts the user’s credentials (fig 7.2 step 3). The encrypted credentials and
the device identifier (fig 7.2 step 4) are then used to request a new authentication
token from the server (fig 7.2 step 5).

Once the request for the token reaches the server, the server retrieves the correct
public key (fig 7.2 steps 6 and 7) and decrypts the user’s credentials (fig 7.2 step
8). The server verifies the user’s credentials (fig 7.2 steps 9, 10 and 11) and notifies
the user if they are incorrect (fig 7.2 step 12).

If the user’s credentials are correct, the server will generate a new authentication
token (fig 7.2 step 13), store it in the database (fig 7.2 steps 14 and 15) and pass
the token back to the mobile client (fig 7.2 step 16). The mobile client then stores
the token (fig 7.2 step 17) and notify the user that the process has been completed
(fig 7.2 step 18).

46 CHAPTER 7. METHODS IN A DFR-MDM SYSTEM

Mobile client
USFF

]
Device authentication ./

' 1 login{username, password)

>

2 privateKey = getPrivateKey()

encryptedCredentials =
encrypt(privateKey, username, password)

w

I 4 deviceld = getDeviceld()

getAuthenticationToken(deviceld,
encryptedCredentials)

6 getPublickey(deviceld)

_ 7 publickey

(username, password) =

8 decrypt({publickey, encryptedCredentials)

!9 hashedPassword = hash(password)

| 10 verifylusername, hashedPassword)

11 userld or FAILURE

-
<

I
1,
I
12 FAILURE: incorrect username or password |
I
I

<

<
13 authToken = generateToken()
I,
I
| 14 saveToken(userld, deviceld, authToken) _
I
I
. 15
I
<16 authToken i
17 save(authToken) |
I
I
I
I
X
T

|
i
18 SUCCESS/FAILURE :
L
T

Figure 7.2: Authentication Sequence

7.4. LOADING POLICIES 47

After the device client has acquired a valid authentication token; it can run in
the background without any input from the user of the device. All other actions it
performs, namely loading policies, gathering data and uploading the gathered data
happens automatically and without notifying the user. The next section presents
the first of these three processes, namely the loading of new policies.

7.4 Loading policies

One of the strengths of an MDM system is the fact that the management rules
can be updated. The new rules can then be downloaded and applied by the mobile
clients. This functionality can be extended to the data gathering rules, and the
process for loading new data gathering policies is shown in figure 7.3.

The process of downloading a new policy can be started in one of two ways:

1. The server notifies the client that a new policy is available. The mobile client
then downloads the new policy as soon as it can do so.

2. The mobile client periodically checks with the server for policy updates. This
is done to ensure that the new policies are downloaded even if the notification
from the server never reaches the client.

Once the process of downloading a new policy has been started in one of the
two ways described (fig 7.3 step 1), the mobile client retrieves the device identifier
and the private key (fig 7.3 steps 2 and 3), as well as the authentication token
that has been generated as part of the authentication process (fig 7.3 step 4). The
token is then signed using the retrieved private key (fig 7.3 step 5) and the mobile
client sends a request for policy updates to the server, passing the server the device
identifier, authentication token and the digital signature (fig 7.3 step 6).

When the server receives a request for a policy update, it retrieves the public key
associated with the device identifier (fig 7.3 steps 7 and 8), notifying the mobile
client if this operation fails (fig 7.3 step 9). Once the public key has been retrieved,
the server verifies the signature that has been sent by the mobile client (fig 7.3 step
10) and then identifies the user based on their unique authentication token (fig 7.3
steps 11 and 12), again notifying the mobile client if the operation fails (fig 7.3 step
13).

Once the server has gone through all the steps described to verify that this request
is legitimate, it retrieves the policy associated with the requesting user (fig 7.3 steps
14 and 15) and sends it back to the mobile client (fig 7.3 step 16). Finally, the mobile
client stores the new policy (fig 7.3 step 17) and applies the new policy (fig 7.3 step
18).

48 CHAPTER 7. METHODS IN A DFR-MDM SYSTEM

Mobile client Server Database

|
Policy Loading /

1Start _!
|

d = getDeviceld()

N}
o
o
<
(g
o

3 privateKey = getPrivateKey()

i

authToken =
getAuthenticationToken()

k]

i

signature =
sign{privatekey, authToken)

w

1

6 loadPolicyldeviceld, authToken, signature)

.
o

7 getPublickey(deviceld)

Y

_ 8 publickey

9 FAILURE: key invalid

valid = verifySignature(authToken,
signature, publickey)

-

0

11 getUserld{authToken)

i
i
: b, .
i o
1 12 userld or FAILURE
I'\

13 FAILURE: token invalid !

e |
' 14 getPolicy(userid) -
| -
' 15 policy
i

16 policy I

1 17 storel(policy)

' 18 activate(policy)

Figure 7.3: Policy Loading Sequence

7.5. COLLECTING DATA ABOUT USER ACTIVITY 49

Once the mobile client has gone through the process of registration and down-
loading the data collection policy, it can start monitoring the activity of the user
on the device. The next section presents the process of gathering data about the
user’s activity.

7.5 Collecting data about user activity

When a mobile client detects that a user is accessing a resource that is flagged
in the policy, it starts to collect data on the user’s activities. Which activities
are detected is controlled by policy and may include actions like accessing certain
websites (for example, many organisations choose to monitor usage of cloud storage
solutions like Dropbox). The process of collecting data is shown in figure 7.4.

When the data collection process starts (fig 7.4 step 1), the client loads the policy
that specifies which data it should collect (fig 7.4 step 2) and schedules the data
upload to happen at some later time (fig 7.4 step 3). Then, while the conditions
that have been specified in the policy are being met, the client performs a data
collection loop.

The first step in the data collection loop is to retrieve the relevant data from the
device’s Operating System (fig 7.4 steps 4 and 5). Once the client has retrieved the
data, it calculates the checksum om the data (fig 7.4 step 6), generates a unique
identifier for the data (fig 7.4 step 7) and saves the data locally (fig 7.4 step 8).
After saving the data locally, the client prepares for upload.

After collecting the data, the mobile client immediately uploads the checksum of
the data for integrity purposes. To do this, the client retrieves the device’s identifier
(fig 7.4 step 9), the private key (fig 7.4 step 10) and the authentication token (fig
7.4 step 11) that has previously been saved. The mobile client then signs the
authentication token using the private key (fig 7.4 step 12) and sends the signature,
along with the device identifier, data identifier and checksum to the server (fig 7.4
step 13).

When the server receives the checksum upload, it retrieves the public key that is
associated with the device identifier (fig 7.4 steps 14 and 15) and verifies the digital
signature (fig 7.4 step 17). If the public key could not be found or if the signature
is invalid, an error is returned to the client (fig 7.4 steps 16 and 18). If the checks
pass, the server saves the device identifier, data identifier and the checksum to the
data store (fig 7.4 steps 19 and 20). Finally, the server returns the result of the
operation back to the client (fig 7.4 step 21).

After the checksum has been uploaded; the client still needs to upload the data
that has been collected. The uploading of data is done in batches to reduce the
load on the server and network traffic from the client. The data upload process is
presented in the next section.

50 CHAPTER 7. METHODS IN A DFR-MDM SYSTEM

Mobile client ‘ Mobile Operating system | ‘ Serverl ‘ Database | ‘ Datastore |

Data Collection /

|1 Start

!, policies =
| < loadDataCollectionPolicies()

13 scheduleUpload()

loop / [data collection]

| 4 collectDatal)

6 checksum = hash(data)

=
o

~

eneratelniqueldentifier()

=}

i

saveLocally(identifier,
checksum, data)

w

1

9 deviceld = getDeviceld()

1

10 privateKey = getPrivateKey()

i

authToken =
getAuthenticationToken()

-

1

i

signature = sign(privateKey,
deviceld, uid, checksum)

)

HN

| uploadChecksumi(signature, deviceld,

13 |

| 77 uid, checksum) . .

1 1 -

! ! 14 getPublicKey(deviceld) -

! ! 15 publicke

: : :‘ p y ... :

I 16 FAILURE: key invalid ! ! !

! ! I walid = verifySignature(deviceld, uid, !

| | 17 | ! |

| | | checksum, signature, publickey) |

| 18 FAILURE: signature invalid | | |
... e !

| | | 19 store(deviceld, uid, checksum) | -

| | |20 |

| | I(... o= e e

| 21 SUCCESS \ | |

Figure 7.4: Data Collection Sequence

7.6. UPLOADING COLLECTED DATA

7.6 Uploading collected data

Periodically, a few times per day, the client checks if there are data that has to
be uploaded to the server. If there are, the data upload process shown in figure
7.5 is executed. The figure assumes one set of data, but if multiple sets of data are

present, they are batched to reduce network traffic.

Mobile client

Server

‘ Database | ‘ Datastore |

Upload timer
triggered

Data Upload J

2 deviceld = getDeviceld()

1

3 privateKey = getPrivatekey()

i

authToken =
getAuthenticationToken()

o+

i

()]

(checksum, data) =
getLocalStoredDatal)

i

6 signature = sign(privateKey,
authToken, checksum)

i

7 uploadData(signature, authToken,

1 " checksum, data, deviceld) -

| | 8 getPublicKey(deviceld) -

i g Opublickey

| LOFAILURE: key invalid i

X X 11 valid = verifySignature(authToken,

! | checksum, signature, publickey)

! ' 12 getUserld{authToken) -

| <22 userdor FAILURE !

I 14 FAILURE: token invalid ! !

| i 15 getChecksum(deviceld, data.uid) | -
	16 checksum i
17 FAILURE: could not find checksum	i
	calculatedChecksum = i
! ! calculateChecksum(data) ! !	
X X 19 valid = checksum . X	
i i equals calculatedChecksum 1 i	
_ 20 FAILURE: checksums did not match ! ! !	
! 121 save(deviceld, data.uid, data) ! <!	
	22 i
O e mmeme ,	
23 SUCCESS	
T T T T

Figure 7.5: Data Upload Sequence

52 CHAPTER 7. METHODS IN A DFR-MDM SYSTEM

When the data upload process is started (fig 7.5 step 1), the mobile client retrieves
the device identifier, public key, authentication token (fig 7.5 steps 2, 3 and 4) and
the data that has to be uploaded with its checksum and data identifier (fig 7.5
step 5). The mobile client then creates a signature using the private key, the
authentication token and the checksum (fig 7.5 step 6) and uploads the data to the
server (fig 7.5 step 7).

When the server receives a data upload request, it first retrieves the public key
that is associated with the given device (fig 7.5 steps 8 and 9) and sends a failure
back to the client if the key could not be retrieved (fig 7.5 step 10). It then uses
the public key to verify the signature created by the device (fig 7.5 step 11) and
retrieves the user associated with the given authentication token (fig 7.5 steps 12
and 13). If the signature or user could not be verified it returns a failure to the
client (fig 7.5 step 14).

Once the device and user has been verified, the server checks the integrity of the
data. First, it checks that the checksum sent by the client exists in the database
(fig 7.5 steps 15 and 16) and returns an error if it could not find it (fig 7.5 step
17). After that, it recalculates the checksum (fig 7.5 step 18) and verifies that the
checksum sent by the client matches the checksum that was calculated (fig 7.5 step
19), again sending an error to the client if there are any problems (fig 7.5 step 20).
Finally, it saves the received data (fig 7.5 steps 21 and 22) and returns a success
message to the client (fig 7.5 step 23).

This section covered the processes that the model executes to achieve its goal of
enabling digital forensic acquisition as part of an MDM system.

7.7 Conclusion

This chapter presented the five main methods that need to be executed to col-
lect and store potential digital forensic evidence collected from the device clients.
These methods describe how the data is collected and stored to facilitate the digital
forensic process.

In addition to the model, there are more details that are required to implement
this model. The architecture for such a system is outlined in the next chapter.

CHAPTER 8

Architecture of a DFR-MDM system

8.1 Introduction

The previous chapters outlined a high-level model and methods for the implemen-
tation of digital forensic readiness in Mobile Device Management systems, exploring
data integrity mechanisms and showing data flow. However, the high-level is not
detailed enough to be used to create a prototype.

This chapter fleshes out the proposed solution by presenting an architecture that
can be used to apply the proposed model to a system. As mentioned in the previous
chapter, there are four main components, namely:

e a mobile client,
e a server,
e a database and

e a data store.

This chapter presents how each of these components can be architected to achieve
the stated goal of digital forensic readiness in the system. In this process, the author
defines the design science methods. The first component that the author introduces
is the mobile client.

8.2 Mobile client

As mentioned in the previous chapter, after the mobile client application is in-
stalled on a device, the user logs into the client and registers the device to their
account. After registration, the mobile client runs on the employees’ mobile de-
vices and, in addition to the standard MDM functionality, it monitors the user’s
activities. If the application detects suspicious activities, it collects and transmits
the data to the server in a forensically sound manner. The mobile application’s
monitoring and collection activities are controlled via data collection policies that
are downloaded from the server.

This section is divided into two subsections. The first subsection outlines the
various components that form part of the mobile application. The second subsection
demonstrates the program flow through the use of activity diagrams.

53

o4 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

8.2.1 Mobile application components

The mobile client has a number of components, as seen in figure 8.1. This sub-
section explores each of these components in more detail.

User interface
=
=
3 Application logic
=1
W I
od
L
0
E Data collection Database
Metworking
o
EE
g ﬁ Encryption Monitcring
§ B

Figure 8.1: Mobile Client components

The user interface presents information to the user, as well as prompting the
user for details where necessary. In the case of the mobile client, the user interface
prompts the user for their login details, walks them through the registration of their
device and displays information on the application’s functionality.

The user interface is driven by the application logic. This component checks for
the state of the application and takes the appropriate action. These actions include
checking for registration status and checking if the user is logged in. This component
also checks for policies and applies the policies to the monitoring component.

The data collection component is responsible for collecting and storing the data
in the local database. This component integrates closely with the application logic
and monitoring components to collect the specified data.

As mentioned in the previous the chapter, the client stores the data locally before
uploading it to the server in batches. This is the purpose of the database compo-
nent. This component can also be used to store miscellaneous pieces of data that
is required by the client to operate successfully.

8.2. MOBILE CLIENT 55

In order to allow the mobile client to connect to the server, a networking com-
ponent is required. This component controls all communication with the server,
including login, registration, downloading policies, uploading checksums and batch
uploading data.

The final two components, namely the encryption and monitoring components
runs in the Operating System (OS) space. This is because these two components
require privileged access to perform their functions.

The encryption component is responsible for all the cryptographic functionality
in the application. Its functionality includes the encryption of all network traffic,
the calculation of checksums and the signing of data to verify integrity. To prevent
cryptographic functionality from being compromised by third parties, the actual
cryptographic functions are executed in OS-space, not in application-space. All
modern mobile operating systems have support for executing cryptographic func-
tions in OS-space.

The final component is the monitoring component. This component tracks the
activities of the user and notifies the data collection component. This component
also runs in OS-space, since it needs privileged access to events that happen in the
operating system and other applications.

This section presented the components that are present in the mobile application.
The next section shows the program flows that the mobile client executes to achieve
the stated goals.

8.2.2 Mobile application program flow

There are three main application flows that in the application. These application
flows are started by three distinct events:

e when the application is installed,
e when suspicious activity is detected and
e periodically.

Each of these events has distinct program flow associated with it. This section in-
troduces those program flows, starting with the flow that happens after application
installation.

8.2.2.1 On application installation

Right after installation, the application starts up, and the flow that is shown in
figure 8.2 is executed. This flow is responsible for registering the device to a user
and doing the initial download of the data collection policies.

56 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

?

. "Pmmpt user for Iogin\'

- \ details
. A
| Show error message ——— (Send login details to\'l
- _ | sarvar J
. A
. " Reti y
af etrieve)
A [-\authcntnca:lc-n tc:-kcn/.-
< Valid credentials? > - —]—
yes | Download policies |
A _)
[. . | evice —
| Register device =) S — / \
. ¢ S ~.Jegistered?_~ v, | Start monitoring |
|' Schedule periodic

- Registration ~. \ task)
~-._successful? b g

yes - ‘]7

Figure 8.2: Application installation Activity Diagram

First, the user is prompted to enter their credentials, which is then sent to the
server to be verified. The response from the server will indicate whether or not the
device has been registered before. If the server does not recognise the credentials,
an error message will be displayed to the user.

If the device has not been registered to a user, the user will be asked if they want
to register this device to their account. If the registration fails, an error message is
displayed to the user. If registration succeeds, the process continues.

Once the client has verified that the device has been registered to the user, the
mobile client will obtain an authentication token and download the data collection
policies that are associated with this user. Once the policies have been downloaded,
the client starts the monitoring process and schedule a periodic task to upload any
collected data. The next section will present the program flow that happens when
the monitoring component notifies the client of suspicious activity.

8.2.2.2 On detection of suspicious activity

The monitoring component runs in the background, observing the user’s activity.
When it detects suspicious activity, it starts the process shown in figure 8.3.

First, the mobile client assembles the data into a format that is shared with the
server and calculates the checksum of the data. The client generates a universally
unique identifier [47] for the data and stores the identifier, the data and the calcu-
lated checksum locally. In addition to these key pieces of data, the client also stores

8.2. MOBILE CLIENT 57

®
|

| Transform data |
" A

:

I. Calculate checksum |
A A

}

|" Generate unigue "I
identifier

|

Ii Save data locally :I

., A

:

|"- Upload checksum |
and identifier

|

/" Store result of the
upload

Figure 8.3: Suspicious activity detection Activity Diagram

the device timestamp of when the data was collected, as well as the identifier of the
policy that triggered this collection, for audit purposes.

Next, the checksum of the data and the unique identifier is uploaded to the server,
using the authentication token that was generated during the previous process. The
full checksum upload process was presented in section 7.5.

Finally, the result of the checksum upload (success or failure) is stored locally, and
the mobile client ensures that a periodic task is scheduled to upload the collected
data, as well as any checksums that have not been uploaded successfully. This
periodic program flow is presented next.

8.2.2.3 Periodically

Periodically, a background process is started to verify that the application is still
in possession of a valid authentication token and to upload any collected data. This
process usually runs a few times a day and the exact period can be configured.

This process performs the following tasks in parallel:
e validating the authentication token,

e updating policies,

58 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

e uploading any checksums that have not been uploaded and
e uploading any data that has been collected,

as shown in figure 8.4. Next, the author presents each of these processes separately,
starting with the process that validates the authentication token. The author does
not discuss checksum upload again, as it has been covered earlier in this chapter.

™, ™, ™,
Update policies | | Upload checksums | | Uplcad data |
. S S v . J

|' Validate \ |I
-\authcntica:ic-n tokcn/;

Figure 8.4: Periodic activation Activity Diagram

Authentication token validation

Industry best practises are to expire an authentication token after some period
of time, to limit its usefulness should it be acquired by an unauthorised third party
[50]. To do this, the mobile client prompts the user for their credentials, in order
to get a new authentication from the service. This process is shown in figure 8.5.

First, the mobile client checks the expiry date of the token. If the expiry date is
within a specified period, it initiates the process of refreshing it.

In order to refresh the authentication token, the mobile client prompts the user for
their credentials. Once the user enters their credentials, the mobile client retrieves
a new authentication token from the service. If this process fails, an error message
is displayed to the user, and the user is prompted for their credentials again.

The next process, executed at the same time as the credential refresh, is the
periodic updating of the data collection policies, which is presented next.

8.2. MOBILE CLIENT 59

I' Load token |

.:..---"'Ta<cn rcfrcélﬁ""---.._.

“-._requirgd? - ¥ES xl
:m "='|I- Prompt for login "I
N details |

l" Display error "| _ |
message [Send credentials to |

|
senver !

- <Valid credentials?

|" Retrieve |
authentication token |

no—"Token

_) Teretrieved?
|" Save authentication "I-:" T
taken /= ves

Figure 8.5: Validating and refreshing authentication token Activity Diagram

Updating policies

Since the mobile client keeps a local copy of the data collection policies, it needs
to periodically check if the administrators have updated the policies. This is done
by re-downloading the policy periodically, as shown in figure 8.6.

bt

I..«-‘gﬁould check 1-:.r

x.__h.p-c:-llmes P yes o -
‘m | Download palicies |
L A

Figure 8.6: Refreshing data collection policies Activity Diagram

The final of the parallel processes is the data upload process, which is presented
next.

60 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM
Uploading data

The last process that is executed in parallel is the uploading of the collected data.
This process is shown in figure 8.7.

¢

| Retrieve data |

o a
S
" Datatg ™. . Retrieve datats |
“_upload? A upload /
FI yas L n A
o

I" Divide data into ‘-I

\ batches]

. _,___/

Upload data batches)

L A

. Jl-:l-"""' Upload

ves

- Delete local data |<—

Figure 8.7: Uploading data Activity Diagram

The mobile client loads the data that has been collected, but not yet uploaded,
from the local database and combines the data into batches to reduce network
traffic. These batches of data are then uploaded to the server, as described in
section 7.6. If the data upload fails, another upload will be attempted at a later
time. If the data upload succeeded, the locally stored data is deleted.

This section presented the architecture of the mobile client that runs on the
users’ devices. These mobile clients collect data and transfer it to a server for
further processing. The architecture of the server is outlined in the next section.

8.3 Server

The server receives requests from the mobile clients installed on the devices,
processes these requests and store the results either in the database or the data
store (presented later in this chapter). There are six distinct functions that the
server performs, namely:

e logging the user in

8.3. SERVER 61

e registering a device

generating the authentication token

loading the data collection policies for a user
e receiving checksums from the mobile clients

e receiving data from mobile clients.

In addition to these functions, the server also has some functionality that is used
by more than one of the functions listed above, namely:

e a connection to the database,

e a connection to the data store,

e verifying hashes,

e verifying signatures

e and verifying the authentication token.

The server is visualised in figure 8.8. The top section of the figure shows the six
distinct functions that the server performs and the bottom sections show shared
functionality.

The rest of this section presents the components as shown in the figure, starting
with the shared components.

8.3.1 Shared components

The shared components contain functionality that is used by more than one
of the processes. As mentioned, there are five shared components, two of which
are connections to external components (the database and data store), which are
presented later in this chapter. The other three shared components are used for
signature verification, hash verification and authentication token verification and
are introduced next.

8.3.1.1 Authentication token verification

Before any of the functionality (except login and device registration) can be
executed, the server first needs to verify that the authentication token that is passed
with the request is valid. The process of verifying an authentication token is shown
in figure 8.9.

First, the server looks up the authentication token that is associated with the
device that is making the request. If the authentication token does not exist, it
returns an error to the caller.

CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

62

SEELERERS

SLUNSYIaYD BAB0aY

sala0d uonaa||0d BJEp pEOT

Uay0] UONBINUALINE alelauan

anmap Gula)siGay

uGoT

Hash verification

AlleuoRauny

sjuauodwog p

Data store connection

Figure 8.8: Server architecture

8.3. SERVER 63

1

Retrieve ™ AT e
I | ._~Auth toker-. N0
| authentication token |

L - 2 ',‘
“.__from database .~ ‘Pundﬁf’
yes
(Check authentication .~ Token "
\ match y. ~.match?.~
~

]
(Retrieve token expiry Lo~ Token "]
\ date] -~ valid? -~ i,
L S . .

R '-]yss
Return error
|

| Tokenvalidated ———{ Refurnsuccess |—— .

e A L9 A

Figure 8.9: Authentication token verification

If the authentication token does exist, the server compares the authentication
token received from the device with the authentication token stored in the database.
If these do not match, an error is returned to the caller.

Finally, the server checks the expiry date of the authentication token and returns
an error if the token is expired. If all of these checks pass, the server returns a
success.

Verifying the authentication token is the first part of the process of verifying that
a request is legitimate. The second part is verifying that the signature is correct,
which is presented in the next section.

8.3.1.2 Signature verification

During the device registration process, the mobile client sends a public key to
the server, which is then stored in the database. All subsequent requests from the
client are signed using the corresponding private key. This mechanism allows the
server to verify that a request was sent by the device in possession of the private
key, as shown in figure 8.10.

To verify a signature, the server retrieves the public key corresponding to the
device sending the request and decodes it from the format that it is stored into a
format used by the signature algorithm. Then, it loads the public key, the signature
and the plain text that was initially signed and verifies that the signature was
created with the corresponding private key.

64 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

°
|

.-J . py -~ . .\\‘\‘ na
l. Load public key —————=+% Public key

. found?

—
; yes
|
N __,." \"-. no
| Decode public key | :::""—‘-dc::facged'?":\ !
~
lyes
| _ 4
| i P
‘o) Y Return failure
!. Validate signature |
'l,l'ahd“" | —. Return success |—~ .

T signature? " ‘

!yes

Figure 8.10: Signature verification

If any of these steps cannot be completed, the server returns an error to the caller.
If the process succeeds, a success state is returned.

Verification of the signature is the second part of verifying the origin of a request.
The final shared component is used for hash verification, which is used to verify the
integrity of a request.

8.3.1.3 Hash verification

When data is uploaded to the server, it is imperative that the data has not
been tampered with. To achieve this, the checksum of the data is calculated and
compared with a checksum that has been sent to the server at an earlier time, as
shown in figure 8.11.

[Find previcusly | " Found “~_na
\ uploaded checksum | “~Q|:m-:hsurr'!‘_?!--"
. yas
— | -. ¢
" Calculate data | : Return error
checksums

!' Compare checksums |

_.,-’Cflaecksu n:|:§'~._ﬂ'i‘! !) .

. match? -

Lss Ir' -

Return success

Figure 8.11: Hash verification

8.3. SERVER 65

First, the server looks up the checksum that has been previously sent to it. Next,
it calculates the checksum of the data it has just received. Finally, it compares the
two checksums with each other. If the previous checksum cannot be found, or if the
checksums do not match, an error is returned to the caller.

This section covered functionality that is shared by all the processes in the server.
The next section presents the communication that the server receives from the
mobile client.

8.3.2 Functionality

As mentioned previously, the server performs six different functions that are
invoked by a request from the mobile client. These six functions are presented
next, starting with the login functionality.

8.3.2.1 Log in

The first step when the mobile client is installed on a new device is to log into the
client. The mobile client passes the user’s username and password to the server and
the process shown in figure 8.12 is started. Alternatively, the mobile client can also
pass the server an authentication token. The server returns the resulting status to
the device client.

. | Lookup "'I .~ Token - no
\ authentication token / . found?
yes
V.~ User ™_no
. !'-. Lookup user ,.' . found?,~
Syas

ij‘.l'criry password hash:l _~Password-._ "o

T valid?_
Jres
-~ \lf_ . - .
' floakiipkiavics ' > Device ™, 0 —)* Send error status |

= found?
~
L]

~Device ™ g '.

<_associated with

T user? 7
"
Syes
.~ Device ™~_no) | Send success status |
."'--_,BCTWB?,,-"". S
na
l}'Hs J o

-~ Token ™ " Token

Retrieve auth token “greated? yos ""'---..r,:_ali_tj_?.---"""

yes

Figure 8.12: Login

66 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

First, the user is looked up in the database, and their password is compared with
the stored password hash. Alternatively, if an authentication token was supplied,
the authentication token is looked up. If the user cannot be found in the database,
the password hashes do not match, or the authentication token is not found, the
server sends an Invalid credentials message to the mobile client.

If the user’s credentials are valid, the server looks up the identifier of the device
that is sending this request. If the device making the request is not found in
the database, the server notifies the mobile client with a Device not found
message. If the device is registered to another user, the mobile client is told that
Device belongs to someone else. Finally, if the device has been marked
inactive by an administrator, the server returns Device inactive.

Once the server has checked that the device is active and belongs to the user
attempting to log in, it checks if there is an authentication token associated with this
device. If no authentication token can be found, the server notifies the mobile client
with an Auth token not created. Alternatively, if a token exists, the server
can either send a Auth token expiredor Auth token wvalid, depending on
the token’s expiry date.

At this point, the mobile client may initiate another process, like registration, or
go to running in the background, depending on the response from the server. On
initial installation, the next process to be invoked is the registration of a device,
which is introduced next.

8.3.2.2 Registering a device

Before the mobile client can start collecting data, the device that it is installed
on needs to be registered to a user. The mobile client sends the user’s credentials,
the device identifier and the public key to the server, which initiates the device
registration process shown in figure 8.13.

First, the user’s credentials are verified in the same way as described in the
previous section and an error message is returned if the credentials do not match.

After that, the public key is decoded from the format that is used for data
transmission and stored in the database, along with the device identifier. This
device is then associated with the logged in user.

Once a device has been registered to a user, an authentication token can be
generated, which will allow the mobile client to access server functionality without
requiring the user’s credentials. This process is presented next.

8.3. SERVER 67

?

I "
|' Receive credentials '|
\ and device details |

M, l o
7 valid e_ne i
“.credentials 2" I
Iygg | Retwrn error |
- : i " J
| Decode public key | I
. l - . W
|"Sa\-'e device icientifief'l A
. and public key
e l W,
| Link device to user .l = Return success .l
L. A p. A

Figure 8.13: Device registration

8.3.2.3 Generating an authentication token

To allow the mobile client to function in the background, the system makes use
of a token. This token needs to be refreshed periodically, which will kick off the
process shown in figure 8.14.

7 R .
l' Receive credentials |

\ and device details ;l
— e

I ‘

) A o
“gredentials?”

-.L-es o~
Y N
Retrieve device | ——=< —
l J . jound?.~
— "\\HT'/
; Syes
_r'l‘J“H'\‘
" Devica ™ no
. active? .~
g I -,
yes . 7 \Valid H“>—,.«-|"n | Refurn error ‘l
' “us‘i\g‘naturf}-" | _ .
‘]\r"
— s
P Y _}_..---” .
(Generate token and | 7 Token T M9
expiry date / ~generated?-
\ xpiry dat) generated?-
. ~ —
i Syas
- —

e

(Save fokento o \ Y Y
—= Return success —— | |
l\\ database I l\\ I -

&

- - - g

Figure 8.14: Generate authentication token

68 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

As with the previous two processes, the first step in this process is to verify the
user’s credentials. Once that has been done, the device details are retrieved from
the database, and the server verifies that the device has not been marked as inactive
by an administrator.

Next, the server verifies the request signature against the public key received in
the previous process by following the steps described in section 8.3.1.2. If any of
the checks fails, an error is returned to the caller.

If all the checks pass, the next step is to generate the authentication token and
set the expiry date. The token is generated randomly, and the expiry date is set to
some time in the future. Finally, both these values are stored in the database and
then returned to the caller.

Once the mobile client is in possession of a valid token, it can execute the re-
maining processes, including loading the data collection policies, which is presented
in the next section.

8.3.2.4 Loading data collection policies

Before the mobile client can start collecting data, it needs to know what data
to collect. Which data should be collected is determined by retrieving the policies
from the server. When a mobile client initiates the data collection policy download,
the process shown in figure 8.15 is started.

[Receive auth token "'I
' and signed request |
o~ Valid auth™_ne
.. token?
yes

“Valid request- o

- - - | Return errar |
. 3 - \ I
._.s_fgnaturg_.._. \ y,

yes

| Refrieve user [—+ Return policies | .
. AN -

A

Figure 8.15: Load data collection policies

Similarly to the other processes, the first step is to verify the authentication token
that has been sent. After that, the server verifies the request’s signature against
the public key that has been stored as part of device registration.

8.3. SERVER 69

Once the request has been verified, the server retrieves the user associated with
the authentication token and then looks up the policies that have been associated
with the user (the process of associating policies with a user is presented later in
this chapter). Finally, the processes are transformed into a format compatible with
the mobile client and returned to the caller.

Once the policies has been downloaded, data collection can start on the mo-
bile client. The next point where the client and the server interacts is when data
checksums are uploaded. This is presented next.

8.3.2.5 Receiving checksums

As mentioned previously, the mobile client uploads the checksums as it collects
the data. When a checksum upload request is sent to the server, the process shown
in figure 8.16 is started.

?

/Receive auth 1oken™,

[and gigned |
S checksum A

_Valid auth~._ne
T_token?

yes

¢ VAl raguest — Return failure |

o ' r
._;\gnatur(fl_f_. . .
Jes
I"Ea'.rc.l checksum anu:l"I .
data id ’

— — 1

| Associate with device———| Return success |
. ’y Y A

Figure 8.16: Receive checksums

As with the previous processes, the first steps in this process is to verify the
authentication token and the signature associated with the request and return an
error to the caller if the checks do not succeed.

Once the request has been verified, the server stores the checksum value, the data
identifier, and the collection date into the data store. After this, it associates the
checksum entry with the device identifier.

The final process in the list of server processes is the process of receiving data
from the mobile client. This process is introduced next.

70 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

8.3.2.6 Receiving data

Periodically, the mobile client will send a batch of collected data to the server
to process. When such a request is received, the process shown in figure 8.17 is
started.

e

o
| Receive auth foken 'I
\ and signed data J

. 3'['3 :

<.--"'3.;'alid auth™_no

™. token? 7
[yes
_~Valid request-._no
. signature?
yas
F it o It
| Spiitinte enties | Return error |
'_ A '_ A
Entry ne
<_signatures >——
“.valid?
yes .
=
<._ checksums ~>—
- valid?~~
[yss
_. ™, ™,
| Save entries f——= Return success |
e '_—__.r'

Figure 8.17: Receive data

Again, the first steps in this process is to verify the authentication token and the
signature associated with this request. Additionally, the public key associated with
the device making the request is retrieved from the database.

Next, the batch that was sent by the mobile client is split into separate data
entries and every data entry is processed separately.

For every entry, the entry’s signature is verified against the device’s public key.
Once the signature has been verified, the server looks up the checksum that has
previously been associated with this data identifier and the checksum of the data
is verified as described in section 8.3.1.3. Finally, the data entry is saved in the
datastore. If the checksum verification failed, the data entry is flagged.

8.4. DATABASE 71

This section described the architecture of the server that is connected to by the
mobile clients. The next section presents the database that is utilised by the server
to store its data.

8.4 Database

In order for the system to function properly, the data needs to be stored some-
where. This system makes use of two types of storage, a relational database and a
document store. This section introduces the relational database, visualised in figure
8.18, which stores data related to users, devices, policies and audit events.

device
auth_token
- Ly id BIGINT
id ELTr identifier CHARACTER VARYING(255)
expiry_date TIMESTAMP(E]) WITHOUT TIME ZONE i EOEET
token CHARACTERUARNINC(255] public_key CHARACTER WARYING(2000)
device_id BIGINT - ool EEDT)
user_id BIGINT Va =
user_policy_policies user_policy registered_user
user_policy id BIGINT }' r g id BIGINT id BIGINT
policies_id BIGINT user_id BIGINT password_hash CHARACTER AR YING(255)
usemanne CHARACTER WAR Y ING(255)

registered_user_role_id

registered_user_id BIGINT "

role_jd_id BIGINT
role
id BIGINT

policy_policy_values policy
rale CHARACTER WARYING(255)
policy_id BIGINT Ve > id BIGINT
policy_values CHARACTER W&RYING(255) description CHARACTER AR ¥ ING(255)
entry_id BIGINT ra
audit_event

id BIGINT entry

arguments CHARACTER WARYING(255) id BIGINT

logged_in_user CHARACTER WARYING(255) entry CHARACTER WAR Y ING(255)

methaod CHARACTER WARYING(255)

tirmestamp TIMESTAMP(E) VWITHOUT TIME ZONE

Figure 8.18: Database diagram

The details about the users are stored in the registered_user. This table con-
tains the user’s username, password hash and a unique id for the user that is used
to link the user to entries in other tables. The database also contains a role ta-
ble, shown in table 8.1 that contains all possible roles that a user can have and a
registered_user_role_id table that links a user to one or more roles.

The device table contains the details of devices that have been registered to
users, including the public key associated with the device and the device’s unique

72 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

id | role

1 | ADMIN

2 | USER

3 | FORENSIC

Table 8.1: Roles table

identifier. Additionally, it contains a flag indicating whether this device has been
marked as inactive.

The auth_token table stores the details of the authentication tokens that have
been generated by the system. An entry in this table is linked to both a device and
a user and contains the value of the token and the expiry date of said token.

The majority of the tables that the author has not mentioned yet is related to
the storage of policies. The entry table contains a list of types that a policy can
be, as shown in table 8.2.

id | entry

1 | DNS

2 | CONNECT
3 | INSTALL

4 | PASSWORD

Table 8.2: Entry table

The policy table contains the policy definitions, linked to the entry table and
assigning each policy a unique identifier. Since each policy may have multiple values
assigned to it, the values are stored in the policy_policy_values and linked to the
policy using the policy’s unique identifier.

Finally, the policies have to be linked to users. Since there is a many-to-many rela-
tionship between users and policies, two intermediate tables, namely user_policy_policies
and user_policy, are used to assign policies to a user.

The final table in this database is the audit_event table, which is used to store
the audit events generated by the administrator console (presented later in this
chapter). These entries contain the user who performed the action, the action they
performed and the arguments that were sent to that action. The entry also contains
a timestamp indicating when this action was taken.

This section presented the relational database that is used to store the well-
structured data that is required and generated by the solution. However, some of
the data is not suitable for a relational database and is instead stored in a document
store. This document store is introduced in the next section.

8.5. DATA STORE 73

8.5 Data store

Some of the data that is generated by the solution is not suitable for a relational
database, as the data is unstructured or too complex to be efficiently modelled in
a relational fashion. Additionally, some data should be stored separately from the
main database to allow for redundancy and robustness in the system. This section
shows the structure of the data store for the four pieces of data that is stored here,
namely

e checksums,
e collected data,
e reports and

e audit checksums.

Figure 8.19 shows how storage is structured for the checksum and collected
data objects. The checksum structure contains a unique identifier, the calculated
checksum, the identifier of the device that sent this checksum, the data identifier
generated by the device and the type of the policy that triggered this data collection.
The model also contains the data collection timestamp and the timestamp of when
the data was uploaded.

c Checksum

:P datald String
«P collectionDate Date
«P policyType String
P checksum String
«P deviceld String
P id String
P checksumUploadDate Date

/ EN
: _=
1 i

1

C Data

:P datald String
:P checksumMatch boolean
:P dataType String
:P checksum Checksum
:P dataUploadDate Date
P id String
:P data JSON

Figure 8.19: Data store

74 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

The collected data structure contains a unique identifier, a link to the check-
sum, as well as the data identifier generated by the device and a flag indicating if
the server could verify that the checksums matched at the time of upload. It also
contains the actual data that has been uploaded, the media type of the uploaded
data and the date that the data was uploaded to the server.

The report structure shown in figure 8.20 contains all the details of a report
(reporting is covered in more detail later in this chapter). The details include the
name of the report, a list of the identifiers of users that are being investigated, the
identifier of the user that initiated the investigation and the date the investigation
was initiated. Also, it contains a list of identifiers of the data entries that are relevant
to the investigation, as well as identifiers of audit entries and a flag indicating
whether the investigation has been completed.

C Report

P name String
=P users Set<Long=
:P created Date
«P userld Long
«P investigationClosed boolean
«P datalds Set<String =
P id String
«P auditlds Set<Long=

Figure 8.20: Report store

The last set of data that is stored in the document store is the audit checksums,
shown in figure 8.21. These entries are not stored in the document store because
they are unsuited to relational databases, but rather to ensure integrity should a
malicious third party access the relational database. If the audit logs are modified
in any way, the datastore will still contain the identifiers of the audit logs, as well
as checksums that could be used to verify integrity.

This section presented the document store that is used to store data that is not
well suited to the primary relational database. At various points during this section
and the previous one, the author mentioned functionality related to administration
and digital forensic investigations. The component enabling these are covered next.

8.6 Application console

The final component in the solution is the console. This component has two
main functions, namely administration and forensic investigations, with some shared

8.6. APPLICATION CONSOLE 75

= AuditChecksum

:P hash String
<P auditld Long
P id String

Figure 8.21: Audit checksum store

components. The components of the console can be seen in figure 8.22, showing the
shared components at the bottom and the administration and forensic investigation
components at the top. This section covers these components in more detail. First,
the author presents the shared components.

75}
- = = E
= c = 2 o .
= a o =
s (E||E||E EE |8
E S = = TS @
% | c = 5 5 | £ @
E |z e E = | E =
E E|l|l2 | |@ s =] =
= T = i=) 0 @ @
= w o = = = o
= o = — i
ol IE =
= Hash verification Laogin
@
[=
=
[77] Database Diata store
connection connection

Figure 8.22: Console components

8.6.1 Shared components
There are four shared components in the console, namely
e hash verification,

e login,

76 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

e a database connection and
e a datastore connection.

This section does not cover the database and datastore connection, as these have
been presented previously in this chapter. The hash verification component func-
tions the same as the server’s hash component outlined in section 8.3.1.3.

The login component prompts the administrator or digital forensic investigator
for their username and password and verifies their credentials. Additionally, it
makes sure that the user has the correct authorisation to access the functionality
they are trying to access. This process is shown in figure 8.23.

Promptfor | .~ Valid —“~_no
credentials c[e_:dcrn ial_s?..---'

J=
- Authorised . o I}
to access | Display error

T resource?

wes

= Display resource | .
\ y -

Figure 8.23: Console login process

The shared components enable the functionality of the administrator console
and the digital forensic investigations. Next, the author presents the administrator
console.

8.6.2 Administration console

The administrator console is used by the system administrators to manage users,
as well as their associated policies and devices. This console also gives an adminis-
trator an overview of the system. The rest of this section presents the administration
console, along with mockups on how such a console could be designed.

The policy management section of the console allows the administrators to create
new policies and edit existing policies, adding and removing the collection details,
as shown in figure 8.24. This allows the administrators to adjust the system to
circumstances.

The user management section of the administrator console gives the administrator
the ability to add, view and edit users. To add a user, the administrator enters a
username and a temporary password, which is then written to the database using
the database connection. A mock-up is shown in figure 8.25

8.6. APPLICATION CONSOLE 7

Add policy Al

Description ‘Socwa\ media

Type [CONNECT]

Value www _facebook.com
www.witter.com

. /

Figure 8.24: Mockup of adding a new policy

\
Usemame | demoUser |
Password | ****************** |
Roles] Admin

|| Forensic
Il User
+ Add user

Figure 8.25: Add a new user

Once a user has been created, the administrator can view and edit their details,
as well as viewing their devices and associated policies. The administrator can
deactivate a device, should it become necessary (figure 8.26).

1234-5678-90ab-cdef

cdef-1234-5678-90ab Inactive

5678-1234-90ab-cdef

Figure 8.26: Deactivate a device

Additionally, the administrator can associate and remove policies from a user’s
profile, which will dictate the data that the mobile client collects and sends back
to the server. Having this type of control over the policies associated with a user
allows the administrators to fine-tune the data collection based on the specific cir-
cumstances or statutory requirements.

The system administrators maintain the users, policies and the association be-
tween the two. However, they do not have direct access to the data that has been
gathered from the mobile devices, since this is the purview of the digital forensic
investigators. The next section presents the console that is used by the investigators
to conduct digital forensic investigations.

78 CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

i Policies for user1

[] Install games

|| Password changes

Figure 8.27: Change policies associated with user

[l Social media

8.6.3 Digital forensic investigations

When an incident occurs, and an investigation is started, the digital forensic
investigators need to have access to the data that has been gathered in order to
reconstruct the events that are being investigated. This section describes the digital
forensic investigation component.

Figure 8.28 shows the process that investigators go through in the process of
completing an investigation.

Add data
entries

Complete Generate
investigation report

Start
investigation

Add user

Add audit logs

Figure 8.28: Report steps

First, the digital forensic investigator starts an investigation, entering all the
particulars of the investigation into the system. Next, the investigator selects the
users whose data has to be investigated and add them to the active investigation.

Once users have been added to the investigation, the investigator can browse data
records and audit logs associated with those users and flag relevant entries to be
added to the report.

After the investigator has completed their investigation, they close the investiga-
tion, after which no more modification is allowed. The system generates a report
containing all the data that they have selected as relevant, as well as a document
outline for writing up the investigation.

8.7. CONCLUSION 79

This section presented the console component, both for system administrators
and digital forensic investigators. The next section concludes this chapter.

8.7 Conclusion

This chapter presented the architecture of a solution implementing the high-level
model outlined in chapter 6, covering how each of the components can be architected
to achieve the stated goal of adding digital forensic readiness to an MDM system.

This concludes this section of the research. The next section evaluates the pro-
posed model and architecture according to the international umbrella standard for
digital forensic investigations, ISO 27043.

80

CHAPTER 8. ARCHITECTURE OF A DFR-MDM SYSTEM

CHAPTER 9

Evaluation according to 1ISO 27043

9.1 Introduction

Part of the design science process is to evaluate the artefacts that have been
produced by the designer of the solution. The previous chapters presented con-
structs, models and methods, as well as an architecture to be used to solve the
stated problem.

This chapter evaluates the design science model and methods, as well as the
presented architecture, according to the International Standard ISO 27043 that
governs Incident investigation principles and processes [40].

The standard identifies five different types of processes, namely:
1. readiness processes,

2. initialization processes,

3. acquisitive processes,

4. investigative processes and

5. concurrent processes.

The full digital forensic process, as defined in ISO 27043 is reproduced in figure
9.1. This figure has been modified from the original to highlight where the solution
proposed by this research enables and interacts with the standard.

As highlighted in yellow in figure 9.1, the prototype enables the digital forensic
process in three of the five stages, namely readiness and investigative, as well as
some of the concurrent processes. The rest of this chapter presents how the solution
enables the highlighted processes, as well as showing how it does not interact with
the other process. Processes that are not interacted with are indicated with an
asterisk (*). First, the author covers the concurrent processes.

81

82

CHAPTER 9. EVALUATION ACCORDING TO ISO 27043

Concurrent processes Scenario definition

AUl eoisAyd Ly uoyoesaU|

uoly

‘ Identification of potential digital evidence sources |(7
Planning pre-incident collection, storage and handling of data
representing potential digital evidence
Planning . - "
L Planning pre-incident analysis of data
incident — ; A . —
detection representing potential digital evidence
»
2 v
2 | Defining system architecture
o
& Y
§ ‘ Implementing system architecture
£
3 v
& Implementing pre-incident collection, storage and
manipulation of data representing potential digital evidence
Implementing pre-incident
analysis of data representing Assessment of
potential digital evidence implementation
hange: no
eeded?,
Implement incident detection | yes
Implementation of
assessment results
H Incident detection
@
@
o
e
= o
a Q =
: g s
< g El ® Planning
= a E} N A
= = (=] =
ES E @ 8
g S =4
g F H £ Preparation |«
= g &
S = 3
= Q
Q =
= 3
;—E ;: | Potential digital evidence identification }(——
o & n
S Ed 2 ¥
é ‘g 2 |P0tential digital evidence collecti .I{
Iy s] 0
B = a
% é* g ‘ Potential digital evidence acquisition }(—
@ =
2 g g v
i = g ‘ Potential digital evidence transportation]47
< v
‘F'cltential digital evidence slorage‘
‘ Potential digital evidence acquisition I(—b
2 ‘ Digital evidence examination and analysis }(—;
@
g 7
E. l Digital evidence interpretation }(—}
o
2
E, Reporting >
=
]
>
£ 3
L >
v v v v A

Figure 9.1: ISO 270143 processes [40] with highlighted processes

9.2. CONCURRENT PROCESSES 83

9.2 Concurrent processes

Concurrent processes are applied throughout an investigation since they are ap-
plicable to multiple stages. These processes embody the principles of the digital
forensic process [40].

The solution proposed in the previous chapters covers five of these processes,
namely preserving digital evidence, preserving the chain of custody, documentation,
managing information flow and obtaining authorisation. The solution does not
enable the process of interacting with the physical investigation, since evidence is
collected before the investigation is initiated. The rest of this section lists the digital
forensic concurrent processes and presents how the solution interacts with them.

Preserving digital evidence. The solution preserves the digital evidence it col-
lects from a device by uploading it to a trusted server using various mechanisms to
ensure the integrity of the data, proving that it has not been tampered with.

Preserving chain of custody. The solution preserves the chain of custody for
digital evidence by documenting the process of sending evidence between compo-
nents. This documentation allows for a clear view of how the evidence proceeded
through the system.

Managing information flow. The solution enables the management of informa-
tion flow by attaching metadata to the collected evidence, showing its flow through
the system and verifying the integrity of the data at critical points.

Documentation. Since the solution records all significant events attached to a
piece of evidence, the process can be traced and reproduced. Additionally, the
solution allows investigators to produce this event log in the form of a document.
The solution also produces other documentation, presented in the investigative
processes section of this chapter.

Obtaining authorisation. To make use of the solution, authorisation needs to
be obtained from various parties. To install the mobile component on a user’s
device, the permission of the user needs to be obtained. Authorisation needs to be
obtained to update the policies on the system and, finally, investigations need to
be authorised before being started.

Interaction with physical investigation®*. The solution does not interact with
the physical investigation, as all the evidence are collected before the investigation
starts. When an investigation is initiated, the evidence is already present in the
system.

84 CHAPTER 9. EVALUATION ACCORDING TO ISO 27043

The processes presented in this section interacts with other processes throughout
the entire digital forensic process, as can be seen in figure 9.1. The first set of non-
concurrent processes when the digital forensic process is initiated are the readiness
processes, which are outlined next.

9.3 Readiness processes

Readiness processes are executed to set up an organisation for a digital forensic
investigation. When an investigation is required, the organisation can maximise the
potential of the digital evidence while minimising the costs related to the investi-
gation [40].

The solution proposed in the previous two chapters enables a number of readiness
processes, namely identifying potential digital evidence, the planning and implemen-
tation of pre-incident collection, storage and manipulation, and the definition and
implementation of a system architecture.

This section presented the processes that this solution enables, as well as why
the solution does not interact with the other processes. Processes that the solution
does not interact with are marked with a star.

Scenario definition.* The proposed solution does not cover the scenario defini-
tion process, as scenarios will be specific to each organisation’s threat profile.

Identification of potential digital evidence sources. To allow for the col-
lection of potential evidence, potential evidence sources were identified. This is
required since the evidence collection happens on a device that is not under the
control of the organisation.

Planning pre-incident collection, storage and handling of data represent-
ing potential digital evidence. The previous chapters planned in detail how
the solution would go about the collection, storage and handling of the potential
evidence that the system is set up to collect.

Planning incident detection.* Currently, the proposed solution does not sup-
port automated incident detection. This may be addressed in future work.

Planning pre-incident analysis of data representing potential digital evi-
dence.®* Currently, the solution does not support automated pre-incident analysis.
This may be addressed in future work.

Defining system architecture. In the architecture chapter, the author defined
the system’s architecture, detailing the composition of the components and how
they interact with each other.

9.4. INVESTIGATIVE PROCESSES 85

Implementing system architecture and pre-incident collection, storage
and manipulation of data representing potential digital evidence. A pro-
totype was implemented to prove the feasibility of this solution. In the next part
of this research, the author presents this prototype in more detail.

Implementing and assessment of pre-incident analysis of data represent-
ing potential digital evidence and incident detection.* As mentioned be-
fore, the presented solution does not currently support the automated analysis of
data and incident detection.

After an organisation has completed the readiness processes, investigations will
be less expensive and will be completed quicker. The other categories of processes
deal with completing the actual investigation.

The proposed solution does not enable the initialisation and acquisitive processes,
as it operates during the readiness and investigative phases of an investigation only.
Next, the enabling of investigative processes are presented.

9.4 Investigative processes

Investigation processes are executed when an incident occurs that requires inves-
tigation. They include analysis of evidence, reporting the results and presenting
said results to interested parties [40].

The solution touches almost all of the investigative processes, namely evidence
examination and analysis, evidence interpretation and reporting, as well as the
presentation of the conclusions. There are also two processes that the solution does
not interact with, which is again marked with a star.

Potential digital evidence acquisition.* The solution collects potential digital
evidence as part of the readiness processes. At the point where an investigation is
launched, the evidence has already been collected. As such, the solution does not
touch this process.

Digital evidence examination and analysis. The solution as proposed in the
previous chapters allow investigators to view the data that has been collected, as
well as the metadata related to the collection and processing of the data.

Digital evidence interpretation. The solution allows investigators to view the
data and metadata. The investigators can also compare different sets of data or
view a number of datasets in order to establish a pattern.

Reporting. Once an investigator has selected the datasets that are relevant to
the investigation, the solution has the ability to generate a report that encompasses
the data, allowing the investigator to add their interpretation.

86 CHAPTER 9. EVALUATION ACCORDING TO ISO 27043

Presentation. The solution creates a report during the reporting process. This
report contains prompts to be completed by the investigator. Once the investigator
has completed the prompts, the report should be usable during the presentation
process.

Investigation closure.® The closure of an investigation is a human process and
the proposed solution is not involved in this process.

This section presented the investigative processes as outlined in ISO 27043, show-
ing in which ways the proposed solution enables the various processes. The next
section concludes this chapter.

9.5 Conclusion

This chapter the evaluated the design science artefacts that have been produced
so far against the umbrella standard for digital forensics, ISO 27043. Figure 9.2
shows the revised diagram containing only the processes that are relevant to this
solution. This diagram is used in the final prototype to indicate the process to the
administrators and investigators.

The next part of this research creates the final design science artefacts that are
still missing, namely the instantiations. This is done by first outlining the require-
ments to evaluate the instantiations and then creating the instantiations.

9.5. CONCLUSION

Concurrent processes

| Identification of potential digital evidence sources |<—

Planning pre-incident collection, storage and handling of data
representing potential digital evidence

¥

| Defining system architecture }47

¥

I Implementing system architecture

v

Implementing pre-incident collection, storage and
manipulation of data representing potential digital evidence

Readiness processes

1

Initialization processes

Acqq"lsltlve processes

uonejuswnaog

MOJ} uonewIopul Buibeuepy
uonezuoyne Buiureygo

s=oMhoccccoood Mooos

e

| Digital evidence examination and analysis

v

| Digital evidence interp i I':

Apoisna j0 ureys Buinasald

Reporting

N NN r[

Presentation

Investigative processes

Investigation closure

<« | souapina [eibip Buiniesaid
-«

Figure 9.2: Modified figure showing only relevant processes

88

CHAPTER 9. EVALUATION ACCORDING TO ISO 27043

PART IV

Prototype

In this part, the author presents a prototype based on the model and architecture
outlined in the previous chapters. First, the requirements for such a prototype is
identified, and after that the prototype implementation is presented.

89

90

CHAPTER 10

Prototype Requirements

10.1 Introduction

The previous chapters have covered background information relevant to the prob-
lem statement, namely that most Mobile Device Management systems do not in-
clude a digital forensic readiness component, leaving investigators with little to
no device-related historical data when an incident does occur. The author also
described a high-level model and architecture for a solution to the stated problem.

Before a final prototype can be created, it is necessary to have a set of require-
ments that will allow for the evaluation of the proposed instantiations [75] as part
of the evaluation process of design science. This chapter identifies the requirements
that the instantiations have to adhere to for it to solve the problem.

Shrivathsan [88] identifies five different types of requirements, namely:

e Business requirements High-level goals of the organization.

e Market Requirements These requirement drill into the business require-
ments and outline market needs.

e Functional Requirements Covers the functionality of the product in detail.

¢ Non-functional requirements These are requirements that cannot be mapped
directly to functionality but are necessary for the product to function.

e Ul Requirements These are requirements related to the user interface of
the product.

The rest of this chapter is dedicated to defining the requirements for the product.
The author does this by dividing the requirements into the categories as mentioned
above, starting with the business and market requirements.

10.2 Business and market requirements

Business and market requirements are the high-level goals of the organization
commissioning the project [88].

91

92 CHAPTER 10. PROTOTYPE REQUIREMENTS

The main business requirement for this solution is to reduce the costs of digital
forensic investigations. Gathering data before the incident occurs has both cost
and time implications as mentioned in chapter 5.

An additional requirement is to have more complete data for investigations.
More complete data will allow the organisation to conduct more thorough inves-
tigations and will also speed up investigations since investigators will not have to
search for data.

These are the two business and market requirements that the author identified.
The next section presents the functional requirements that define the product from
a user perspective.

10.3 Functional requirements

Lightsey [51] defines functional requirements as "what the system must accom-
plish or must be able to do.” These requirements translate directly into what the
user can see. The author split the functional requirements into three sections:
mobile requirements, administration requirements and investigation requirements.
First, the author defines the functional requirements related to the mobile device.

10.3.1 Mobile functional requirements

There are four functional requirements related to the mobile client.

The mobile device should be associated with a user. Since the data gath-
ered is for the purpose of attributing actions to employees, a device has to be
linked to an employee. If the data collected from the device cannot be linked to an
employee, it has very little value in an investigation.

The mobile device should collect data about the user’s actions. Data
collection is the primary functional requirement in the system. When a user accesses
a potentially dangerous resource, the mobile device should collect data about their
actions, to simplify future investigations.

The device’s data collection actions should be controlled by the admin-
istrators. Since the threat landscape changes rapidly, the administrators should
be able to change which data is being collected to keep up with new threats and
disable collection rules that are no longer relevant.

The device should upload the collected data to the investigators in a
forensically sound manner. Since the investigators may not have direct access
to the device at the point when an investigation happens, the mobile device should
transmit the data to some system where the investigators can access it at any point
in the future.

10.3. FUNCTIONAL REQUIREMENTS 93

During the exploration of the functional requirements for the mobile device, the
author mentioned that the administrators should control some of the functionality.
Next, the author elaborates on the functional requirements as they relate to the
administrators.

10.3.2 Administration functional requirements

The administrators maintain the users and the policies on the system. This
section presents the functional requirements that will enable the administrators’
tasks.

Administrators should be able to create data collection policies. First,
the administrators should be able to define the policies that the mobile devices use
to collect system data. As mentioned before, the threats to an organisation changes,
as well as device functionality, changes over time, which necessitates policy changes.

Administrators should be able to create new users on the system. As
new employees join the organisation, the administrators should have the ability to
add them to the solution.

Administrators should be able to change the policies assigned to a user.
As the role of an employee in the organisation changes, the policies associated with
the user may change too. Administrators should have the ability to assign new
policies to a user, as well as removing policies that are no longer relevant.

Administrators should be able to view devices associated with a user.
Once a user has been registered on the system and has devices associated with
their username, the administrators should be able to view the devices to allow
them to troubleshoot any issues.

Administrators should be able to mark devices as inactive. When a user
is no longer using a device, the administrators should mark it as inactive on the
system, to prevent data from old devices from being collected.

Administrators are not allowed to view the data that is collected by the system,
as that could be a privacy risk. The only users that can access the data are the
digital forensic investigators. The requirements for those are presented next.

10.3.3 Investigation functional requirements

The final steps in the digital forensic process are related to the investigation of
an incident. This section explores the functionality that is required for a digital
forensic investigator to complete an investigation successfully.

94 CHAPTER 10. PROTOTYPE REQUIREMENTS

The digital forensic investigator should be able to start an investigation.
The digital forensic investigator should be able to start an investigation on the
system, allowing them to associate users and data with the investigation, given
that they have the correct administrative and judicial permissions to access the
data.

The digital forensic investigator should be able to add users to an inves-
tigation. The solution should allow the digital forensic investigator to associate
users with an investigation, effectively placing the user and their data under inves-
tigation.

The digital forensic investigator should be able to view the data related
to the users under investigation. Once a user has been placed under investi-
gation, the digital forensic investigator should be able to view all data related to
the user and add any relevant data to the investigation.

The digital forensic investigator should be able to mark an investigation
as complete. Once the digital forensic investigator is satisfied that they have
completed their investigation and that all relevant users and data have been added
to the investigation, they should have the ability to mark the investigation as com-
plete. Once an investigation has been completed, the system should not allow any
changes to it.

The digital forensic investigator should be able to generate a report from
a completed investigation. Once an investigation has been completed, the sys-
tem should allow the digital forensic investigator to generate a report containing all
the relevant findings.

Mobile Administration Investigation
Associate with user Create collection policies Start investigation
Collect data Create new users Add users
Controlled by administrators | Change assigned policies View data
Forensically sound View devices Complete investigation
Deactivate devices Generate report

Table 10.1: Functional requirements summary

This section presented the functional requirements that a system should adhere to
in order to solve the stated problem. These functional requirements are summarized
in table 10.1. The next section analyses the non-functional requirements of the
system.

10.4. NON-FUNCTIONAL REQUIREMENTS 95

10.4 Non-functional requirements

Non-functional requirements are constrains placed on a system [82], such as avail-
ability. Pandey et al [67] defines non-functional requirements as system properties
and Chung and Leite [22], as well as Nuseibeh and Easterbrook [63], mentions
that non-functional requirements could also be described as ”quality” attributes or
requirements.

Roman [82] identifies six types of non-functional requirements, namely interface,
performance, operating, lifecycle, economic and political requirements. Roman’s
definition of interface requirements has significant overlap with the UI requirements
as mentioned above and are presented in section 10.5. Additionally, the author could
not identify any significant economic, political and lifecycle requirements, and as
such this section covers performance and operating requirements, starting with the
performance requirements.

10.4.1 Performance requirements

Performance requirements places bounds on the system’s performance. These
could be related to processing time, reliability, security and resource usage [82].
The author identified a number of performance requirements on the mobile device,
server and administrator interface.

Mobile data collection should run in the background. Since the purpose
of the client running on the mobile device is to collect data on the user’s actions,
the mobile client should run unobtrusively, unless it requires input from the user.

Mobile data collection should not consume excessive resources. Since
the resources on a mobile device are very constrained, the software running on the
mobile device should be resource efficient, as not to impact the functionality of
other applications negatively.

The server should always be available. Since the mobile devices can upload
data to the server at any time, the server should always be available to receive
requests from mobile clients.

The server should complete operations in a reasonable time. Since a
potential large number of mobile devices may be connected to the server at any
time, the server should complete operations efficiently and as quickly as possible.

The server should ensure the identity of the mobile device. To prevent
a malicious party from corrupting the data in the system, the server should verify
the identity of the mobile client before accepting any data from it.

96 CHAPTER 10. PROTOTYPE REQUIREMENTS

The administration console should be available during business hours.
Since all the users making use of the console will do so during business hours, it is
imperative that the administration console be available during those times.

The administration console should be access controlled. Only users who
have been given access to the system should be allowed to access the system.

Access levels should be verified before a user is allowed access to any
sensitive functionality. To prevent horizontal privilege escalation, the user’s
access level should be checked before they are allowed access to any functionality.

This section explored the performance requirements that the author identified.
The next section presents the operating requirements.

10.4.2 Operating requirements

Operating requirements are requirements related to the operation of a system,
for example distribution of components, skill level considerations and availability
82].

Mobile data collection should not interrupt the user. Since the mobile
client is supposed to run in the background, it should not interrupt or impact the
user unless absolutely necessary.

The server should be accessible from anywhere. The users will carry their
mobile devices around with them and as such, the mobile device should be able to
connect to the server from anywhere.

The administration console should be accessible inside the organisation’s
network. Since the administrators and digital forensic investigators will be ac-
cessing the console while at work, the console should be accessible from anywhere
inside the organisation’s network.

Performance Operating
Run in background Don’t interrupt user
Resource efficient | Server accessible from anywhere
Server availability Console available in network

Server performance
Mobile identity
Console availability
Access control
Verify access levels

Table 10.2: Non-functional requirements summary

10.5. UI REQUIREMENTS 97

This section presented the non-functional requirements that a system should ad-
here to in order to solve the stated problem. These functional requirements are
summarized in table 10.2. The next section explores the user interface require-
ments of the system.

10.5 UI requirements

UT requirements specify how the User Interface of a system should behave [88],
in order to give the user of a system the best experience possible [103]. Roman [82]
defines it more broadly as ”"the ways the component and its environment interact”.
This section presents the User Interface requirements of the solution.

The mobile client should have a login screen. The mobile client should have
a screen to prompt the user for their credentials when it is required.

The administration console should have a login screen. The console should
prompt the user for their credentials before they are allowed to access any resources.

The console should have a screen for viewing and editing policies and
users. The console should allow the administrators to view and edit the user and
policy data that has been stored in the system.

The console should have a screen for managing investigations. To allow
a digital forensic investigator to complete an investigation, the console should have
a screen allowing them to manage their investigations.

Ul
Client login screen
Console screen
View and edit users
View and edit policies
Manage investigations

Table 10.3: UI requirements summary

This section presented the user interface requirements for the solution. These
requirements are summarised in table 10.3.The next section concludes this chapter.

10.6 Conclusion

This chapter identified and explored a number of requirements, including func-
tional, non-functional, Ul and business requirements. These requirements are used
to assess whether or not the proposed prototype solves the problem as stated in
chapter 1.

98 CHAPTER 10. PROTOTYPE REQUIREMENTS

Now that the author has defined the requirements for a prototype, the next
chapter ”demonstrates” the prototype that has been created by the author.

CHAPTER 11

Prototype Implementation

11.1 Introduction

The previous chapters proposed a high-level model and architecture for a solution
to add digital forensic readiness to an MDM system. The chapters outlined the
components, the interaction between the components and how the components
would be structured in such a system, defining the design science constructs, model
and methods.

To show that this model is viable, the author implemented a prototype of the
system, creating a design science instantiation of the artefacts that have been de-
fined. This chapter presents the prototype that has been developed, starting in the
next section.

11.2 Prototype demonstration

The author demonstrates the prototype by utilising a fictional scenario. At every
step, the author describes the scenario (inside the framed blocks), with the points at
which the parties interact with the prototype highlighted in bold and after that
shows how the prototype would function in that scenario. First, an introduction to
the scenario:

ABC Incorporated is hiring a new manager. This manager will work with high-
profile clients and as such have access to some sensitive information related both
to ABC Inc and their clients. The successful candidate will be required to use
their personal device for work purposes. After advertising the job and some
rigorous interviews, the organisation decides to hire Mr X.

The use of the prototype starts when a new employee is appointed. The first of
the actions that have to be taken on the prototype may be performed before the
employee starts their employment.

99

100 CHAPTER 11. PROTOTYPE IMPLEMENTATION

The human resources department (HR) notifies the system administrator that
Mr X will be joining the company. The system administrator, Lucy, registers
Mr X on all the systems, including the MDM system. Since he is the first
manager that will be using his personal device to access confidential informa-
tion, she also sets up the data collection policy for managers.

The first thing that the system administrator sees when she accesses the admin-
istrative console of the prototype, is the login screen (figure 11.1). Once she has
entered her credentials and the system has verified them, she is allowed access and
sees a landing page, showing the current users and policies that has been defined in
the system, which can be seen in figure 11.2.

Figure 11.1: Administration console login

To create new credentials for Mr X, the system administrator clicks on the “Add
user” button on the landing page (seen in figure 11.2) and enters the details of the
user, including the username, a password and the roles that the user will have on
the system. These roles may be

e ADMIN a system administrator
e USER a normal employee
e FORENSIC a digital forensic investigator

or any combination of the above. The system administrator selects the USER role
for Mr X, as he is neither a system administrator or an investigator. The screen to
add a new user can be seen in figure 11.3.

At this point in the process, the user for Mr X has been defined, and Mr X can log
into the mobile application once it is installed on his device. However, no policies
have been associated with Mr X, and as such, any devices associated with him will
not send any data back to the server.

11.2. PROTOTYPE DEMONSTRATION 101

Helle admin!

Administration console

All policies
Type Description Values
DNS Bocial media (DNS) m The process
Tarwnacs prossssas
CONNECT Gonnect = |
SECURITY Security Edit
INSTALL Inztall Edit [—
FASSWORD Password m s s .
CONNECT Cloud storage dropbos m L4
drive.google :“""""'E"""""‘ "
e |
docs. google l ‘—h.]
I =
+ Add Policy ' Ll —_—
All users Administration
Username Roles Policies 1. Add users
) 2. Install client on devics
dmin ADMIN 3. Define policies
4. Azzociste policies with usars
test USER Social media (DNS)
forensic FORENSIC Investlgatlons
1. Start investigation
superlssr ADMIN 2. Examine data
2. Intzrpret potentisl evidence
UsER 4, Generats report
FOREMEIC 5. Present report
demo USER Social media (DMS)
Connact
Security
Install
Password
mng USER Social media (DNS)
Connact
Security
Install
Password
Cloud storage

Figure 11.2: Administration landing page

102 CHAPTER 11. PROTOTYPE IMPLEMENTATION

Add a new user

Username

Password

ADMIN

-

FORENSIC

Figure 11.3: Add a new user

As mentioned Mr X is the first manager to be registered on the new MDM
prototype. This means that all the policies for middle management have not yet
been defined. Specifically, ABC Inc does not allow managers to store company
documents on cloud storage, because of the privacy laws in their country. The
system administrator creates a policy which instructs the mobile client to monitor
for connections to cloud storage providers.

To create a new policy, the system administrator clicks on the “Add policy”
button on the landing page (figure 11.2). The administrator gives the policy a
description and selects the type of the policy, in this case, CONNECT), since the
events that the prototype has to monitor for is connection events. The other policy
types that may be selected are DNS (monitors for DNS lookup events), INSTALL
(monitors application installations) and PASSWORD, which monitors for password
changes.

Next, the administrator enters the values that should trigger the data collection
on the mobile device (figure 11.4). In this case, the administrator enters a list of
cloud storage providers.

Add a new policy

Diescription Cloud storage

Entry type CONNECT

4ropbox

Values |drive.google
docs.google|

Figure 11.4: Add a new policy

11.2. PROTOTYPE DEMONSTRATION 103

After clicking on “Add”, the policy definition is stored in the database and is
ready to be associated with a user. The next step in the process is for the admin-
istrator to associate the policy with Mr X.

To do this, the administrator clicks on the user’s entry on the landing page (figure
11.2) to access the user details page (figure 11.5) and selects the policies that have
to be associated with the user, in this case, the “Cloud storage” policy that has
just been defined. The administrator also selects some other policies that apply to
all users and clicks on the “Save” button.

= Back to console
Hello admin

m rx Sign Out

USER

Devices Policies

Device id Auth token Social media (DNS)
Connect
Security
Install "

Save

Figure 11.5: User details page

When the administrator goes back to the landing page, they can see that there
are now policies associated with Mr X’s account (figure 11.6).

mrx USER Social media (DNS)
Connect
Security
Install
Password

Cloud storage

Figure 11.6: The user has policies associated with it

This completes the actions that can be taken before a new employee has to
interact with the system. The next steps can only be completed once the employee
and their device are physically present.

When Mr X joins the company, he goes through the normal induction process
with HR and undergoes the necessary training. Once he is ready to begin work,
he is taken to the system administrator. She installs the mobile client on
his personal device, setting up device permissions in the process and asks him
to log in using his newly created credentials.

104 CHAPTER 11. PROTOTYPE IMPLEMENTATION

When Mr X comes to her office, the system administrator assists him in installing
the application on his Android device. After the installation is complete, she makes
sure to give the application the correct permissions to allow for monitoring.

After the application is successfully installed, the system administrator asks Mr
X to log into the application using the credentials that have been created on the
system previously and provided to him during his onboarding with HR. The mobile
application login screen is shown in figure 11.7.

DFR-MDM: Login

|I

Figure 11.7: Mobile login

The application verifies his credentials and checks if the device is registered to
him, as described in section 7.2. In this case, it is not as it is the first time he is

logging in.

Device not found

Do you want to register this device to

your account?

Figure 11.8: Mobile registration prompt

The application prompts Mr X to register the device to his account (see figure
11.8 for the prompt). When Mr X taps “Yes”, the application registers the device
and redirects him to the landing page that can be seen in figure 11.9).

11.2. PROTOTYPE DEMONSTRATION 105

®O0&

Policy management

Security patch

Oct 5,201

Figure 11.9: Mobile landing page

106 CHAPTER 11. PROTOTYPE IMPLEMENTATION

Once the device redirects to the landing page, the administrator can verify that
the device has been registered to Mr X by logging into the console and clicking on
his username. This will bring up the screen shown in figure 11.10, where the user’s
details and all devices associated with their account is shown. The administrator
can check that device is shown in the list of devices associated with Mr X. Since
Mr X has only registered one device, only this device is displayed on the console.

< Back to console
Hello admin

m rX Sign Out

USER

Devices Policies
Device id Auth token Social media (DNS) -

223eb545bdad6ele 19e06483-c344-465a-8118-deebBfedBdbTc 0 data records

Figure 11.10: User has a mobile device associated with them

At this point, the user has been configured, the device has been linked to their
username, and the application is running in the background. The application down-
loads the policies that are assigned to Mr X and the device starts monitoring.

As Mr X is making use of his mobile device, the device client is monitoring his
actions in the background. If the device client detects activities defined by the
policies associated with the user, the client collects the data and uploads it to the
server.

After a few months, Mr X’s boss start receiving alarming reports from Mr
X’s employees concerning the way that he does business. After conferring with
HR, they ask the system administrator to check the number of data entries
collected from Mr X’s device.

While the system administrator cannot see the collected data, she can see the
number of data entries that are associated with a user. This is done by clicking on
the name of the user on the landing page to access the user’s details. Next to the
devices associated with the user, the administrator can view the number of data
entries that have been collected from that device (figure 11.11).

11.2. PROTOTYPE DEMONSTRATION 107

< Back to console
Hello admin!

mrx Sign Out

USER

Devices Policies

Device id Auth token Social media (DNS) -
Connect

223eb545bdad6ele 19e06483-c344-465a-8118-deedfed8db7c 5 data records Security

Save

Figure 11.11: Data count is displayed next to the device

The system administrator logs into the prototype’s administration console and
pulls up Mr X’s profile. She monitors the amount of data entries that have been
collected from Mr X’s device and sends the numbers through to HR. After some
discussion with Mr X’s manager and the forensic department, it is decided to
assign an investigator and open an investigation into Mr X’s activities.

At this point, the digital forensic investigator takes over. The prototype allows
the investigator to conduct their investigation by viewing data entries and compiling
all of the entries into a report.

The digital forensic investigator accesses the prototype’s investigation console
through the same login screen as the system administrators, which can be seen in
figure 11.1. When a user logs into the console, the prototype verifies the role that
has been assigned (see section 8.4) and gives them access to the correct functionality.
Once the digital forensic investigator is logged into the system, they land on the
forensic landing page shown in figure 11.12.

This page displays a list of investigations that the digital forensic investigator has
conducted and allows them to continue with previous investigations, start a new
investigation or view the details and reports of investigations that have already been
completed. This page also displays the digital forensic process and the functionality
that is available to the different types of users.

To start a new investigation, the investigator clicks on the “Start investigation”
button. On the next screen, that can be seen in figure 11.13, they enter a name for
the investigation and clicks on the “Start investigation” button. This creates an
entry for the investigation in the data store.

After starting the investigation, the investigator lands on the page shown in figure
11.14. This page shows an overview of the investigation and allows the investigator
access to the data that the system has collected. This same page is displayed if an
investigator continues with an investigation that has been previously started.

108

CHAPTER 11.

PROTOTYPE IMPLEMENTATION

Administration console

Investigations

Name Creator Users Data eniries
Testinvestigation forensic 3 2

Another test forensic 2 4

Another testinvestigation forensic 0 0
Investigation into Mr X forensic 3 7

Start investigation

Data logs

Hello forensic!

The process

!

Complete
Concurs prcessss
Complete ‘

Complete

e

Complete

Administration

1. Add users

2. Install client on device

3. Define palicies

4. Associate policies with users

Investigations

1. Start investigation

2 Examine data

3. Interpret potential evidence
4. Generate report

5. Present report

Figure 11.12: Forensic landing page

Name Investigation into Mr X

Start investigation

Figure 11.13: Start a new investigation

< Back to console

Investigation into Mr X

+ Add user +Add data entry

Users

+Add audit entry

Id Name

Data

Type Collection date

Audit

User Timestamp

Hello forensic!

Sign Out

Complete investigation

Checksum

Data type

Action

Figure 11.14: Investigation overview page

11.2. PROTOTYPE DEMONSTRATION 109

The first action that the digital forensic investigator takes, is to add Mr X to
the investigation by clicking on the “Add user” button on the investigation page
that can be seen in figure 11.14. The prototype prompts the investigator to search
for a user. After searching, the investigator can click on the “Plus” button next to
the user to add them to the investigation. The user addition screen can be seen in
figure 11.15.

Add a user to this investigation

Search | mmx

Id

455

Figure 11.15: Add user to investigation

Once the investigation has been started, and a user added, the digital forensic in-
vestigator can proceed with their investigation. They do this by examining the data
that has been collected from the devices of the users involved in the investigation.

Once the investigator has started the investigation, they look at the data col-
lected from Mr X’s device and add any relevant entries to the investigation
that has been created in the prototype.

To look at and add data entries to an investigation, the digital forensic investiga-
tor clicks on the “Add data entry” button on the main investigation page that can
be seen in figure 11.14. The prototype then shows the digital forensic investigator
a page with all the data entries available. The user can filter the data entries by
clicking on the filters at the top of the table. This screen can be seen in figure 11.16.

The investigator can click on any of the data entries to view the details of that
entry, as shown in figure 11.17. This page shows the details of the data collected,
namely the unique data identifier (data id), the type of the policy that triggered
this collection, which device it was collected from and the checksum of the data, as
well as the format in which the data was transmitted to the server.

Additionally, this page shows the full dataset that was sent from the device, in
the format specified in the data format field. Finally, it shows a full log of the data:
when it was collected, when the checksum and the data was uploaded, as well as
showing when and how the data was verified using the checksums. The prototype
verifies the checksums at key points in the process to show that the data has not
been tampered with.

110 CHAPTER 11. PROTOTYPE IMPLEMENTATION

< Back to Investigation
Hello forensic!

Available data [Sgiow]

Data

CONNECT DNS INSTALL PASSWORD SECURITY UNKNOWN

Collection date Device Type

2017-12-29T17:55:23 183+02:00 223eb545bdag6ete INSTALL | +
2017-12-29T17:55:23.183+02:00 223eb545hdadkete INSTALL I
2017-12-29T17:57:24 484+02:00 223eb545bdag6ete DNS | +
2017-12-29T17:57:29.106+02:00 223eb545hdadkete DNS +
2017-12-29T17:57:37.049+02:00 223eb545bdad6ete DNS +

Figure 11.16: Available data

Entry details

Details Data

4b35afiic-d6e3-4f2c-aida- {
9251C163032 “"action” : "android.intent.action.PACKAGE_ADDED",
"app” : "io.github.aessedaildl.webapp™

Type INSTALL

Device 223eb545bdadGele
Checksum JnITIZK7TWyBXQaw0PZarhFS47FA=

Data format applicationfjson

Activity log

2017-12-29T17:55:23.183+02:00 Data collected from device 223eb545bdadBele. Checksum: JnITizk7\Wy8XQawOPZarhFS47FA=
2017-12-29T17:55:36.002+02:00 Checksum uploaded to server

2017-12-29T17:56:07.271+02:00 Data uploaded to server - checksum verification passed

2017-12-30T11:59:28.787+02:00 Recalculated checksum: Jn(Tizk7Wy8XQaw0PZarhFS47FA=

Add to report

Verify

Figure 11.17: Data entry details

11.2. PROTOTYPE DEMONSTRATION 111

The investigator can tap on the “Verify” button to have the prototype verify
that the checksums calculated throughout the process do indeed match. In addi-
tion to checking the checksums, the prototype also recalculates the checksum for
added verification. This gives the investigator, as well as any disciplinary or judicial
processes, confidence that the data has not been tampered with.

Once the investigator has examined a data entry and has determined that it is
relevant to the investigation, they can either click the “Plus” button on the data
overview page (shown in figure 11.16) or the “Add to report” button on the data
details page (shown in figure 11.17) to add the data entry to the investigation.

When an investigator has added a data entry to the investigation, the prototype
displays the data entry on the investigation overview page, along with the selected
users and other data entries. Figure 11.18 shows an open investigation with three
data entries added to it.

< Back fo console
Hello forensic!

Investigation into Mr X Sign oul

+Ada data entry =+Add audit entry

Users
Id Name

455 mrx

Data

Type Collection date Checksum Data type
INSTALL 2017-12-20T17:55:23.183+02:00 JITIZK7Wy8XQawOPZarhFS47FA= application/json
INSTALL 2017-12-20T17.55:23.183+02:00 JnITIZK7Wy8XQawOPZarhFS47FA= application/json

DNS 2017-12-29T17:57:29.106+02:00 réx401NORqB/2IpzDib0Uy8 TfwU= application/json

Audit

User Timestamp Action

Figure 11.18: Investigation with data entries

While the investigation is in progress, HR discovers that a system administrator
and another employee were working with Mr X. The accomplices are added
to the investigation and the investigator examines their data records as well.
Since one of the employees under investigation is a system administrator, the
investigator can also add audit logs of the system administrator’s actions to
the report.

To add another user to the investigation, the investigator follows the steps de-
scribed previously, by tapping on “Add user” button, searching for the user and
using the “plus” button to add the user to the investigation. This process is repeated
for the second user, as explained before.

To add relevant audit details to the investigation, the investigator taps on the
“Add audit entry” button on the main investigation page that can be seen in figure

112 CHAPTER 11. PROTOTYPE IMPLEMENTATION

11.18. This brings up the page that can be seen in figure 11.19, which displays
a table of the actions that the users under investigation have performed on the
administrator console, in the form of audit logs. The investigator looks through the
audit logs and taps the “Plus” button to add any entries that they deem relevant
to the investigation.

= Back to Investigation
Hello forensic!

Audit logs Sign Out
Audit logs

Timestamp Action User Arguments Checksum

2017-12-21T16:34:23.945+02:00 getUserDetails admin [[userid:20], [model:3) KQrFk7iBkHS1FKXjdoo4cs00ZPE= +
2017-12-21T16:40:22 243+02:00 getUserDetails admin [[userid:20], [model:{]) fSywnE21Qofb2jU/GpVSYBE3BBg= +
2017-12-21T16:49:16.765+02:00 console admin [[model.{1) f6B26se/o7vuVHMePDEMWDaRdw= +
2017-12-22T10:36:05.944+02:00 console admin [[model.{}1) +RZuBwB85M+z3clyin1omdjRslc= +
2017-12-22T10:50:20.299+02:00 getUserDetails admin [[userid:20], [model:{}]) hnDJfRUCCVTY 4zKE6GaXSw+GC k= +
2017-12-22T11:40:23 548+02:00 console admin [[modet{}]] “xhfulxeQgzZ HAWIIk+vXTxmDk= +
2017-12-26T16:08:42.953+02:00 console admin [[model{] AZ+LT+ZBoGXUwNIITEpZUvxQBB0= +
2017-12-27T11:35:39.567+02:00 getUserDetails admin [[userld:20], [model:{}]) M/H9URT2TIeBN9SvwkinDV2i= +
2017-12-29T16:55:30.845+02:00 console admin [[model{}]) 589F 1Y dGYDMAXWIVYEVigbQLT+U= +
2017-12-28T17:00:02 423+02:00 createlser admin [[userCreation:io_github aessedai101 masterspoc. dto UserCreation@5c253a38]] T9fc5pCOxSkikhokWtAOMOuQyge= +
2017-12-29T17:00:02 923+02:00 console admin [[model{}]] He2p0SkvgCoaHXhrszUBV Tkaew= +
2017-12-29T17:08:42.292+02:00 createPolicy admin [[policyCreation:io.github.aessedai101.masterspoc.dto.PolicyCreation@14ccfbb3]] S+AKHEMQGUGHgVEaSM QXFQA= +
2017-12-28T17:08:42.527+02:00 console admin [[modeL{}]] OLEyvLIC+RWbG2dMnw KdIOWABdE= +
2017-12-29T17:08:44 777+02:00 getUserDetails admin [[userld:455], [model{}]) ebmKkdUETelq)jlddVdLSKcZos= +
2017-12-29T17:15:41 144+02:00 updateUserPolicies admin [[userld:455], MILZkbOnJKREgNQAFXHIGEYyAB4= +

[policyUpdate:io.github.aessedai101.masterspoc.dto PolicyUpdate@7ac80bat])

2017-12-28T17:15:41.425+02:00 console admin [[model{] Sp2+qsgPuM15zu/TbFmen3rS5dM= +
2017-12-29T17:30:13.740+02:00 getUserDetails admin [[userld:455], [model{}]) GILTACEEKY IVBH/XLOCp2QFcY= +
2017-12-29T17:32:06 192+02:00 console admin [[model{}]] OHNFASERy303TVipLkpiglychQ= +
2017-12-28T17:32:12 718+02:00 getUserDetails admin [[userld: 1], [modet] TrdTLri¢oS+FRVutnmvrajgaPhg= +
2017-12-29T17:32:14.770+02:00 console admin [[model.{1) dLIz5TlbycDnoyr9R2snY6CJ0g= +
2017-12-28T17:32:16.364+02:00 getUserDetails admin [[userld:455], [model{]] 5J1y0RwWPERDVWWN3AXEXbnpMpcSY= | 4

Figure 11.19: Adding audit entries

The investigator repeats the process of adding users, selecting relevant data en-
tries and adding audit entries until they are satisfied with the evidence that they
have collected. At this point, the investigation overview looks similar to the investi-
gation depicted in figure 11.20 with the investigation containing a number of users,
a set of data entries and audit records, if an administrator or investigator is under
investigation.

11.2. PROTOTYPE DEMONSTRATION

113

= Back to conzole

Investigation into Mr X

Users
Id

10

20

455

Data

Type
INSTALL
DNS
DNS
DNS
DNS
INSTALL
INSTALL

DNS.

Audit

User
admin
admin
admin
admin
admin
mrx

admin
admin
admin
admin

admin

+Add data entry

Collection date

2017-11-15T08:47:55 328+02:00

2017-11-15T08:48:00.660+02:00

2017-11-15T08:48:07.431+02:00

204 7-11-15T08:05:00.057+02:00

2017-11-15T09:10:59.965+02:00

207-12-28T17:55:22.183+02:00

2017-12-28T17:55:23 183+02:00

2017-12-29T17.57:29.106+02:00

Timestamp

2017-12-21T16:34:19.136+02:00
2017-12-21T16:38:59.958+02:00
2017-12-26T16:07:28.408+02:00
2017-12-27T11:35:33.036+02:00
2017-12-29T17:31:44.451+02:00
2M7-12-25T17:33:31.018+02:00
2017-12-259T17:46:24 277+02:00
2017-12-29T18:02:57.614+02:00
2017-12-29T18:19:48.081+02:00
2017-12-29T20:35:37.942+02:00

2017-12-30T00:06:30.319+02:00

Name
admin
demo

mrx

Checksum
InMzk7TWyBX0aw0PZarhFS4TRA=
cvAareVhZpglrecUNxamaRgsFZEU=
rEx401NORgB/2IpzDib0UYET fwli=
BgghNOcDJNelLd2yh13EHOUSY TDw=
UHERWT=TLEPSxkTTG2xIKaBens=
InMzk7WyBX0aw0PZarhFS47FA=
InMzk7TWyBX0aw0PZarhFS4TRA=

réx£01NORgB/2IpzDib0UYET fwU=

Hello forensic!

Sign Out

Data type

applicationfjzson
application/jzon
application/jzon
applicationfjson
applicationfjson
applicationfjzon
applicationfjzson

applicationfjson

Action
console
console
console
console
console
console
getlserDetails
getllzerDetails
console
getlzerDetails

console

Figure 11.20: Investigation covering multiple users, data entries and audit records

114 CHAPTER 11. PROTOTYPE IMPLEMENTATION

Once the investigator is satisfied with the investigation and all relevant data
entries have been added, they can complete the investigation on the system
and generate a report. This report contains all the data entries that the
investigator has highlighted, as well as a report outline. At this point, the
digital forensic investigation may not be complete yet - just the part of the
investigation that happens on the prototype.

The digital forensic investigator is satisfied that the part of their investigation
that happens on the DFR-MDM system is complete and that all relevant data
about Mr X and his accomplices have been added to the investigation created on the
prototype. To mark the investigation on the prototype as complete, the investigator
clicks on the “Complete investigation” button on the investigation overview page
that can be seen in figure 11.20.

Once the investigation is marked as complete, the investigator can no longer
change anything within the investigation, such as adding a user, adding a data
entry or adding audit records. The actions that would allow the investigator to do
that are replaced with one new action: a “View report” button. The completed
investigation page can be seen in figure 11.21.

< Back to console
Hello forensic:

Investigation into Mr X S 0w

Users

Id Name
10 admin
20 demo

mrx

Data

Type Collection date Checksum Data type

INSTALL 2017-11-15T08:47:55.328+02:00 JnMizkiWy8XQaw0PZarhFS47FA= applicationfjson

Figure 11.21: Closed investigation

Once an investigator has completed an investigation, their job is not complete.
They need to report the findings of their investigation to the stakeholders, who may
be law enforcement, management or another party. To expedite this process, the
prototype generates a report structure and includes the data that the investigator
flagged.

The generated report outline contains five sections, with the first four sections
containing a prompt for the report writer:

e Introduction An introduction to give the reader an overview of the purpose
of the report.

11.3. CONCLUSION 115

e Investigation A section that the investigator can use to describe the inves-
tigation they performed.

e Findings The investigator describes the findings that have emerged from the
investigation described in the previous section

e Conclusion A section for the investigator to conclude their report.

e Appendix An appendix containing all the data that the investigator has
added to the investigation, grouped by user.

A complete example of such a generated report can be seen in appendix A.

Once the prototype has generated the report outline, the investigator writes the
report, following the prompts. This report is then presented to the stakeholders.

This section described the functionality of the prototype, using a fictional scenario
to demonstrate the prototype to the reader. The author described every part of the
process that the prototype is involved in, including onboarding new users, setting up
data collection policies, checking for suspicious behaviour, investigating an incident
and reporting on the incident. The next section concludes this chapter.

11.3 Conclusion

This chapter presented the prototype that was built from the model and archi-
tecture outlined in the previous section. The author “demonstrated” the prototype
through the use of a fictional scenario, showing where the prototype interacts with
the various roles present in an organisation.

In the next section of this research, the author critically evaluates the model,
architecture and prototype that has been presented in this research, using a variety
of criteria.

116 CHAPTER 11. PROTOTYPE IMPLEMENTATION

PART V

Evaluation and summary

The final part of this research performs a critical evaluation of the research
presented, revisiting requirements and analysing the benefits and shortcomings.
The author identifies related work and research contributions and concludes the

research.

117

118

CHAPTER 12

Evaluation according to requirements

12.1 Introduction

In chapter 10 the author defined some requirements that a solution needs to
meet in order to solve the problem that has been stated. This chapter analyses how
the proposed solution compares to the requirements stated in chapter 10, applying
the design science evaluation process. This section is divided up in the same way
as chapter 10 - first the business and market requirements, then the functional,
non-functional and Ul requirements respectively.

12.2 Business and market requirements

The two business requirements stated in section 10.2 is to reduce the costs of
digital forensic investigations and to have more complete data for investi-
gations. The solution succeeds in both these goals, as it is no longer necessary to
manually retrieve evidence from users’ devices, reducing costs. Additionally, the
data collection policies can be configured to collect all the data that is required.

12.3 Functional requirements

This section evaluates the solution based on the functional requirements that are
presented in section 10.3 and summarised in table 10.1, following the same structure
as section 10.3.

12.3.1 Mobile functional requirements

The mobile functional requirements defines the functionality of the mobile com-
ponents of the solution.

The mobile device should be associated with a user. The solution registers
a device to a user, linking the device to the user. The solution does not allow for
the link between a user and a device to be destroyed.

The mobile device should collect data about the user’s actions. The
mobile client runs in the background monitoring the user’s actions. If it detects
suspicious activity, it collects and uploads the data.

119

120 CHAPTER 12. EVALUATION ACCORDING TO REQUIREMENTS

The administrators should control the device’s data collection actions.
The solution allows system administrators to define the policies that control the
data collection. System administrators can also select which policies to link to a
user.

The device should upload the collected data to the investigators in a
forensically sound manner. The solution makes use of authentication token,
signatures using keypairs and checksums to verify both the source and the integrity
of the data as it is being sent between components.

The solution meets all the functional requirements for the mobile application.
Next, the author analyses the functional requirements for the administration con-
sole.

12.3.2 Administration functional requirements

The administrative functional requirements define the functionality of the admin-
istrative sections of the solution.

Administrators should be able to create data collection policies. The
solution allows the administrators to create new policies.

Administrators should be able to create new users on the system. The
solution allows the administrators to create new users and assign roles to the new
users.

Administrators should be able to change the policies assigned to a user.
The solution allows the administrators to associate policies with a user, as well as
changing the policies that have been assigned to the user.

Administrators should be able to view devices associated with a user.
When an administrator accesses the user details page, the solution displays a list
of devices that have been linked to the user.

Administrators should be able to mark devices as inactive. On the user
details page, the solution allows an administrator to deactivate a device that is
linked to the user. This deactivation will not destroy the link between the user and
the device, but the device will stop collecting data after the authentication token
has expired.

The solution meets all the requirements from an administrative perspective. Next,
the investigation functional requirements are evaluated.

12.3. FUNCTIONAL REQUIREMENTS 121

12.3.3 Investigation functional requirements

The investigative functional requirements dictate the functionality of the investi-
gation sections of the solution.

The digital forensic investigator should be able to start an investigation.
The solution allows an investigator to start an investigation, which creates an entry
in the database for the investigation.

The digital forensic investigator should be able to add users to an inves-
tigation. Once an investigation has been opened, the solution allows the investi-
gator to search for and add users to the investigation.

The digital forensic investigator should be able to view the data related to
the users under investigation. Once a user has been added to the investigation,
the investigator can view all data entries and audit logs related to the user. The
investigator can also add the data and audit entries to the active investigation.

The digital forensic investigator should be able to mark an investigation
as complete. The solution allows the investigator to mark a solution as complete.
After being marked as complete, the investigation can no longer be modified.

The digital forensic investigator should be able to generate a report from
a completed investigation. Once the investigation has been completed, the
investigator can view a report of the investigation.

Mobile Administration Investigation

Associate with user v' | Create collection poli- | v/ | Start investigation
cies

Collect data v | Create new users v | Add users

Controlled by admin- | v/ | Change assigned poli- | v' | View data
istrators cies

Forensically sound v' | View devices v' | Complete investiga-
tion
Deactivate devices v | Generate report

Table 12.1: Functional requirements *

Table 12.1 lists the functional requirements as summarised in table 10.1 and shows
which of the requirements have been met. Next, the non-functional requirements is
examined.

!Checkmarks indicate that the requirement has been met.

122 CHAPTER 12. EVALUATION ACCORDING TO REQUIREMENTS

12.4 Non-functional requirements

The non-functional requirements are defined in section 10.4 and is divided into
performance and operating requirements. This section follows the same structure.

12.4.1 Performance requirements

Performance requirements place bounds on the performance of the solution.

Mobile data collection should run in the background. After prompting the
user for their credentials, the mobile client runs purely in the background. The only
exception to this is if the mobile client requires the user’s credentials again.

Mobile data collection should not consume excessive resources. The mo-
bile client runs jobs at scheduled times. The prototype makes use of the framework’s
JobScheduler which defers and batches jobs to preserve the device’s resources

[9]-

The server should always be available. Deploying the server application to
multiple physical servers will increase availability. Additionally, the server was
implemented in such a way that it is not necessary to take it offline for maintenance.

The server should complete operations in a reasonable time. The server
does not execute any unnecessary operations and terminates unsuccessful operations
as soon as possible. This reduces the load on the server and ensures that calls to
the server return as quickly as possible.

The server should ensure the identity of the mobile device. The server
makes use of the user’s authentication token to verify that the device belongs to
the user. Additionally, all the requests from the mobile client are signed using a
private key, which the server verifies using the corresponding public key.

The administration console should be available during business hours.
Deploying the administration console to multiple physical servers will increase avail-
ability. Additionally, maintenance can be performed without shutting it down.

The administration console should be access controlled. In order to access
any functionality on the console, the administrators and digital forensic investigators
are required to log in.

Access levels should be verified before a user is allowed access to any
sensitive functionality. The solution checks the access levels of the logged in
user before allowing them to access the functionality on the console. For example,
an administrator will not be allowed to access investigative functionality, and an
investigator will not have access to administrative functions.

12.4. NON-FUNCTIONAL REQUIREMENTS 123

The solution meets all the performance requirements, with the caveat that some
requirements will only be fully met if sufficient hardware is available. Next, the
operating requirements are evaluated.

12.4.2 Operating requirements

The operating requirements place bounds on the operation of the solution.

Mobile data collection should not interrupt the user. The mobile client
runs in the background entirely, except when the user is required to enter their
credentials. The user is only prompted for their credentials when the authentication
token expires.

The server should be accessible from anywhere. The server is designed and
implemented to be accessible from the internet. If the server is deployed inside a
corporate network, the administrators need to verify that it can be accessed from
outside the network.

The administration console should be accessible inside the organisation’s
network. Once the solution has been deployed in an organisation’s network, the
administrators will be able to access the console.

Performance Operating
Run in background | v Don’t interrupt user v
Resource efficient v | Server accessible from anywhere | v'*
Server availability | v'* | Console available in network | v'*
Server performance | v'*
Mobile identity v
Console availability | v*
Access control v
Verify access levels | v

Table 12.2: Non-functional requirements 2

Table 12.2 reproduces the non-functional requirements table 10.1 and shows which
of the requirements have been met. Any requirements that depends on external
dependencies to be fully met is marked with an asterisk. The next section evaluates
the UI requirements.

2Checkmarks indicate that the requirement has been met and asterisks indicate that some
external input is required for the requirement to be met in full.

124 CHAPTER 12. EVALUATION ACCORDING TO REQUIREMENTS

12.5 UI requirements

The Ul requirements for this solution is defined in section 10.5. Ul requirements
define the behaviour of the solution’s user interface. This section evaluates how the
solution meets the Ul requirements.

The mobile client should have a login screen. The mobile client has a login
screen that is displayed when the mobile client requires the user’s credentials.

The administration console should have a login screen. The administration
console shows a login screen to the administrators and digital forensic investigators
before they are allowed access to the functionality.

The console should have a screen for viewing and editing policies and
users. The solution allows the administrators to add and edit users and policies.
Additionally, it allows the administrators to associate and remove policies from
users.

The console should have a screen for managing investigations. The solu-
tion allows the digital forensic investigator to start, close and conduct investigations.

Ul
Client login screen
Console screen
View and edit users
View and edit policies
Manage investigations

NENENENEN

Table 12.3: Ul requirements 3

Table 12.3 reproduces table 10.3, which shows the Ul requirements. The check-
marks indicate which of the requirements have been met. The next section analyses
how well the solution defends against common threats to MDM systems.

12.6 Conclusion

This chapter evaluated the proposed solution according to the requirements that
has been defined in chapter 10. In the next chapter, the author evaluates the
solution critically based on additional criteria.

3Checkmarks indicate that the requirement has been met.

CHAPTER 13

Overall Critical Evaluation

13.1 Introduction

In this research, the author presented a model, architecture and prototype created
to solve the problem as stated, namely that MDM systems are purely preventative
and that it is expensive and complicated to retrieve evidence from personal devices
after an incident occurs.

In this chapter, the work that was done is critically evaluated. Specifically, the
author evaluates how well the solution defends against the threats outlined in chap-
ter 4.5. After that, the benefits and shortcomings of the solution are analysed and
finally, the author addresses the privacy concerns that arise from a solution designed
to collect user data.

13.2 Defence against threats

Chapter 4.5 outlined some common threats against MDM systems, which attack
the confidentiality, integrity and availability of the system. This section briefly
defines each threat and evaluates how well the presented solution holds up against
these threats.

Spoofing. A spoofing attack is when a malicious third party attempts to mas-
querade as a legitimate user by replaying interactions [86]. The solution makes use
of unique identifiers to distinguish data entries, making spoofing attacks ineffective,
since the system will reject any duplicate entries.

Tampering. Tampering is when a malicious third party modifies the interactions
between components as they are happening [57]. The solution protects against these
types of attacks by signing all requests going to the server. Since any interceptors
do not possess the private keys, the signatures will not match and the request will
be rejected.

Repudiation. Repudiation is when a malicious entity attempt to hide their ac-
tions on a system by manipulating the data stored by the system [101]. The solution
logs all activity that happens on the system for audit purposes. The users cannot
change these audit logs, and the data is spread over two storage mechanism, namely

125

126 CHAPTER 13. OVERALL CRITICAL EVALUATION

a relational database and a document store. To fully mitigate this threat the loca-
tions where the data is stored has to be access controlled.

Information disclosure. Information disclosure happens when an unauthorised
third party gains access to sensitive information [102]. To mitigate this threat, the
relational database and document store need to be access appropriately controlled.
This is out of scope for this research, since it is in the purview of database security
specialists.

Denial of service. A denial of service attack happens when a malicious entity
attempts to prevent the system from functioning as intended by flooding the system
with data or commands [62]. The server is stateless and as such more instances of the
server can be added to the server pool to handle a more significant load. However,
to entirely mitigate this threat the organisation will have to consult with an expert
in denial-of-service mitigation, as the server is not the only vulnerable point.

Elevation of privilege. An elevation of privilege attack is when an attacker
manipulates the system in such a way that they gain access to functionality and
data that they are not allowed to access [37]. The solution checks the access levels of
the user before allowing them to use any functionality, which mitigates this threat.

Malware. It is possible for a user to either intentionally or unintentionally install
malicious software on their device, which may compromise the system. The server
and administrator console run on the organisation’s hardware, making it less sus-
ceptible to malware. The organisation can use the MDM part of the system to block
known malicious applications, but new malware is released daily [1], which means
that there is not a 100% guarantee that there won’t be malware on the device.

Spoofing v
Tampering v
Repudiation v
Information disclosure | *
Denial of service v
Elevation of privilege | v
Malware v
Users vOE

Table 13.1: Common threats against MDM systems. !

Users. Users may compromise a system by sharing credentials or by attempting
to bypass the system. To prevent users from sharing credentials, the employee

I'Checkmarks indicate that the requirement has been met, a crossed checkmark that the re-
quirement has been partially met and asterisks indicate that external input is needed for the
requirement to be met in full.

13.3. BENEFITS AND SHORTCOMINGS 127

is required to log into the device for the first time in the presence of the system
administrator. After the device is registered to the user, another user’s credentials
will not work on the device. Since the mobile client runs in the background, the user
will also not be able to bypass the system. The solution has no mechanism to prevent
administrators and investigators from sharing credentials. The administrators and
investigators are a relatively small number of users, they should be trained in how
to use the system securely.

In summary, the solution defends against most of the common threats against
MDM systems, as shown in table 13.1, with checkmarks indicating the threats that
are mitigated. Threats marked with a star requires some outside dependencies
to mitigate fully. Next, the author analyses the benefits and shortcomings of the
solution.

13.3 Benefits and shortcomings

The solution presented by the author to add digital forensic readiness to an MDM
solution has a number of benefits and shortcomings. This section analyses those
benefits and shortcomings, starting with the benefits.

13.3.1 Benefits

There are a number of benefits to using this solution, namely
e Reduced costs,
o faster investigations,
e more complete data and

e cnabling the standard investigative process.

The prototype reduces the costs of a digital forensic investigation by
automating the evidence collection process. Investigators don’t have to extract the
data from the subject’s device manually, eliminating the need for expensive mobile
device forensic software and tools.

Additionally, this speeds up the investigation, as the investigators no longer
have to go through the process of obtaining physical access to the device under
investigation, which may include obtaining warrants and retrieving the device from
its owner.

The solution also collects more complete data, since it collects the data when
it detects the action, utilising the concept of digital forensic readiness, allowing it to
gather transient data which may no longer be on the device when an investigation
is started.

128 CHAPTER 13. OVERALL CRITICAL EVALUATION

Finally, the solution enables the investigative process by allowing the inves-
tigator to examine and collate the data that has been gathered according to the
international standard ISO 27043. The investigator is also able to generate a report
to present to the stakeholders of the investigation.

As mentioned, there are a number of benefits to the solution as presented. How-
ever, there are also some shortcomings, which is explored in the next section.

13.3.2 Shortcomings

While the solution reduces costs and speeds up investigations, it also has some
shortcomings, namely

e Requires cooperation from employees,

e resource consumption,

framework limitations,

lack of granularity in configuration and

e excessive or irrelevant data.

First, the solution requires the employee to install the application on their
phone. If an employee refuses to do so, the investigators will have to obtain a
warrant and analyse the device manually should an incident occur 2.

Another shortcoming is the resources consumed by the mobile application.
While the application was designed to consume minimal resources, it still needs to
run in the background and communicate with the server. This may negatively
impact the battery life and data consumption of employees’ devices, especially if
they make use of low-end devices with insufficient resources.

The mobile application is also limited by the framework and operating
system. Since the operating system on the mobile device controls access to all
resources and data, as well as sandboxing applications, the application can only
detect and collect data on actions if the mobile operating system allows it to do
so. Additionally, different operating systems and different versions of the same
operating system have different rules about what an application is allowed to do.

On the administrative side, the configuration options are not very granular.
The policy configuration does not allow for wildcards, and the policies have to be
applied manually to every user that is created in the system, which may lead to the
administrators being overburdened in a larger organisation.

2Tt may be possible for the employer to force the employee to install the application, but it is
a legal grey area - especially if the device belongs to the employee.

13.4. PRIVACY CONCERNS 129

Finally, the solution may gather excessive or irrelevant data. Especially in
cases where a service may be used for both legitimate and unauthorised activities,
the prototype will gather the data for all the activity on the service. This compli-
cates the job of the investigator, as they have to distinguish between legitimate and
unauthorised activities manually. It may also place limitations concerning time on
investigations.

In addition to the shortcomings covered above, there are also some privacy con-
cerns related to the amount and category of data that is being collected. These
privacy concerns are presented separately in the next section since it is a big draw-
back of such a solution.

13.4 Privacy concerns

There are some privacy concerns around the usage of such a digital forensic
readiness system on mobile devices. The solution gathers a large set of data about
employees’ activities, some of which may be private activities that has no relevance
to the organisation.

Specifically, many countries have laws that govern how individuals’ data may be
collected and stored by organisations. For example, the Protection of Personal In-
formation (POPI) act in South Africa and the General Data Protection Regulation
(GDPR) in the European Union have strict guides as to how data may be collected,
stored and destroyed.

Before any data can be collected, the employee needs to consent to their data
being collected, processed and stored by their employer. This can be achieved
by requiring the employee to sign an agreement to the effect as a condition of
employment.

In some jurisdictions, the employee must be given access to the data that has
been collected about them and information about the processing of the data, should
they request it. In such instances, the employee should be allowed to view the data
without the data being made available to third parties.

Some data regulations also specify the "right to be forgotten,” which allows indi-
viduals to request the erasure of personal data that has been collected about them.
In such a case, the organisation needs to consult with their legal department about
complying without destroying potential evidence.

As with all monitoring software, this solution has some privacy concerns. These
can be mitigated by having written agreements, policies and legal counsel that is
familiar with regulation.

130 CHAPTER 13. OVERALL CRITICAL EVALUATION

During this research some literature was discovered that related to the research
presented. This related work is presented in the next section.

13.5 Related work

This section presents literature that relates to the presented research.

Farjamfar et al. [29] reviews some digital forensic process models as relating to
mobile devices, presenting some of the challenges around mobile device forensics
and covering the various states that a mobile device may be in. The paper then
presents and compares a number of digital forensic process models that have been
proposed in other literature.

Ahmed and Dharaskar [8] explores the state of the art of mobile forensics. Even
though this paper was published in 2008, it still provides value, discussing the differ-
ence between "standard” digital forensics and mobile forensics, how data retrieved
from mobile phones may be used as evidence and some future trends in the mobile
device space.

Grover [36] presents a model for automated data collection from an Android
mobile device to facilitate a digital forensic investigation. This paper focuses on
collecting data that is not collected by other tools and outlines anti-forensic mea-
sures that may be deployed against such a model. The data collection aspects of
the paper align closely with this research.

There are also some other papers exploring how mobile applications collect data
from mobile devices. For example, Buchka and Firsh [15] analysed a malware title
Skygofree, analysing how it collects data from its victims. Similar techniques are
used to collect data to be utilised for digital forensic readiness purposes, also in this
solution.

This section presented literature related to research that has been completed.
The next section outlines the main contributions that this research made to the
state of the art.

13.6 Research contribution

The problem this research attempted to address is the fact that MDM systems
are purely preventative and the author proposed a solution, adding digital forensic
readiness to the MDM system. The author proposed a model for such a system and
showed that it is practical by implementing a prototype.

13.7. CONCLUSION 131

13.7 Conclusion

This chapter evaluated the solution that was presented in various ways. First
by evaluating the solution’s adherence to the specified requirements, second by
exploring how it enables the digital forensic process, third by presenting the benefits
and shortcomings of the solution and finally by presenting privacy concerns.

The next chapter concludes this research by re-examining the original problem
statement, summarising the work done and outlining potential future work.

132 CHAPTER 13. OVERALL CRITICAL EVALUATION

CHAPTER 14

Conclusion

14.1 Introduction

This research presented a model for the addition of digital forensic readiness to
an existing Mobile Device Management solution, as well as an evaluation of the
proposed solution. This chapter concludes the research.

First, the author summarises the research that has been completed. After that,
the author restates and presents the problem statement as stated initially in chapter
1. Finally, some possible future work is outlined, and the research is concluded with
some final remarks.

14.2 Summary

In chapter 1 the author introduced a problem, namely that MDM systems are
preventative, which means that if an incident occurs, the investigators cannot re-
trieve information from the device easily or cheaply. In some cases, it may not be
possible at all.

To solve this problem, the author proposed to add a digital forensic readiness
component to the MDM system, allowing for evidence collection remotely while an
incident is occurring. This component reduces the costs and duration of investiga-
tions since evidence has already been collected.

Chapter 2 introduced the concept of design science and presented how design
science would be applied to this research.

In chapters 3 to 5 the author presented the background to their research.

In chapter3 the author defined the concept of “Bring Your Own Device (BYOD)”,
and outlined the advantages and disadvantages of such a policy.

Chapter4 covered Mobile Device Management (MDM) systems, including defining
the concepts and presenting the architecture and deployment of such a system, as
well as enumerating the threats that MDM systems are vulnerable to.

133

134 CHAPTER 14. CONCLUSION

The final chapter in the background section, chapter 5 introduced digital forensics
and digital forensic readiness. The author defined both of these terms, presented
the processes as defined in ISO 27043 and analysed the benefits and drawbacks of
having digital forensic readiness in place.

Chapters 6 and 7 presented a high-level model and design science methods to
solve the problem, presenting the various components of the system and how data
would flow through the system. These chapters also outlined how the model ensures
data integrity over an untrusted network.

Chapter 8 expanded the model and methods, showing what the architecture of
such a solution might look like. This chapter presented the architecture of each
component in more detail, including how the component is subdivided and showing
program flows through each component. The author also presented how the storage
of data is structured.

Chapter 9 evaluated the proposed model and architecture according to ISO 27043,
the standard for Incident investigation principles and processes. This chapter ex-
amined how the solution interacted with and enables the standard.

Chapter 10 defined the requirements that a successful solution to the problem
will adhere to, looking at various categories to define these requirements.

In chapter 11 the author described the prototype that was implemented, pre-
senting some implementation details and going through the prototype step-by-step
using a fictional scenario to demonstrate the functionality to the reader.

Chapter 12 critically evaluated the solution at the hand of the requirements
defined in chapter 10.

Finally, the author critically evaluated the model, architecture and prototype in
chapter 13 by means of the threats presented in chapter 4.5. The author anal-
ysed the benefits and shortcomings of the solution, addressed the privacy concerns,
highlighted some related work and presented the research contributions.

14.3 Revisiting the Problem statement

The problem statement, as presented in section 1.2 is that “most MDM systems
do not include a digital forensic readiness component, leaving investigators with
little to no device-related historical data when an incident does occur.”

The rising popularity of smartphones, the adoption of BYOD policies and the
purely preventative nature of existing MDM solutions combined to form a situation
where almost no mobile forensic evidence could be obtained without having physical
accesses to the device - a costly procedure.

14.4. FUTURE WORK 135

The research presented a solution to this problem, namely adding a digital foren-
sic readiness aspect to an MDM solution. The author described a model for such a
solution, refined it in an architecture and finally presented a prototype that imple-
ments this solution.

The proposed solution solves the problem as stated in chapter 1 by detecting
suspicious activity as defined by the system administrators and transmitting the
collected data to the server in a forensically sound manner. Finally, the solution
enables the investigation of incidents by allowing investigators to examine the col-
lected data.

14.4 Future work

During the research, several other opportunities for research came up, which were
out of scope for this research. This section presents opportunities for future work.

14.4.1 Policy definitions

The model that has been presented in this research does not present the definition
of policies in great detail, and the prototype utilises a simple implementation of the
policy management.

There is room for defining exactly how policies in this model are defined, going
into more detail on which values are required and stored. An additional factor that

can be addressed is wildcard values, for example, monitoring for all subdomains at
a specific URL.

Finally, the policy may be extended to define which (seemingly unrelated) pieces
of information are gathered when a policy is triggered. For example, the user’s
location may be collected when a specific website is accessed.

14.4.2 Legal compliance

All countries have different legal requirements surrounding the collection and
storage of data related to individuals (personally identifiable information). For
example, South Africa has the Protection Of Personal Information (POPI) act
and the European Union requires compliance with the General Data Protection
Regulation (GDPR).

Another avenue for research is to evaluate the proposed solution against the
various legal frameworks, assessing whether or not the solution is compliant and
proposing suggestions to achieve compliance.

136 CHAPTER 14. CONCLUSION

14.4.3 Mobile platforms

The prototype presented in this research makes use of the Android framework to
prove that the model is practical. Another possibility for future work is to extend
the prototype to other mobile platforms, like iOS and Windows Phone.

14.4.4 Expand data collection

Currently, the prototype collects data about applications being installed and re-
moved from the device, DNS lookups and connections made to external resources.
It also detects when passwords are changed and any security events that the operat-
ing system deems important. Many additional data points can be collected from the
device, like GPS, network connections and various other data points. Future work
can include expanding the data points that the prototype is capable of collecting.

14.4.5 Automated data analysis and incident detection

The solution presented in this research collects data about the actions that the
user takes on their device and this data is stored in a document store that is con-
trolled by the organisation. Currently, the solution requires that an investigator
manually examine the data entries to find suspicious activity. The solution could
be extended to apply data mining and artificial intelligence techniques to the data
to automatically analyse the data and detect anomalies.

14.4.6 Protection against anti-forensics

The solution as presented in this research has some protection against threats,
as described in section 13.2. However, the solution has not been hardened against
advanced anti-forensic techniques. Anti-forensics are tools and techniques used
to hinder digital forensic investigations [31]. In the future, the solution may be
analysed from an anti-forensic perspective, and some suggestions may be made to
improve the resilience to anti-forensic attacks.

14.4.7 Modularization of collection capabilities

Currently, the prototype mobile application is a monolithic application containing
all the data collection capabilities that have been implemented. If an organisation
requires that a new form of data be collected, the application has to be updated on
all the employees’ devices. Future work can focus on modularising these capabilities,
adding the ability to "hot-load” new data collection capabilities into the mobile
client.

Next, the author concludes this research with some final remarks.

14.5. FINAL CONCLUSION 137

14.5 Final conclusion

At the start of this research the author presented a problem, namely that MDM
systems are purely preventative and presented the background of the research. After
the background, the author presented a solution to the problem, describing a high-
level model and architecture for such a system, as well as implementing a prototype
to judge the practicality of such a system. Finally, the author critically evaluated
the proposed solution.

As the processing power of mobile devices grow, preferences will shift even more
strongly from traditional computers and laptops to mobile devices. The line between
what is a "computer” and what is a "phone” will become more blurred, and as
such, it is imperative to come up with security, digital forensic and digital forensic
readiness frameworks for such devices.

Adding a MDM system with a Digital Forensic Readiness component as described
in this research will give organisations the power to become completely mobile, while
still maintaining regulatory compliance and industry best practises. The solution
presented in this research can be a potent tool in an organisations journey to digital
transformation.

During this research, several papers were produced that relates to the completed
research:

1. Elsabé Ros and HS Venter. 'n Hoévlak model vir die byvoeging van forensiese
gereedheid tot mobiele toestelbestuur. Studentesimposium in die Natuur-
wetenskappe, 2017

2. Elsabé Ros and HS Venter. A high-level model for providing forensic readiness
to mobile device management. Accepted at ECCWSI18, withdrawn due to
funding issues, 2018

3. Elsabé Ros and HS Venter. Digital forensic readiness in mobile device man-
agement systems. TBC, 2019

138 CHAPTER 14. CONCLUSION

PART VI

Appendices

139

140

APPENDIX A

Generated report

This appendix contains a full example of the report that is generated by the
prototype that the author implemented. This report has been pulled directly from
the prototype and converted to PDF, as is. It is the responsibility of the investigator
to complete the report, following the prompts that the solution generated.

The report contains the following details:
e The name of the investigation (Investigation into Mr X)

e The username of the investigator (forensic)

When the forensic investigation was started (2017-12-80T10:01:13.444+02:00)

A table of contents

Four sections for the investigator to fill out, with prompts

An appendix containing all the data that the investigator selected as relevant.

141

142 APPENDIX A. GENERATED REPORT

Investigation into Mr X

Report
Investigation conducted by forensic

2017-12-30T10:01:13.444+02:00

Contents

Report

1. Introduction
2. Investigation
3. Findings

4. Conclusion

Appendices

A. Data
1. admin
1. 10 audit entries
2. demo
1. 5 data entries
3. mrx

1. 3 data entries
2. 1 audit entries

Introduction

143

Write an introduction for your report. This should give the (non-technical) reader
an overview of what you are trying to do in this report

Investigation

Write up your investigation, describing the steps taken. Refer to the generated
appendix where relevant.

Findings

Write up the findings that emerged from the investigation in the previous section.
Refer to the generated appendix where it will highlight findings.

Conclusion

Conclude the report. Summarise your findings and draw a conlusion.

Appendix A: Data

admin
ADMIN

Audit entries (10)

2017-12-21T16:34:19.136+02:00
console

[[model: {}1]
ToWYNg4RSBvISxzQulyn9hY mkSI=

2017-12-21T16:38:59.958+02:00
console
[[model: {}1]

TentjBwGzqv+Ke8fp+rzAZ3v6j0=

144

APPENDIX A.

GENERATED REPORT

2017-12-26T16:07:28.408+02:00
console

[[model: {}1]
ncOntf87CFwqwp5SRK20MbycTxJ4=

2017-12-27T11:35:33.036+02:00
console

[[model: {}1]
ABipgw5ygxuQpWdGk4Gw2gESYCM=

2017-12-29T17:31:44.451+02:00
console
[[model: {}]]

tpA/hAh509k/01Zr1jdCmkhkIGM=

2017-12-29T17:46:24.277+02:00
getUserDetails
[[userld:455], [model: {}]]

kr5A2IundylxycZYiwhgXx0e2dU=

2017-12-29T18:02:57.614+02:00
getUserDetails
[[userId:455], [model:{}]]

0TjiQhpa9013abczrHAL 1Uazo04=

2017-12-29T18:19:48.081+02:00

console

[[model: {}]]

145

8HohYKEIbx/sA5KS64B/wZJLgx4=

2017-12-29T20:35:37.942+02:00
getUserDetails
[[userId:455], [model: {}]]

s21XGxNKEncJTsD8vvCuRbsMLJ8=

2017-12-30T00:06:30.319+02:00
console

[[model: {}1]
K8ZVIBF9eEIqPaWSK59vZS20IUA=

demo

USER

Data entries (5)

69bb7ff0-aa9a-41dd-bc79-33dd84d2a6b3

Type
INSTALL

Device
¢95840ce69481406

Checksum
InlTIzk7Wy8XQawO0PZarhFS47FA=

Data format
application/json

{
"action" : "android.intent.action.PACKAGE_ADDED",

"app" : "io.github.aessedail@l.webapp"
¥

Activity log

146

APPENDIX A. GENERATED REPORT

2017-11-15T08:47:55.328+02:00 Data collected from device
€95840ce69481406. Checksum: JnlTIzk7Wy8XQawOPZarhFS47FA=

2017-11-15T08:48:11.360+02:00 Checksum uploaded to server

2017-11-15T08:48:59.102+02:00 Data uploaded to server - checksum
verification passed

2026854c-69db-4434-8674-67ec8c35fa93

Type
DNS

Device
¢95840ce69481406

Checksum
cvAreVhZpgJrCUIYXxAmARqsFZEU=

Data format
application/json
{
"aPackage" : "io.github.aessedail®@l.webapp",
"count" : 2,
"hostAddress" : "fbsbx.com",
"inet" : [{
"address" : "uTzYIw==",
"canonicalHostName" : "185.60.216.35",
"hostAddress" : "185.60.216.35",
"hostName" : "185.60.216.35"
oA
"address" : "KgMogPEtAIP6zrAMAAAl3g==",
"canonicalHostName" : "edge-star-mini6-shv-01-frx5.facebook.com",
"hostAddress" : "2a03:2880:f12d:83:face:b00c:0:25de",
"hostName" : "edge-star-mini6-shv-01-frx5.facebook.com"
3
}
Activity log

2017-11-15T08:48:00.660+02:00 Data collected from device
€95840ce69481406. Checksum: cvAreVhZpglrCUITYxAmARqsFZEU=

2017-11-15T09:28:19.099+02:00 Checksum uploaded to server

2017-11-15T10:11:32.619+02:00 Data uploaded to server - checksum
verification passed

147

2e174b6a-9e1f-4514-abe2-0bbScefd0f68

Type
DNS

Device
c95840ce69481406

Checksum
r8x401NORqB/2IpzDib0Uy8TfwU=

Data format

application/json
{
"aPackage" : "io.github.aessedail®l.webapp"”,
"count" : 2,
"hostAddress" : "mobile.twitter.com",
"inet" : [{
"address" : "xxCcaw==",
"canonicalHostName" : "199.16.156.107",
"hostAddress" : "199.16.156.107",
"hostName" : "199.16.156.107"
oA
"address" : "xxCcKw==",
"canonicalHostName" : "199.16.156.43",
"hostAddress" : "199.16.156.43",
"hostName" : "199.16.156.43"
Fl
b
Activity log

2017-11-15T08:48:07.431+02:00 Data collected from device
€95840ce69481406. Checksum: r8x401NORqB/2IpzDib0Uy8TfwU=

2017-11-15T09:28:59.542+02:00 Checksum uploaded to server

2017-11-15T10:11:33.402+02:00 Data uploaded to server - checksum
verification passed

2afbc7cf-ddc0-4e9b-9ace-c0675db12008

Type
DNS

Device
¢95840ce69481406

Checksum

APPENDIX A. GENERATED REPORT

8gghNOcDJNeLd2yh13EHOU9Y TDw=

Data format

application/json
{
"aPackage" : "io.github.aessedail@l.webapp"”,
"count" : 2,
"hostAddress" : "fbsbx.com",
"inet" : [{
"address" : "uTzYIw==",
"canonicalHostName" : "185.60.216.35",
"hostAddress" : "185.60.216.35",
"hostName" : "185.60.216.35"
b A
"address" : "KgMogPEbAIP6zrAMAAAl3g==",
"canonicalHostName" : "edge-star-mini6-shv-01-ams3.facebook.com",
"hostAddress" : "2a03:2880:f11b:83:face:b00c:0:25de",
"hostName" : "edge-star-mini6-shv-01-ams3.facebook.com"
F
¥
Activity log

2017-11-15T09:05:00.057+02:00 Data collected from device
€95840ce69481406. Checksum: 8gghNOcDJNeLd2yh13EHOU9Y TDw=

2017-11-15T09:37:07.400+02:00 Checksum uploaded to server

2017-11-15T10:11:39.227+02:00 Data uploaded to server - checksum
verification passed

feb5f478-f679-48f4-8204-9¢579120d4c5

Type
DNS

Device
c95840ce69481406

Checksum
UtEIKWTXTL8P5xk77G2x1Ka6enA=

Data format
application/json

{
"aPackage" : "io.github.aessedail®@l.webapp",
"count" : 2,
"hostAddress" : "fbcdn.net",
"inet" : [{

149

"address" : "uTzYIw==",
"canonicalHostName" : "185.60.216.35",
"hostAddress" : "185.60.216.35",
"hostName" : "185.60.216.35"
b A
"address" : "KgMogPEtAIP6zrAMAAAl3g==",
"canonicalHostName" : "edge-star-mini6-shv-01-frx5.facebook.com",
"hostAddress" : "2a03:2880:f12d:83:face:b00c:0:25de",
"hostName" : "edge-star-mini6-shv-01-frx5.facebook.com"
}
}
Activity log

2017-11-15T09:10:59.969+02:00 Data collected from device
¢95840cc69481406. Checksum: UtEIKWTXTL8P5xk77G2xIKa6enA=

2017-11-15T09:39:48.682+02:00 Checksum uploaded to server

2017-11-15T10:11:34.906+02:00 Data uploaded to server - checksum
verification passed

mrx
USER

Data entries (3)

4bSafflc-d6e3-4f2c-a18a-f9251¢c163b32

Type
INSTALL

Device
223eb545bda9%6ele

Checksum
InlTIzk7TWy8XQaw(0PZarhFS47FA=

Data format
application/json

{
"action" : "android.intent.action.PACKAGE_ADDED",

"app" : "io.github.aessedail@l.webapp"
}

150 APPENDIX A. GENERATED REPORT

Activity log

2017-12-29T17:55:23.183+02:00 Data collected from device
223eb545bda96ele. Checksum: JnlTIzk7Wy8XQawOPZarhFS47FA=

2017-12-29T17:55:36.002+02:00 Checksum uploaded to server

2017-12-29T17:56:07.271+02:00 Data uploaded to server - checksum
verification passed

4bSafflc-d6e3-4f2c-a18a-f9251¢163b32

Type
INSTALL

Device
223eb545bda%6ele

Checksum
InlTIzk7Wy8XQawO0PZarhFS47FA=

Data format
application/json

{
"action" : "android.intent.action.PACKAGE_ADDED",

"app" : "io.github.aessedail@l.webapp"

Activity log

2017-12-29T17:55:23.183+02:00 Data collected from device
223eb545bdad6ele. Checksum: JnlTIzk7Wy8XQaw0PZarhFS47FA=

2017-12-29T17:55:36.082+02:00 Checksum uploaded to server

2017-12-29T17:56:07.271+02:00 Data uploaded to server - checksum
verification passed

7db7496d-6b12-48¢3-a582-7501d3336012

Type
DNS

Device
223eb545bda9%6ele

151

Checksum
r8x401NORqB/2IpzDib0Uy8TfwU=

Data format

application/json
{
"aPackage" : "io.github.aessedail®@l.webapp”,
"count" : 2,
"hostAddress" : "mobile.twitter.com",
"inet" : [{
"address" : "xxCcaw==",
"canonicalHostName" : "199.16.156.107",
"hostAddress" : "199.16.156.107",
"hostName" : "199.16.156.107"
oA
"address" : "xxCcKw==",
"canonicalHostName" : "199.16.156.43",
"hostAddress" : "199.16.156.43",
"hostName" : "199.16.156.43"
Fl
b
Activity log

2017-12-29T17:57:29.106+02:00 Data collected from device
223eb545bdad6ele. Checksum: r8x40 1 NORgB/2IpzDib0Uy8TfwU=

2017-12-29T18:37:27.748+02:00 Checksum uploaded to server

2017-12-29T21:40:04.652+02:00 Data uploaded to server - checksum
verification passed

Audit entries (1)

2017-12-29T17:33:31.019+02:00
console
[[model: {}]]

kDJwXhI3DVMMIH4DK5bSdO6cKto=

152 APPENDIX A. GENERATED REPORT

APPENDIX B

Implementation details

B.1 Introduction

As mentioned in the research, there are five components in the solution: the
server, the mobile client, the console, the database and the data store. This section
gives a quick overview of some of the interesting implementation details of the
server, mobile client and the console. The database and the data store is not
analysed separately, as their structures have been covered in details as part of the
architecture definition. The author used Java for the implementation, with the
Spring framework for the server and console and the Android framework for the
mobile client. The server will be presented first.

B.2 Server

The server is the component that receives and services requests from the mobile
client. This server performs six main functions, namely:

e login,

e registering a device,

generating an authentication token,

loading data collection policies,
e receiving checksums and
e receiving data.

Each of these functions is mapped to a RESTful endpoint !, shown in table B.1.
This table lists the function, the endpoint associated with it, the expected input
and the given output. The full request and response objects are listed in appendix
C, sections C.3.1 and C.3.2.

The source code that the server uses to verify the authentication token, verify the
signature and decode the public key is listed in appendix C, sections C.3.3, C.3.4
and C.3.5 respectively.

'REST stands for REpresentational State Transfer. If the reader is interested in learning more
I suggest Costello’s article ”Building Web Services the REST Way” [25] as a starting point.

153

154 APPENDIX B. IMPLEMENTATION DETAILS

Function Endpoint Input Output
login POST /status username status

password

device id

auth token
registering POST /device username success/failure
device password

device id

public key
generate POST /device/deviceId | username auth token
authentication password expiry date
token signature
loading GET none policy types
policies /device/deviceld/policy policy values
receive POST policy type success/failure
checksums /device/deviceId/checkswmth token

data id

checksum

signature

collect date
receive data POST auth token success/failure

/device/devicelId/data | signature
data entries

Table B.1: Server endpoints

The server serves as an interface to the database and data store for the mobile
client. The mobile client collects the data from the mobile devices and uploads it
to the server. The implementation of the mobile client is presented next.

B.3 Mobile client

The mobile client was implemented using the Android framework, targeting
Android 7.0 (API Level 24 - Nougat). The mobile client was forked from the
android-testdpc sample project [33] available from https://github.com/
googlesamples/android-testdpc and modified to suit the model’s needs.

In addition to the core DFR-MDM functionality, the author added some utilities,
specifically acquiring a device id (source code in section C.2.1), saving the down-
loaded policy details (section C.2.2) and a helper method to schedule the tasks
(section C.2.3).

This section covered some of the implementation details of the mobile client. The
next section presents the implementation details of the console, which is used to
manage users, devices and do digital forensic investigations.

https://github.com/googlesamples/android-testdpc
https://github.com/googlesamples/android-testdpc

B.4. CONSOLE 155

B.4 Console

As mentioned before, the console was implemented in Java using the Spring
framework. The author chose to make use of a web interface, as it is responsive and
can be accessed from many devices.

The console is a reasonably straightforward web application that checks autho-
risation and allows users to perform the actions that are described in the previous
two chapters, namely viewing and editing users and policies, marking devices as
inactive and performing digital forensic investigations.

The console also has automated auditing, that logs a database entry every time
a user performs an action on the console. The source code for this can be found in
appendix C, section C.4.1.

This appendix presented some of the implementation details of the prototype for
the interested reader.

156 APPENDIX B. IMPLEMENTATION DETAILS

APPENDIX C

Source code listings

C.1 Introduction

This appendix contains the source code listings that are referenced in this re-
search. The listings are listed according to the component it is contained in: mobile
client, server and administration console.

C.2 Mobile client

The mobile client prototype was implemented in the Android framework using
Java and requires Android 7.0 (API level 24) or above. This section contains the
mobile client code snippets that are referenced.

C.2.1 Get device id

This code snippet gets a unique identifier for the device it is running on. It
attempts to acquire the identifier from the system by requesting the SECURE_ID,
the deviceId and the IMEI. If all of those mechanisms fail, the client generates
an identifier and stores it securely.

public static String getDeviceldentifier (Context context) {
String androidId = Settings.Secure.getString(context.
— getContentResolver(),
Settings.Secure.ANDROID_ID);
if (androidId != null && !'androidId.isEmpty () &&
1"9774d56d682e549c" .equals (androidId)) {
return androidId;

}

String deviceId = ((TelephonyManager)

context.getSystemService (Context.TELEPHONY_SERVICE)) .getDeviceId()
—

if (deviceId != null && !deviceId.isEmpty()) {
return devicelId;

}

if (android.os.Build.VERSION.SDK_INT >= 26) {

deviceId = ((TelephonyManager)

context.getSystemService (Context.TELEPHONY_SERVICE)) .getImei ()
—

if (deviceId != null && !deviceId.isEmpty()) {

157

158 APPENDIX C. SOURCE CODE LISTINGS

return deviceld;

final SharedPreferences prefs = context.getSharedPreferences (
<3 PREFS_FILE, 0);

final String id = prefs.getString(PREFS_DEVICE_ID, null);

if (id != null && !'id.isEmpty()) {
return id;

UUID uuid = UUID.randomUUID () ;

String uuidString = uuid.toString();
prefs.edit () .putString (PREFS_DEVICE_ID, uuidString) .commit () ;
return uuidString;

C.2.2 Policy helper

This class is used to download and store the data collection policies. Since the
policy download process can be started as part of multiple processes, the author
isolated the functionality in a helper class. This class also takes care of checking
the timestamp when the policy was last updated to prevent unnecessary network
traffic.

public class PolicyHelper {
private static final String TAG = PolicyHelper.class.getSimpleName
— ()
private Application application;

public PolicyHelper (Application application) {
this.application = application;
Log.d (TAG, "policies =" +
RealmHelper.getRealm (application) .where (Policy.class) .findAll
—)i

public void loadPolicy () throws KeyUtil.KeyException,
CryptoUtil.CryptoException, ParseException {
Log.d (TAG, "loadPolicy () _called");
Date parsedDate = PreferenceHelper.getPolicyLoadDate (
— application);
Log.d(TAG, "loadPolicy: parsedDate =" + parsedDate);

Calendar limit = Calendar.getInstance();
limit.add(Calendar.HOUR, -3);

if (parsedDate == null || parsedDate.before(limit.getTime()))
— |
Log.d(TAG, "loadPolicy:_reloading _policy");
String authToken = PreferenceHelper.getAuthToken (
— application);
Log.d(TAG, "loadPolicy:_authToken_=" + authToken);

C.2. MOBILE CLIENT 159

String signature = CryptoUtil.sign (KeyUtil.getPrivateKey ()
% 4

authToken.getBytes());

Log.d(TAG, "loadPolicy:_signature =" + signature);

ServiceUtil.getService () .getDevicePolicy (DeviceUtil.
— getDeviceldentifier (application),
authToken, signature)

.subscribe (new DevicePolicyObserver (this));
} else {
Log.d(TAG, "loadPolicy:_not_loading _policy - deadline_hasn

— 't
expired_yet");

L T T R TR T TR M TR PR

}

private void save (PolicyResponse policyResponse) {
Log.d (TAG, "save()_called_with:_policyResponse = [" +
— policyResponse +
"]");

Realm realm = RealmHelper.getRealm(application);

realm.beginTransaction () ;

RealmResults<Policy> policylList = realm.where(Policy.class).
— findAll();

policyList.deleteAllFromRealm() ;

realm.commitTransaction () ;

PreferenceHelper.savePolicyLoadDate (application, new Date());

for (Map.Entry<PolicyType, List<String>> entry
policyResponse.getPolicies () .entrySet ()) {
realm.beginTransaction () ;
RealmList<PolicyValue> valuelList = new RealmList<>();
for (String s : entry.getValue()) {
PolicyValue v = realm.createObject (PolicyValue.class);
v.setValue(s);
valuelist.add(v);

}

Policy policy = realm.createObject (Policy.class);
policy.policyType (entry.getKey());
policy.setValues (valuelist) ;
realm.commitTransaction () ;

public static final class DevicePolicyObserver implements
Observer<PolicyResponse> {
private PolicyHelper policyHelper;

public DevicePolicyObserver (PolicyHelper policyHelper) {
Log.d(TAG, "DevicePolicyObserver () _called_with:
— policyHelper =_[" +
policyHelper + "1");

160 APPENDIX C. SOURCE CODE LISTINGS

this.policyHelper = policyHelper;

@Override
public void onSubscribe (Disposable d) {
Log.d (TAG, "onSubscribe () ,called with: d =_[" + d + "1");
}
@Override

public void onNext (PolicyResponse policyResponse) {
Log.d(TAG, "onNext () _called_ with: policyResponse =_[" +
policyResponse +
" n .
1"
policyHelper.save (policyResponse) ;

@Override

public void onError (Throwable e) {
Log.e (TAG, "onError:_", e);

}

@QOverride

public void onComplete () {
Log.d (TAG, "onComplete()_called");

C.2.3 Schedule tasks

This helper method is used to schedule a job to start all the tasks that has to
run on a schedule.
public static void schedule (Context context) {
Log.d(TAG, "schedule()_called_with:_context_=_[" + context + "]");
ComponentName serviceComponent = new ComponentName (context,

ForensicService.class);

JobInfo.Builder builder = new JobInfo.Builder (0, serviceComponent)
—

builder.setPersisted(true);

builder.setPeriodic (TimeUnit .MILLISECONDS.convert (5, TimeUnit.

— HOURS)) ;

JobScheduler jobScheduler = context.getSystemService (JobScheduler.
— class);
jobScheduler.schedule (builder.build());

C.3 Server

The server was implemented in Java, making use of the Spring framework. The
server exposes RESTful endpoints that accept and produce JSON payloads. This
section contains the source code for the server component.

C.3. SERVER 161

C.3.1 Requests

This section contains all the request payloads as Java classes. The Spring frame-
work takes care of converting these Java data transfer objects into payloads.

C.3.1.1 Request status

public class StatusRequest {
private String username;
private String password;
private String deviceld;
private String authToken;
}

C.3.1.2 Device registration request

public class DeviceRegistrationRequest ({
private String username;
private String password;
private String devicelId;
private String publicKey;
}

C.3.1.3 Token generation request

public class TokenGenerationRequest {
private String username;
private String password;
private String signature;

}
C.3.1.4 Checksum upload request

public class ChecksumRequest {
private String type;
private String authToken;
private String datald;
private String checksum;
private String signature;
private Date collectionDate;

}
C.3.1.5 Data upload request

public class DataUploadRequest {
private String authToken;
private String signature;
private List<DataUpload> data;

public static final class DataUpload {
private String datald;
private String checksum;
private String signature;
private String dataType;

162 APPENDIX C. SOURCE CODE LISTINGS

private String data;
}

C.3.2 Responses

Again, the response payloads are represented as Java classes, as the framework
takes care of the conversion to JSON payloads.

C.3.2.1 Status response

public enum Status {
INCORRECT_CREDENTIALS,
DEVICE_NOT_FOUND,
DEVICE_REGISTERED_SOMEONE_ELSE,
DEVICE_MARKED_INACTIVE,
AUTH_TOKEN_NOT_CREATED,
AUTH_TOKEN_EXPIRED,
AUTH_TOKEN_VALID

}
C.3.2.2 Policy response

public class PolicyResponse {
private Map<PolicyType, List<String>> policies;

public enum PolicyType {
DNS,
CONNECT,
SECURITY,
UNKNOWN,
INSTALL,
PASSWORD
}

C.3.2.3 Token generation response

public class TokenGenerationResponse {
private String authToken;
private Date authTokenExpiry;

}
C.3.2.4 Generic response

The generic response is sent in instances where the server does not need to send
specific data to a mobile client, but just an acknowledgement and an indication of

success or failure.
public class GenericResponse {

private boolean result;
private String message;

C.3. SERVER 163

C.3.3 Verify authentication token

Before the server performs any critical functions, it verifies the caller’s authenti-
cation token. This code snippet shows how the token is retrieved from the database
and verified against the token that was sent by the mobile client.

private void verifyAuthToken (Device device, String authToken) throws

ServiceErrorException {

AuthToken storedToken = authTokenRepository.findByDeviceAndUser (
— device,

device.getUser());

if (storedToken == null) {
throw new ServiceErrorException("Invalid_token");

}

if (!storedToken.getToken () .equals (authToken)) {
throw new ServiceErrorException("Invalid _token");

}
if (storedToken.getExpiryDate () .before (new Date())) {
throw new ServiceErrorException ("Expired token");

C.3.4 Verify signature

Verifying the signature on a request is another way to verify the identity of the
mobile client that is calling the server. This code snippet shows how the signature
is verified. The public key comes from the database, where it is stored when the

device is first registered.

private void verifySignature (PublicKey publicKey, byte[] data, bytel[]
givenSignature) throws ServiceErrorException {
try {
BufferedInputStream datalIn = new BufferedInputStream (new
ByteArrayInputStream(data));

Signature signature = Signature.getInstance ("SHA256WithRSA");
signature.initVerify (publicKey) ;

byte[] buffer = new byte[2048];

int len;

while (datalIn.available() != 0) {
len = dataln.read(buffer);
signature.update (buffer, 0, len);

datalIn.close();

boolean valid = signature.verify (givenSignature);
if (!valid) {
throw new ServiceErrorException("Signatures_did_not_match!
= ");
}
} catch (NoSuchAlgorithmException | InvalidKeyException |
— IOException |
SignatureException e) {

164 APPENDIX C. SOURCE CODE LISTINGS

throw new ServiceErrorException (e);

C.3.5 Decode public key

The format in which the public key is stored in the database is not directly
compatible with the Java classes that use it. This code snippet shows how to
change the public key encoded in the database into the Java PublicKey class.
private PublicKey decodeKey (String encodedKey) throws

— ServiceErrorException {
try |
byte[] publicKeyBytes = Base64Utils.decodeFromString (
— encodedKey) ;

return KeyFactory.getInstance ("RSA") .generatePublic (new
X509EncodedKeySpec (publicKeyBytes)) ;

} catch (InvalidKeySpecException | NoSuchAlgorithmException e) {
throw new ServiceErrorException (e);

C.4 Console

The final component of the three is the console. This component allows ad-
ministrators to manage users and policies and forensic investigators to conduct
investigations and generate reports.

C.4.1 Logging audit events

All actions taken on the console are automatically logged into the database for
audit purposes. To achieve this, the author used Aspect Oriented Programming *
to apply the logic in the logAuditEvent method to all public methods in the
AdminController and ForensicController.

@Aspect
@Component
public class AdminAuditAspect {

private static final Logger log =
LoggerFactory.getLogger (AdminAuditAspect.class);

private final AuditEventRepository auditEventRepository;
private final AuditChecksumRepository auditChecksumRepository;

QAutowired

LAOP increases the maintainability of a project by extracting cross-cutting concerns out of the
core business logic. This allows the developer to apply shared logic across many places without
duplicating code. If the join point expressions are written correctly, the developer of new methods
may not even have to make any changes to the aspect - it will automatically be invoked.

C.4. CONSOLE 165

public AdminAuditAspect (AuditEventRepository auditEventRepository,

AuditChecksumRepository auditChecksumRepository) {
this.auditEventRepository = auditEventRepository;
this.auditChecksumRepository = auditChecksumRepository;

@Before ("execution (*
cowwio.github.aessedailll.masterspoc.controller.AdminController.* (..))

¢_> ")
public void logAuditAdmin (JoinPoint joinPoint) {

log.debug ("logAuditAdmin () _,called _with_ " + "joinPoint_=_[" +

~ JjoinPoint
+ "]");
logAuditEvent (joinPoint) ;

@Before ("execution (*
towwilo.github.aessedailll . .masterspoc.controller.ForensicController
= .x(.))M)
public void logAuditForensic (JoinPoint joinPoint) {
log.debug ("logAuditForensic () _,called_with_ " + "joinPoint_=_I["
— +
joinPoint + "1");
logAuditEvent (joinPoint) ;

private void logAuditEvent (JoinPoint joinPoint) {
Authentication auth =
SecurityContextHolder.getContext () .getAuthentication();
String name = auth.getName (); //get logged in username

Signature signature = joinPoint.getSignature();
String signatureName = signature.getName () ;

Object[] arguments = joinPoint.getArgs();

String[] arglabels = new String[arguments.length];
LabeledArgument [] labeledArguments = new
LabeledArgument [arguments.length];

if (signature instanceof CodeSignature) {

argLabels = ((CodeSignature) signature) .getParameterNames
— 0

} else {

Arrays.fill (argLabels, "");

}

for (int i = 0; i1 < arguments.length; i++) {
labeledArguments[i] = new LabeledArgument (argLabels[i],
arguments[i]);

Date timestamp = new Date();

AuditEvent event = auditEventRepository.save (new AuditEvent (
— name,

timestamp, signatureName, labeledArguments));

auditChecksumRepository.save (new AuditChecksum(event.getId(),

166 APPENDIX C. SOURCE CODE LISTINGS

Hash.calculateHash (event.toString())));

public static final class LabeledArgument {
private String label;
private Object value;

public LabeledArgument (String label, Object value) {
this.label = label;
this.value = value;

public String getLabel () {
return label;

}

public void setLabel (String label) {
this.label = label;
}

public Object getValue() {
return value;

}

public void setValue (Object wvalue) {
this.value = value;

}

@Override
public String toString() {

return "[" + label + ":" + value + ’']’;
}

Bibliography

1]

2]

[10]

[11]

Av test: Malware. https://www.av-test.org/en/statistics/
malware/. Accessed: 5 October 2018.

Gartner survey shows that mobile device adoption in the workplace is not
yet mature. http://www.gartner.com/newsroom/id/3528217. Ac-
cessed: 9 January 2017.

The Advantages and Disadvantages of BYOD. http:
//www.optimussourcing.com/learninghintsandtips/
the—-advantages—and-disadvantages—-of-byod, 2013. Accessed: 10
January 2017.

Device Management Architecture. Technical Report OMA-AD-DM-V2_0-
20160209-A, Open Mobile Alliance, February 2016.

Device Management Requirements. Technical Report OMA-RD-DM-V2_0-
20160209-A, Open Mobile Alliance, February 2016.

OMA Device Management Protocol. Technical Report OMA-TS-
DM _Protocol-V2_0-20160209-A, Open Mobile Alliance, February 2016.

Sisira Adikari, Craig McDonald, and John Campbell. Little design up-front:
A design science approach to integrating usability into agile requirements
engineering. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5610
LNCS(PART 1):549-558, 20009.

Rizwan Ahmed and Rajiv V. Dharaskar. Mobile Forensics: an Overview,
Tools, Future trends and Challenges from Law Enforcement perspective. 6th
International Conference on E-Governance, ICEG, Emerging Technologies in
E-Government, M-Government, pages 312-323, 2008.

Android. Jobscheduler. https://developer.android.com/
reference/android/app/job/JobScheduler.html. Accessed:
3 January 2018.

Nicolé Andronio, Stefano Zanero, and Federico Maggi. HelDroid: Dissecting
and Detecting Mobile Ransomware. In Herbert Bos, Fabian Monrose, and
Gregory Blanc, editors, Research in Attacks, Intrusions, and Defenses, pages
382-404, Cham, 2015. Springer International Publishing.

Marzie Astani, Kathy Ready, and Mussie Tessema. Byod issues and strategies
in organizations. Issues in Information Systems, 14(2), 2013.

167

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
http://www.gartner.com/newsroom/id/3528217
http://www.optimussourcing.com/learninghintsandtips/the-advantages-and-disadvantages-of-byod
http://www.optimussourcing.com/learninghintsandtips/the-advantages-and-disadvantages-of-byod
http://www.optimussourcing.com/learninghintsandtips/the-advantages-and-disadvantages-of-byod
https://developer.android.com/reference/android/app/job/JobScheduler.html
https://developer.android.com/reference/android/app/job/JobScheduler.html

168

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

David Barske, Adrie Stander, and Jason Jordaan. A digital forensic readiness
framework for south african sme’s. In Information Security for South Africa
(ISSA), 2010, pages 1-6. IEEE, 2010.

Venansius Baryamureeba and Florence Tushabe. The Enhanced Digital In-
vestigation Process Model. In Digital Forensic Research Workshop. 2004.

Martin Bichler. Design science in information systems research. Wirtschaftsin-
formatik, 48(2):133-135, 2006.

Nikita Buchka and Alexey Firsh. Skygofree: Following in
the footsteps of hackingteam. https://securelist.com/
skygofree-following—in-the-footsteps—-of-hackingteam/
83603/. Accessed: 16 January 2018.

Ngoc Duong Bui, Alla Grigorievna Kravets, Tuan Anh Nguyen, and
Le Thanh Tung Nguyen. Tracking events in mobile device management sys-
tem. IISA 2015 - 6th International Conference on Information, Intelligence,
Systems and Applications, 2016.

Brian Carrier. Defining digital forensic examination and analysis tools using
abstraction layers. International Journal of digital evidence, 1(4):1-12, 2003.

Brian Carrier and Eugene H Spafford. An event-based digital forensic in-
vestigation framework. In Digital forensic research workshop, pages 11-13,
2004.

Brian Carrier, Eugene H Spafford, et al. Getting physical with the digital
investigation process. International Journal of digital evidence, 2(2):1-20,
2003.

Eoghan Casey. What does ”forensically sound” really mean? Digital Investi-
gation, 4(2):49-50, 2007.

J Morris Chang, Pao-Chung Ho, and Teng-Chang Chang. Securing byod. IT
Professional, 16(5):9-11, 2014.

Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On Non-Functional
Requirements in Software Engineering. Conceptual modeling: Foundations
and applications, pages 363-379, 2009.

Fred Cohen. Digital forensic evidence examination. 5 edition, 2012.

M. I. Cohen. PyFlag - An advanced network forensic framework. Digital
Investigation, 5(SUPPLL.):112-120, 2008.

Roger L Costello. Building web services the REST way. http://www.
xfront.com/REST-Web-Services.html. Accessed: 27 December 2017.

Georg Disterer and Carsten Kleiner. BYOD Bring Your Own Device. Procedia
Technology, 9:43-53, 2013.

https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
https://securelist.com/skygofree-following-in-the-footsteps-of-hackingteam/83603/
http://www.xfront.com/REST-Web-Services.html
http://www.xfront.com/REST-Web-Services.html

BIBLIOGRAPHY 169

[27]

28]

[31]

[32]

[38]

[39]

Mohamed Elyas, Sean B Maynard, Atif Ahmad, and Andrew Lonie. Towards
a systemic framework for digital forensic readiness. Journal of Computer
Information Systems, 54(3):97-105, 2014.

Meisam Eslahi, Maryam Var Naseri, H Hashim, NM Tahir, and Ezril
Hisham Mat Saad. Byod: Current state and security challenges. In Computer
Applications and Industrial Electronics (ISCAIE), 2014 IEEE Symposium on,
pages 189-192. IEEE, 2014.

A Farjamfar, M T Abdullah, R Mahmod, and N I Udzir. A review on mobile
device’s digital forensic process models. Research Journal of Applied Sciences,
Engineering and Technology, 8(3):358-366, 2014.

Jon Friedman and Daniel V Hoffman. Protecting data on mobile devices:
A taxonomy of security threats to mobile computing and review of applica-
ble defenses. Information Knowledge Systems Management, 7(1, 2):159-180,
2008.

Simson Garfinkel. Anti-forensics: Techniques, detection and countermeasures.
In 2nd International Conference on i-Warfare and Security, volume 20087,
pages 77-84, 2007.

Arnab Ghosh, Prashant Kumar Gajar, and Shashikant Rai. Bring your own
device (byod): Security risks and mitigating strategies. Journal of Global
Research in Computer Science, 4(4):62-70, 2013.

Google. Test Device Policy Control (Test DPC) App. https://github.
com/googlesamples/android-testdpc, 2017.

C P Grobler and C P Louwrens. Digital Forensic Readiness as a Component
of Information Security Best Practice. In IFIP International Information
Security Conference, pages 13-24, 2007.

C.P. Grobler, C.P. Louwrens, and S.H. von Solms. A Framework to Guide
the Implementation of Proactive Digital Forensics in Organisations. In 2010

International Conference on Availability, Reliability and Security, pages 677
682. IEEE, feb 2010.

Justin Grover. Android forensics: Automated data collection and reporting
from a mobile device. In Digital Investigation, volume 10, 2013.

Spyros T Halkidis, Alexander Chatzigeorgiou, and George Stephanides. A
qualitative evaluation of security patterns. In International Conference on
Information and Communications Security, pages 132-144. Springer, 2004.

Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design Science
Research in Information Systems. MIS quarterly, 28(1):75-105, 2004.

Alan R Hevner. A Three Cycle View of Design Science Research. Scandina-
vian Journal of Information Systems (¢) Scandinavian Journal of Information
Systems, 19(192):87-92, 2007.

https://github.com/googlesamples/android-testdpc
https://github.com/googlesamples/android-testdpc

170

[40]

[41]

[42]

[43]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

ISO 27043. INTERNATIONAL STANDARD ISO / IEC 27043: Information
technology — Security techniques — Incident investigation principles and
processes. 2015.

Myeongju Ji, Sungryong Kim, Yongjin Park, and Jeong Hyun Yi. Mobile
Device Management System with Portable Devices. pages 3-4, 2015.

Audun Jgsang and Simon Pope. User centric identity management. In
AusCERT Asia Pacific Information Technology Security Conference, page 77.
Citeseer, 2005.

Michael Kohn, Jan H P Eloff, and Martin S Olivier. Framework for a Digital
Forensic Investigation. Proceedings of the ISSA 2006 from Insight to Foresight
Conference, 2006.

Kevin P Kopp. Electronic communications in the workplace: E-mail moni-
toring and the right of privacy. Seton Hall Const. LJ, 8:861, 1997.

Alla G. Kravets, Ngoc Duong Bui, and Mohammed Al-Ashval. Mobile Secu-
rity Solution for Enterprise Network. In Communications in Computer and
Information Science, volume 466 CCIS, pages 371-382. 2014.

Arun Kumar. Bring your own device (BYOD) Advantages
and Disadvantages. http://www.thewindowsclub.com/
bring-your—own-device-byod, 2014. Accessed: 10 January 2017.

Paul Leach, Michael Mealling, and Rich Salz. A universally unique identifier
(uuid) urn namespace (rfc 4122). Technical report, 2005.

Benedikt Lebek, Kenan Degirmenci, and Michael H Breitner. Investigating
the influence of security, privacy, and legal concerns on employees’ intention
to use byod mobile devices. 2013.

Adrian Leung. A mobile device management framework for secure service
delivery. Information Security Technical Report, 13(3):118-126, 2008.

User: levi (https://stackoverflow.com /users/766548 /levi).
Why do access tokens expire? StackOverflow.
URL:https://stackoverflow.com/questions/7030694 /why-do-access-tokens-
expire (version: 2016-05-28).

Bob Lightsey. Systems engineering fundamentals. Technical report, DE-
FENSE ACQUISITION UNIV FT BELVOIR VA, 2001.

Leslie Liu, Randy Moulic, and Dennis Shea. Cloud Service Portal for Mobile
Device Management. 2010 IEEFE 7th International Conference on E-Business
Engineering, pages 474-478, 2010.

March and Storey. Design Science in the Information Systems Discipline: An
Introduction to the Special Issue on Design Science Research. MIS Quarterly,
32(4):725, 2008.

http://www.thewindowsclub.com/bring-your-own-device-byod
http://www.thewindowsclub.com/bring-your-own-device-byod

BIBLIOGRAPHY 171

[54]

[55]

[56]

[57]

[59]

[60]

[61]

[62]

[63]

[64]

Salvatore T. March and Gerald F. Smith. Design and natural science research
on information technology. Decision Support Systems, 15(4):251-266, dec
1995.

Ben Martini and Kim Kwang Raymond Choo. An integrated conceptual
digital forensic framework for cloud computing. Digital Investigation, 9(2):71—
80, 2012.

Rodney McKemmish. When is digital evidence forensically sound? IFIP
International Federation for Information Processing, 285:3-15, 2008.

Catherine Meadows. Detecting attacks on mobile agents. In Foundations for
Secure Mobile Code Workshop, pages 64—65. Citeseer, 1997.

George Mohay. Technical challenges and directions for digital forensics. In
Systematic Approaches to Digital Forensic Engineering, 2005. First Interna-
tional Workshop on, pages 155-161. IEEE, 2005.

Bill Morrow. Byod security challenges: control and protect your most sensitive
data. Network Security, 2012(12):5-8, 2012.

Antonis Mouhtaropoulos, Chang Tsun Li, and Marthie Grobler. Digital foren-
sic readiness: Are we there yet?, 2014.

Emilio Raymond Mumba and Hein S Venter. Mobile forensics using the har-
monised digital forensic investigation process. In Information Security for
South Africa (ISSA), 2014, pages 1-10. IEEE, 2014.

Roger M Needham. Denial of service. In Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, pages 151-153. ACM,
1993.

Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. Proceedings of the conference on The future of Software engineering
- ICSE 00, 1:35-46, 2000.

Stacey Omeleze and Hein S Venter. Testing the harmonised digital forensic
investigation process model-using an android mobile phone. In Information
Security for South Africa, 2013, pages 1-8. IEEE, 2013.

Kevin Ortbach, Tobias Brockmann, and Stefan Stieglitz. Drivers for the
Adoption of Mobile Device Management in Organizations. Proceedings of the
22nd European Conference on Information Systems (ECIS), 2014.

Gary Palmer. A road map for digital forensic research. In First Digital
Forensic Research Workshop, Utica, New York, pages 27-30, 2001.

Dhirendra Pandey, U. Suman, and A.K. Ramani. An Effective Requirement
Engineering Process Model for Software Development and Requirements Man-
agement. 2010 International Conference on Advances in Recent Technologies
in Communication and Computing, pages 287-291, 2010.

172

[68]

[74]

[75]

[80]

[81]

BIBLIOGRAPHY

G. Pangalos, C. Ilioudis, and I. Pagkalos. The importance of Corporate Foren-
sic Readiness in the information security framework. Proceedings of the Work-
shop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE, pages 12-16, 2010.

Karen P Patten and Mark A Harris. The need to address mobile device
security in the higher education it curriculum. Journal of Information Systems
Education, 24(1):41, 2013.

Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatter-
jee. A Design Science Research Methodology for Information Systems Re-
search. Journal of Management Information Systems, 24(3):45-77, 2007.

Charles Pfleeger and Shari Lawrence Pfleeger. Security in Computing. 2007.

Markus Pierer. Mobile Device Management. Springer Fachmedien Wiesbaden,
Wiesbaden, 2016.

User: poncho (https://crypto.stackexchange.com/users/452/poncho).
how does https key get shared? Crypto Stack Exchange.
URL:https://crypto.stackexchange.com/a/9091/8507 (version: — 2013-07-
07).

Jan Pries-Heje, Richard Baskerville, and John R Venable. Strategies for design
science research evaluation. In ECIS, pages 255-266, 2008.

Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Agile require-
ments engineering practices and challenges: an empirical study. Information
Systems Journal, 20(5):449-480, 2010.

K. Reddy and H. S. Venter. The architecture of a digital forensic readiness
management system. Computers and Security, 32:73-89, 2013.

Mark Reith, Clint Carr, and Gregg Gunsch. An Examination of Digital Foren-
sic Models. International Journal of Digital Evidence, 1(3):1-12, 2002.

Keunwoo Rhee, Woongryul Jeon, and Dongho Won. Security Requirements
of a Mobile Device Management System. International Journal of Security
and its Applications, 6(2):353-358, 2012.

Keunwoo Rhee, Hawon Kim, and Hac Yun Na. Security test methodology
for an agent of a mobile device management system. International Journal of
Security and Its Applications, 6(2):137-142, 2012.

Keunwoo Rhee, Dongho Won, Sang Woon Jang, Sooyoung Chae, and Sang-
woo Park. Threat modeling of a mobile device management system for secure
smart work. Electronic Commerce Research, 13(3):243-256, 2013.

Robert Rowlingson. A Ten Step Process for Forensic Readiness. International
Journal of Digital Evidence, 2(3), 2004.

BIBLIOGRAPHY 173

[82]

[83]

[84]

[91]

[92]

93]

Gruia-Catalin Roman. A taxonomy of current issues in requirements engi-
neering. Computer, 18(4):14-23, apr 1985.

Elsabé Ros and HS Venter. 'n Hoévlak model vir die byvoeging van forensiese
gereedheid tot mobiele toestelbestuur. Studentesimposium in die Natuur-
wetenskappe, 2017.

Elsabé Ros and HS Venter. A high-level model for providing forensic readiness
to mobile device management. Accepted at ECCWS18, withdrawn due to
funding issues, 2018.

Elsabé Ros and HS Venter. Digital forensic readiness in mobile device man-
agement systems. TBC, 2019.

Stephanie AC Schuckers. Spoofing and anti-spoofing measures. Information
Security technical report, 7(4):56-62, 2002.

David Schuetz. The ios mdm protocol. Intrepidus Group, Inc, 29, 2011.

Michael Shrivathsan. Types of software requirements. http://rmblog.
accompa.com/2012/04/types—of-software-requirements/. Ac-
cessed: 22 December 2017.

Niharika Singh. Byod genie is out of the bottle-“devil or angel”. Journal of
Business Management & Social Sciences Research, 1(3):1-12, 2012.

Alan D Smith and Robert A Faley. E-mail workplace privacy issues in an
information-and knowledge-based environment. Southern Business Review,
27(1):8, 2001.

Murugiah Souppaya and Karen Scarfone. Guidelines for managing the security
of mobile devices in the enterprise. NIST special publication, 800:124, 2013.

Paul Steiner. Going beyond mobile device management. Computer Fraud &
Security, 2014(4):19-20, 2014.

John Tan. Forensic Readiness Assessment. Cambridge, MA:@ Stake, pages
1-23, 2001.

Philip M Trenwith and H.S. Venter. Digital forensic readiness in the cloud.
In 2013 Information Security for South Africa, number January, pages 1-5.
IEEE, aug 2013.

Aleksandar Valjarevic and Hein S Venter. A comprehensive and harmonized

digital forensic investigation process model. Journal of forensic sciences,
60(6):1467-1483, 2015.

J Venable. The Role of Theory and Theorising in Design Science Research.
Proceedings of DESRIST, pages 24-35, 2006.

http://rmblog.accompa.com/2012/04/types-of-software-requirements/
http://rmblog.accompa.com/2012/04/types-of-software-requirements/

174

[97]

[98]

[99]

[100]

[101]

[102]

103]

BIBLIOGRAPHY

K Vijay and Communication Technology. Introduction to Design Science
Research in Information and Communication Technology. In Design Science
Research Methods and Patterns, pages 7-30. 2007.

Yong Wang, Jinpeng Wei, and Karthik Vangury. Bring your own device
security issues and challenges. In Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, pages 80-85. IEEE, 2014.

Myria Watkins Allen, Stephanie J Coopman, Joy L Hart, and Kasey L. Walker.
Workplace surveillance and managing privacy boundaries. Management Com-
munication Quarterly, 21(2):172-200, 2007.

Rodrigo Werlinger, Kasia Muldner, Kirstie Hawkey, and Konstantin
Beznosov. Preparation, detection, and analysis: the diagnostic work of it
security incident response. Information Management € Computer Security,
18(1):26-42, 2010.

Bing Wu, Jianmin Chen, Jie Wu, and Mihaela Cardei. A survey of attacks
and countermeasures in mobile ad hoc networks. In Wireless network security,
pages 103—135. Springer, 2007.

J Christopher Zimmer, Riza Ergun Arsal, Mohammad Al-Marzouq, and
Varun Grover. Investigating online information disclosure: Effects of infor-
mation relevance, trust and risk. Information & management, 47(2):115-123,
2010.

Dirk Zimmermann and Lennart Grotzbach. A Requirement Engineering Ap-
proach to User Centered Design. Proceedings of the 12th international Con-
ference on Human-computer interaction: Interaction Design and Usability,
pages 360 — 369, 2007.

	List of Figures
	List of Tables
	I Introduction and problem statement
	Introduction
	Introduction
	Problem statement
	Motivation
	Methodology
	Layout

	Design Science and Methodology
	Introduction
	Design Science
	Constructs
	Models
	Methods
	Instantiations

	Methodology
	Conclusion

	II Background
	Bring Your Own Device
	Introduction
	What is Bring Your Own Device?
	Advantages of adopting a BYOD policy
	One device
	Costs
	Flexibility
	Familiarity

	Disadvantages of adopting a BYOD policy
	Costs for employees
	Different devices
	Security

	Conclusion

	Mobile Device Management systems
	Introduction
	Defining Mobile Device Management
	Architecture of an MDM system
	Server
	Data repository
	Mobile Client
	Administrator console

	Deploying an MDM solution
	Configuration of the MDM system
	Installation of the mobile client
	Authentication of the mobile client
	Instruction from the server to the mobile client
	Reporting from the mobile client to the server

	Threats to MDM systems
	Spoofing
	Tampering
	Repudiation
	Information disclosure
	Denial of service
	Elevation of privilege
	Malware
	Users

	Conclusion

	Digital Forensics and Digital Forensic Readiness
	Introduction
	Digital Forensics
	Defining Digital Forensics
	The Digital Forensic process
	Forensic soundness

	Digital Forensic Readiness
	Defining Digital Forensic Readiness
	Benefits and Drawbacks of Digital Forensic Readiness

	Conclusion

	III Model and architecture
	A High-level Model for adding Digital Forensic Readiness to a Mobile Device Management (DFR-MDM) System
	Introduction
	Components
	Server
	Administrator console
	Database
	Mobile client
	Data store

	Ensuring data integrity
	Encryption
	Digital signatures
	Checksums

	Conclusion

	Methods in a DFR-MDM system
	Introduction
	Device registration
	Acquiring an authentication token
	Loading policies
	Collecting data about user activity
	Uploading collected data
	Conclusion

	Architecture of a DFR-MDM system
	Introduction
	Mobile client
	Mobile application components
	Mobile application program flow

	Server
	Shared components
	Functionality

	Database
	Data store
	Application console
	Shared components
	Administration console
	Digital forensic investigations

	Conclusion

	Evaluation according to ISO 27043
	Introduction
	Concurrent processes
	Readiness processes
	Investigative processes
	Conclusion

	IV Prototype
	Prototype Requirements
	Introduction
	Business and market requirements
	Functional requirements
	Mobile functional requirements
	Administration functional requirements
	Investigation functional requirements

	Non-functional requirements
	Performance requirements
	Operating requirements

	UI requirements
	Conclusion

	Prototype Implementation
	Introduction
	Prototype demonstration
	Conclusion

	V Evaluation and summary
	Evaluation according to requirements
	Introduction
	Business and market requirements
	Functional requirements
	Mobile functional requirements
	Administration functional requirements
	Investigation functional requirements

	Non-functional requirements
	Performance requirements
	Operating requirements

	UI requirements
	Conclusion

	Overall Critical Evaluation
	Introduction
	Defence against threats
	Benefits and shortcomings
	Benefits
	Shortcomings

	Privacy concerns
	Related work
	Research contribution
	Conclusion

	Conclusion
	Introduction
	Summary
	Revisiting the Problem statement
	Future work
	Policy definitions
	Legal compliance
	Mobile platforms
	Expand data collection
	Automated data analysis and incident detection
	Protection against anti-forensics
	Modularization of collection capabilities

	Final conclusion

	VI Appendices
	Generated report
	Implementation details
	Introduction
	Server
	Mobile client
	Console

	Source code listings
	Introduction
	Mobile client
	Get device id
	Policy helper
	Schedule tasks

	Server
	Requests
	Responses
	Verify authentication token
	Verify signature
	Decode public key

	Console
	Logging audit events

