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ABSTRACT NOMENCLATURE

Thin volatile Newtonian liquid films with a free sur- . - i

. X d [m] thickness of liquid layer
face on the underside of a cooled horizontal substrate are dy [m] thickness of gas layer
studied theoretically and numerically. We show that if the T [s] ) vertical diffusion time of heat
fluid is initially in equilibrium with its own vapor in the gas K [mz/ 5] thermal diffusivity of liquid
phase below, regular surface patterns in the form of long- v [m”/ 5]3 klnef“atlc Viscosity of liquid
wave hexagons havi Il defined lateral length scal p [kg/m’ ] density of liquid
gons having a well defined lateral length scale « [W/mK] thermal conductivity of liquid
are observed. This is in sharp contrast to the case with- Qg [W/mK] thermal conductivity of gas
out evaporation where rupture or coarsening to larger and r [N/m] surface tension
- e . . . o T K] temperature
larger patterns is seen in the long time limit. In this way, T, K] surface temperature
evaporation could be used for regular structuring of the film T, K] saturation temperature
surface. The influence of a temperature dependent surface Th K] reference temperature
tension (Marangoni effect) is included as well, where special ?;u (K] 5 temp‘ga‘t“re of substrate
emphasis is layed on the so-called anomalous Marangoni ef- [kg/m 's] mass flux density
. . . P [N/m~] saturation pressure
fect. In this case a parameter region where stripes should m [ke] molecular mass
occur is found by means of a weakly non-linear analysis. ) . .
Dimensionless quantities
€, y,t spatial coordinates, time

INTRODUCTION h(l’, Y, t) thickness of liquid layer

equilibrium thickness

Surface patterns of thin liquid films on a solid support .
linear growth rate

0
. - . . A
were studied during the last decade in numerous experimen- -
tal and theoretical contributions (see [1, 2, 3,4, 5, 6, 7, 8, 9] k 2D wave vector

K . P Ty e x 2D horizontal vector
and references therein). In coating or wetting processes, a M Marangoni number
plane surface is usually desirable and the formation of sur- B Biot number
face deflections should be avoided. In contrast in modern G gravity number
. . . . C Crispation number

(nano-) technological applications the creation and control B

Evaporation number
of ordered structures come more and more into the focus

« accommodation coefficient
of interest. Liquid thin films are applied in different ways &k (1) Fourier mode amplitudes
to produce patterns with prescribed length scales and ge- cf}} ", CS;), I non-linear expansion coefficients
ometries. One possibility is to use a structured substrate €1:62,83,6a order parameters
[1, 2, 3]. In the present article we wish to concentrate on an- P %ﬁlfrlg;i?:; gz:;i‘lﬁ&fl odes
other method: the self-organized pattern growth due to an A Landau coefficients
instability mechanism of the initially flat film [4, 5]. There ke critical wave number
are several mechanisms that may destabilize a flat surface Constants
and that allow to control the growth of surface patterns. g 9.81 m/s? gravitational acceleration
Flat ultra-thin films may become unstable by van der Waals k 1.38-107%% J/K  Boltzmann’s constant

forces between surface and substrate [6, 7, 8].
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Thicker films can be destabilized by inhomogeneous tan-
gential surface tensions, which in turn are often caused by
lateral gradients of temperature and/or, in mixtures, of con-
centration [9, 10, 11, 12, 13].

A rather simple method for destabilization is to put the
film upside down, i.e. to position it under a flat horizontal
plate. Then gravity acts against the stabilizing surface ten-
sion and inhomogeneous surface patterns result [14]. This
is called Rayleigh-Taylor instability (RTI) (Figs.1,2).

In the present paper, we shall first concentrate on the
Rayleigh-Taylor instability as destabilizing mechanism of
the flat surface. In addition we assume a vertical heat gra-
dient applied from outside. Further we neglect convective
heat transfer in both layers. If the fluid is heated from be-
low (from the gas side), this usually would stabilize the flat
film. As was shown in [14], RTI may occur if the temper-
ature gradient is not too large and film rupture is avoided
by the stabilizing Marangoni effect.

In previous works, evaporation was considered as a desta-
bilizing mechanism. Here we shall concentrate on the op-
posite case. Assume that the fluid is heated from below
(or cooled from above). If the partial pressure of the vapor
in the gas layer under the fluid is equal to the saturation
pressure belonging to the surface temperature of the initial
flat film, then a small elevation of the surface into colder
regions leads to local condensation, a small depression into
hotter regions causes evaporation.

i
cold

)
,,,,,,,,,,,,,,,,,,,,,,,,,, A —
h(®)
(IR I BN R
= ( gas evaporation
hot

Figure 1 The flat surface of a fluid under a horizontal
plate heated from below is stable at position hg
where liquid and gas layers are in thermody-
namic equilibrium. If the surface is at position
h the liquid would evaporate, if it would be be-
low hg it would condensate until hq is reached.

In a previous publication [15] we showed that this mecha-
nism may avoid rupture for large enough evaporation rates
even without the Marangoni effect. Moreover, due to the
modified character of the instability, coarsening does no
longer occur in the long time limit. Instead we found very
regular cell structures in the form of hexagons, known from
their morphology from small scale convection in thicker
fluid layers [16, 17, 18].

THIN FILM EQUATION AND EVAPORATION
Up to now, most of the theoretical work is based on
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an interface equation, often called thin film equation, de-
scribing the location z = h(z,y,t) of the free surface of the
liquid [4, 19, 20, 21]. This equation can be systematically
derived from the Navier-Stokes equation using the lubrica-
tion approximation and reads:

1 MBh? 1. 1.
h=-V|-==—=Vh+-h*C"'AVh + -Gh*Vh
Ot v 2(1+Bh)2v +3 C V+3G \Y%
(1)
where V and A denote the horizontal gradient and Laplace
operators. In (1) a scaling for lengths and time according

to
(x,y,2,h) = (£,§,2.h)-d, t=1-1, T=d?/r

is used (tilde means dimensionless, omitted in (1)). The
thickness of the fluid layer is d, 7 denotes the vertical dif-
fusion time of heat, and k is the thermal diffusivity of the
liquid. Scaling results into the dimensionless numbers M
(Marangoni number), B (Biot number), G (gravity num-
ber), C' (Crispation number) defined as

M =

~ypATd 5 agd G gd? O ~Yod
pvk ady’ VK KUp

Here, surface tension is assumed to be a linear function of
surface temperature T

=y —vr(Tr - To) , Yo,y > 0. (2)

Viscosity, density, and thermal conductivity of the fluid are
denoted with v, p, and a. The width of the gas layer is
dg, oy is its thermal conductivity and g the gravitational
acceleration.

Previous work shows that in the case of a surface-driven
thermal instability, rupture of the film occurs after a rel-
atively short time [12, 22, 23]. Rupture means that the
surface function h reaches zero. From that moment on the
thin film equation is meaningless since points occur where
h is no longer differentiable. To avoid rupture, a repelling
short range interaction can be introduced. Then patterns
in the long time limit may be studied and show coarsening,
a slow increase of the lateral dimensions of the structures
(drops or holes) until one big hole (or drop) eventually re-
mains [13, 24].

Evaporation and condensation

Additional effects caused by (moderate) evaporation or
condensation on the interface can be included easily in the
formalism [25, 26]. A term of the form J/p has to be added
on the r.h.s. of eq.(1), where J denotes the mass flux den-
sity. In general, J is a complicated function of temperature,
pressure, and fluid parameters. It can be roughly estimated
using a Hertz-Knudsen law:

J(T,P.) =a-(Ps(T) - P,) - \/% ®)

where P, is the saturation pressure of the liquid, P, the
partial pressure of vapor in the atmosphere below the film,



m the molecular mass of the fluid particles and k Boltz-
mann’s constant. The so-called accommodation coefficient
«a accounts for an adjustment of the real conditions at the
surface on the idealized assumptions used for deriving the
Hertz-Knudsen law. It must be less then one but, de-
pending on the experimental situation, can be as small as
1073..1076.

Assuming a linear temperature profile in vertical direc-
tion inside the liquid and a vanishing mass flux at equi-
librium height hg, eq.(3) can be expanded with respect to
h — hg. In the same scaling used for eq.(1), the additional
term to eq. (1) now reads (for details see [15])

—E (h—ho) , (4)
where E is the dimensionless evaporation number
=0T Ti-Tu
p d

Here, T is the temperature of the free surface, T, that of
the solid plate. For & one finds

a=a- (m/2nkT)Y?(dP,/dT)r,

where Tg is the saturation temperature at P;. For water
with T at room temperature one finally has

&= a-0.13Kg/(m?s K)

Stability of the flat film, Turing structures
Performing a standard linear stability analysis for the
flat film at equilibrium thickness of the form

h(Z,t) = ho + nexp(\t + k)
one finds for the growth rate A

1 MBhj
A?) = |-+ L5k

-0 l 3 2_1 —13374 _
2(1+Bh0)2+36‘h0k SO hik — B

As long as E > 0 (T; > Ty, heated from below) it has
the typical shape of a Turing instability (fig.2) or type I
instability [27].

0.3

0.1

0.1

0.3+

Figure 2 Growth rates over wave number for several val-
ues of E. Without evaporation, the instability
is of type II [27].

Heat and mass transfer

If the evaporation rate remains below a critical value
E., a whole band of wave vectors localized around a final
critical one k. may linearly grow and show spatially periodic
patterns, as discussed in the following section (fig.3).

cold e,

s

arnd T

~ .
o, Tmeaa” ’ s o

Figure 3 Sketch of a stationary Turing instability. If
the surface is deflected around the value hg
thicker parts evaporate, thinner regions conden-
sate. This stabilizing mechanism may be over-
come by gravitation and a Type I instability
may occur.

NON-LINEAR PATTERN FORMATION

2D Control parameter plane

Eq. (1) with (4) includes 5 independent control parame-
ters. To reduce this to three, a secondary scaling according
to

h=+/M/G h,

is in order. This yields the three new (combined) control
parameters

= (GC)?&, t=G'PMTPCT

ho ho-\/G/M, B=B-(M/G)"?,
E = E.c7'G7V*M—3/%

The scaled equation we use further thus reads

- 1 BR? i legics lana-
oh = -V ——LMVh+—h3AVh+rh3Vh
2(1+ Bh)? 3 3
—E - (h— hy) (5)

Fig.4 shows the E—hy plane. Inside the shaded area, which
is limited by

. 3 ho B} -
E_ . = 04
min = o 36 t1gr o> VA (D

B can always be chosen in such a way, that an instability
occurs via Turing type. Left of the shaded area, the flat film
remains stable, on its right hand side, it is always unstable
and no critical point exists.
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Figure 4 Control parameter plane for eq. (5). Inside the
shaded area, interesting pattern forming insta-
bilities of Turing type are expected.

Numerical solutions

To show what happens in the non-linear regime, we per-
form a direct numerical simulation of (5) in two spatial
dimensions with periodic boundary conditions. As initial
condition, a random dot distribution around hg is used.
The method is based on a pseudo-spectral scheme devel-
oped earlier and used for the thin film equation without
evaporation, for details see [13].

To demonstrate the qualitative influence of evaporation
on pattern formation, we start with a run without evapo-
ration (E = 0, top row of fig.5). Rupture occurs soon after
almost the whole mass of the liquid film is condensed in a
single spot (see arrows in fig.5) somewhere in the middle of
the layer. For E > 0 the scenario is completely different
(bottom row). After an initial phase, large scale hexagons
occur and are finally found to be stable.

Without evaporation: coarsening — rupture
LN P

© ‘, gl )
S VAN 72N \/\ ‘OJ @ 7
With evaporation: regular patterns — saturation

Figure 5 Two time series as numerical solutions of
(5). Without evaporation rupture occurs soon,
with evaporation, a typical regular pattern of
hexagons emerges.

Numerically, we tried other values inside the shaded region

1118

of fig.4. For all values, hexagons resembling those of fig.5.
were found with a size corresponding roughly to the critical
wave number that maximizes the growth rate (see fig.2).

THE WEAKLY NON-LINEAR REGIME

To shed light on pattern formation and selection above
but still close to instability, it is instructive to study the
weakly non-linear regime. To this end we first go to Fourier
space writing (in the following we drop the tildes over the
arguments)

h(@t) = ho+ Y &)™, &G =¢, .
k

Inserting this into (5) and expanding the non-linearities up
to the third order in the amplitudes £, yields a set of ODEs

dtfk = )\(k)gk‘l'z C;fk)/k/'gk/fk”"' Z (’.gjc)’k”k”’fklfk”fk”’

k/k// k/k//k///
(8)
with
1  Bh2 1- 1- .
ME)= |[-=2——% 4 ZR3 K2 - Zh3k*—F .
() 2(1+Bh0)2 30 30

Order parameter equations

Now we may distinguish between amplitudes belonging
to k-values where A(k) > 0, called active modes or order
parameters, and those where \ is negative. The latter are
the passive or slaved modes (denoted by the index s) and
may be found from (8) by adiabatic elimination [28]. In
lowest (2nd) order of the order parameters they read

~ L5
s = _)\_S chijgigj ’ 9)
ij

where the sums run only over the order parameters. Elim-
inating the slaved modes from (8) by the help of (9) gives
a closed set of equations only for the order parameters. If
we want to find out if stripes, squares or hexagons are sta-
ble above threshold, it is sufficient to take only four order
parameters with wave vectors sketched in fig.6.

Figure 6 Orientation of the k-vectors for the order pa-
rameters of (10). All vectors lay on a circle

with |k| = k..
Then the order parameter equations read
deér = € &1+ AGE + & (aala]® + caléel® + ealéa]® + caléal?)
o = € &2 + A G165 + & (c1el® + coléa|* + eal&s]® + caléal?)
di&s = € &+ AGE + & (alésl® + 2] + eslé]? + caléa)®)

di€a = € & + &a (caléa|® + chl&af* + c51€s)” + cul€al?)
(10)



with € = A(k2) as (small) distance from threshold. The
non-linear coefficients (Landau coefficients) are found as

A = k2 Lﬁ‘l,%gu—kf)
i (1 -|-Bho)‘3 .

_ 2  a7274
c = C —)\(le)A (A 6h0kc)
_ _ _ 3 2274
co=c3 = 20C —)\(lﬁ — kg)A (A 3h0kc)
_ . 4 7274
cy = 2C —)\(k'l — lc4)A (A hokc)

with ~ .
0= 2 (1BU=25T0)
2 (1+ Bho)*

+ ho(1 — kf))

and the wave vector of the linearly fastest growing mode is

k2 =\/3E/h3 .
Stability beyond threshold
There are four topologically different stationary solu-
tions of (10):
(i) stripes with

&= vV —6/61»

(ii) squares with

&L =8 =—¢/(c1+ca), L=E&=0,

(iii,iv) up and down hexagons

§a=8=8=0,

—A+ \/A2 —4e(cr + o + ¢3)

1 =& =§3 = 4 = 0.
Gi=6=¢ o T o o) , €
~ | C C cI:ubilc oi‘derl parlaméterleq.l
E .
valid
025 | flat film stable —

(surface dominated)

Figure 7 Stability diagram based on order parameter
eqs. In the Turing pattern regime, the cubic
equations are valid only in the tiny shaded re-
gion.

Heat and mass transfer

Fach of these solutions exists only for Landau coeflicients
giving a real valued root for the corresponding amplitudes.

However, computing the coefficients it turns out that
the validity of the cubic order parameter eqs. is rather
limited. Only in the shaded area of fig.7, all roots are found
to be real valued. In almost the whole area, squares are
subcritical (¢; + ¢4 > 0) and one should go up to the 5th
order to say something on their stability. At least one may
detect that the quadratic coefficient A is always positive
and therefore one may expect up-hexagons (if no 5th-order
squares would be more stable).

Anomalous Marangoni effect

There are several aqueous alcohol solutions where sur-
face tension increases with increasing temperature for a
certain working temperature [29]. This behavior is called
anomalous Marangoni effect and covered by (2) if v < 0.
If such a fluid is heated from the gas side, the Marangoni
effect becomes destabilizing. If we put our system upside
down, gravity acts now stabilizing. Such a fluid layer is also
described by eq. (1), one has just to substitute M by —M
and G by —G. The scaled version (5) thus reads

~ - |1 BA? e N T Eppepe
doth = -V |z—==Vh+ -h3AVh — =h*Vh
2(1+Bh2 3 3
—E - (h—h) . (11)
5 |
E flat film stable
0.1 (gravity dominated)
/
0.05¢ uatratic term vanishes (no hexagons).
cubic order parameter valid
equation valid e flat film
&)ﬂi e always
- ’(‘e; unstable
-7 T (surface)
o 02 03 04 -

by
Figure 8 Stability diagram of the anomalous Marangoni
effect. The order parameter eqs. now cover
almost the complete Turing region. Depending
on parameters, up,down hexagons or squares
can be stable.

The shape of the region in the £ — ho plane where Turing
patterns occur (fig.4) is now changed and limited by

. 3 ho  h3

L = = — + = 12
max ore T 16 T 12 (12)

Emin = ﬁg/lQ : (13)
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Note that Emax goes to infinity if iLO — 0. The reason is
that for very thin layers the destabilizing Marangoni effect
becomes more and more important and stabilizing gravity
can then be neglected.

Repeating the weakly non-linear analysis shows now
that the cubic order parameter eqs. are valid in almost
the whole region of interest (fig.8). It is remarkable that the
quadratic coefficient A may change sign along a codimension-
one line. Near this line, stripes should occur as a first bi-
furcation. Stripes bifurcate forward, hexagons backwards.
The subcritical range for hexagons is given by

A2

€E> — .
4(01+Cz+03)

Fig. 9 shows a time series found by a numerical solution
of (11) for parameters where A ~ 0. As expected from
the order parameter egs., hexagons are not stabilized and
stripes are the selected planform.

Figure 9 Numerical solution of (11) for parameters where
A ~ 0. Stripes are the preferred structure.

CONCLUSIONS

We showed that evaporation may stabilize a flat liquid
film surface if the layer is heated from the gas side. If
instability sets in, the typical scenario characteristic for thin
films without evaporation is completely changed. Instead
of coarsening and rupture one finds Turing like patterns,
hexagons for normal fluids and stripes or hexagons if the
Marangoni effect is anomalous, as in certain long-chain-
alcohol solutions. These results were obtained both from a
weakly non-linear analysis as well as from direct numerical
simulations of the thin-film equation.

Finally it is important to note that the hexagons found
in our study are still on a large scale compared to the layer
depth. Although looking similar to the classical small scale
structures obtained in Bénard-Marangoni convection, the
behavior of the thin film fluid is completely different. De-
formation plays a crucial role, whereas for small scale struc-
tures the surface can assumed to be flat in a good approx-
imation.

1120

References

[1] N. Rehse et al., Eur. Phys. J. E4, 69 (2001).
[2] L. Rockford et al., Phys. Rev. Lett. 82, 2602 (1999).
(3] R. Borcia, M. Bestehorn, Langmuir 25, 1919 (2009)

[4] A. Oron, S. H. Davis, S. G. Bankhoff, Rev. Mod. Phys. 69,
931 (1997).

[5] A. Pototsky, M. Bestehorn, U. Thiele, Physica D199, 138
(2004).

[6] G. Reiter et al., Langmuir 15, 2551 (1999).
[7] G. Reiter, Phys. Rev. Lett. 68, 75 (1992).

[8] K. Jacobs, S. Herminghaus, K. R. Mecke, Langmuir 14,
965 (1998).

[9] P. Colinet, J. C. Legros, M. G. Velarde, Nonlinear Dy-
namics of Surface-Tension-Driven Instabilities, Wiley-
VCH Berlin (2001).

[10] J. P. Burelbach, S. G. Bankoff, S. H. Davis, J. Fluid Mech.
195, 463 (1988).

[11] J. P. Burelbach, S. G. Bankoff, S. H. Davis, Pys. Fluids
A2, 322 (1990).

[12] A. Oron, Phys. Fluids 12, 1633 (2000).

[13] M. Bestchorn, A. Pototsky, U. Thiele, Eur. Phys. J. B 33,
457 (2003).

14] R. J. Deissler, A. Oron, Phys. Rev. Lett. 68, 2948 (1992).
5] M.Bestehorn, D.Merkt, Phys. Rev. Lett. 97, 127802 (2006)
6] M. Bestehorn, Phys. Rev. E48, 3622 (1993).

17] K. Eckert, M. Bestehorn, A. Thess, J. Fluid Mech. 356,
155 (1998).

[18] D. Semwogerere, M. F. Schatz, Phys. Rev. Lett. 88, 054501
(2002).

[19] A. Vrij, Discuss. Faraday Soc. 42, 23 (1966).
[20] L. M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000)

[21] M. Bestehorn, K. Neuffer, Phys. Rev. Lett. 87, 046101
(2001).

[22] A. A. Golovin, A. A. Nepomnyashchy, L. M. Pismen, J.
Fluid Mech. 341, 317 (1997).

[23] M. J. Tan, S. G. Bankoff, S. H. Davis, Pys. Fluids A2, 313
(1990).

[24] M.Bestehorn, Fluid Dynamics and Pattern Formation,
Contribution to Encyclopedia of Complexity and System
Science, Ed. R.A.Meyers, Springer Berlin (2009)

[25] A. V. Lyushnin, A. A. Golovin, L. M. Pismen, Phys. Rev.
E65, 021602 (2002).

[26] A. Oron, Phys. Rev. Lett. 85, 2108 (2000).

[27] M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993)

[28] H.Haken, Synergetics: Introduction and Advanced Top-
ics, Springer Berlin, 3rd ed. (2004)

[29] J.C. Legros, G. Petre, M.C. Limbourg-Fontaine, Adv.
Space Res. 4, 37 (1984)



