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Abstract A definition of relative discrete spectrum of noncommutative W*-dynamical
systems is given in terms of the basic construction of von Neumann algebras, mo-
tivated from three perspectives: Firstly, as a complementary concept to relative
weak mixing of W*-dynamical systems. Secondly, by comparison with the classical
(i.e. commutative) case. And, thirdly, by noncommutative examples.
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1 Introduction

In his study of ergodic actions of locally compact groups, Zimmer [20,21] intro-
duced relative discrete spectrum and proved what was to become known as the
Furstenberg-Zimmer Structure Theorem. Proving the same structure theorem in-
dependently, Furstenberg [6] gave an ergodic theoretic proof of Szemeredi’s Theo-
rem.

In the noncommutative setting of W*-dynamical systems, Austin, Eisner and
Tao [1] proved a partial analogue of the Furstenberg-Zimmer Structure Theorem,
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providing conditions under which a certain case of relative weak mixing holds.
In their approach, which builds on the work by Popa [13], the basic construction
of von Neumann algebras is an essential tool, although they do not define rela-
tive weak mixing in terms of the basic construction, and do not define relative
discrete spectrum at all. Their use of the basic construction forms the basis for
our approach to relative discrete spectrum in this paper, where we employ the
basic construction for the von Neumann algebra of a W*-dynamical system and
the subalgebra relative to which we want to define discrete spectrum of the W*-
dynamical system. Of particular importance is [1]’s characterization of systems
which are not relatively weakly mixing in terms of the existence of a non-trivial
submodule, invariant under the dynamics and finite with respect to the trace on
the basic construction. In the noncommutative case these kinds of submodules
play an analogous role to the finite rank submodules which appear in the classical
case.

The paper has two main parts. The first, consisting of Sections 2 and 3, treats
our noncommutative definition of relative discrete spectrum. The definition is given
in terms of the basic construction, and is motivated by the need to make relative
discrete spectrum complementary to relative weak mixing as in the classical case.
Some tools and ideas provided by the theory of joinings of W*-dynamical systems
are used in the process. Our definition is then shown to not only be a noncommu-
tative generalization of classical relative discrete spectrum, but also to generalize
the noncommutative version of (absolute) discrete spectrum.

In the second part, consisting of Sections 4 and 5, we discuss two noncommuta-
tive examples of relative discrete spectrum. The first example (Section 4) is a skew
product of a commutative system with a noncommutative one. The second (Sec-
tion 5) is a purely noncommutative example on the von Neumann tensor product
of two noncommutative systems, where the second system is finite dimensional.
These examples show that our definition of relative discrete spectrum is indeed re-
alized in noncommutative systems, rather than just being an empty generalization
of the classical definition.

We end the paper with a brief discussion of some open problems (Section 6).
Throughout this paper we will be working only with traces on von Neumann

algebras, not general states or weights. Because of this we do not need the full force
of Tomita-Takesaki theory, but we do need at least the modular operator J . The
main reason for the appearance of J is to set up the right module structure of the
GNS Hilbert space. This is essential for our definition of relative discrete spectrum
in Section 3. The second reason J appears is to construct relatively independent
joinings in Section 2 and to use their theory to motivate our definition of relative
discrete spectrum via Theorem 3.1.

Note that we use the convention where inner products are linear in the right
and conjugate linear in the left.

2 Relatively Independent Joinings and Relative Weak Mixing

As the first step towards the concept of relative discrete spectrum, we study how
relatively independent joinings (see [4,2]) can be expressed in terms of the basic
construction. Combining this with theory from [5] regarding relative weak mixing,
places us in a position to proceed to relative discrete spectrum in the next section.
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In the remainder of this paper W*-dynamical systems are referred to as “sys-
tems” and we define them as follows:

Definition 2.1 A system A = (A,µ, α) consists of a faithful normal trace µ on a
(necessarily finite) von Neumann algebra A, and a ∗-automorphism α of A, such
that µ ◦ α = µ.

In the sequel, for A we assume without loss that A is a von Neumann algebra
on the Hilbert space H, with µ given by a cyclic and separating vector Ω ∈ H, i.e.

µ(a) = 〈Ω, aΩ〉

for all a ∈ A.
The dynamics α of a system A can be represented by a unitary operator U on

H defined by extending
UaΩ := α(a)Ω.

It satisfies
UaU∗ = α(a)

for all a ∈ A.
Along with A above, we also use the notation

B = (B, ν, β) and F = (F, λ, ϕ)

to denote systems.

Definition 2.2 We call F a subsystem of A if F is a von Neumann subalgebra of
A (containing the unit of A) such that µ|F = λ and α|F = ϕ.

Throughout the rest of the paper, F will be a subsystem of A. Set

HF := FΩ.

Next we review elements of the basic construction and relatively independent
joinings. Let eF denote the projection of H onto HF . We consider the basic con-
struction, 〈A, eF 〉, the smallest von Neumann algebra (in B(H)) containing A and
eF . See [15], [3] and [8].

Since µ is a trace, we obtain from it a faithful semifinite normal tracial weight
µ̄ : 〈A, eF 〉+ → [0,∞]. It is also defined and tracial on the strongly dense ∗-
subalgebra AeFA := span{aeF b : a, b ∈ A} of 〈A, eF 〉 via the equation

µ̄(aeF b) = µ(ab).

For more on the basic construction and the trace µ̄, see [14, Chapter 4].
We can extend the dynamics of α to 〈A, eF 〉 by

ᾱ(a) = UaU∗

for a ∈ 〈A, eF 〉. Then from [5, Section 3],

µ̄ ◦ ᾱ = µ̄.

Furthermore, we have a unitary operator

Ū : H̄ → H̄
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representing ᾱ on the Hilbert space H̄ obtained from the GNS construction for
(〈A, eF 〉 , µ̄). Denoting the quotient map of this construction as

γµ̄ : Nµ̄ → H̄, (2.1)

where
Nµ̄ := {a ∈ 〈A, eF 〉 : µ̄(a∗a) <∞}, (2.2)

we define Ū : H̄ → H̄ via
Ūγµ̄(a) = γµ̄(α(a)).

We now turn to the relatively independent joining and its relation to the basic
construction. The modular conjugation associated to the trace µ, will be denoted
by J . We let

j : B(H)→ B(H) : a 7→ Ja∗J,

where B(H) is the von Neumann algebra of all bounded linear operators on H.
Carry the trace and dynamics of the system A over to A′ in a natural way using
j, by defining a trace µ′ and ∗-automorphism α′ on A′ by

µ′(b) := µ ◦ j(b) = 〈Ω, bΩ〉

and
α′(b) := j ◦ α ◦ j(b) = UbU∗

for all b ∈ A′ (where we made use of UJ = JU). This defines the system

A′ := (A′, µ′, α′).

Set
F̃ := j(F ),

λ̃ := µ′|F̃ ,

and
ϕ̃ := α′|F̃ .

Let
D : A→ F

be the unique conditional expectation such that λ ◦D = µ. Then

D′ := j ◦D ◦ j : A′ → F̃

is the unique conditional expectation such that λ̃ ◦D′ = µ′. For later use we note
that, since j(f)Ω = Jf∗Ω = fΩ for all f ∈ F , we have

D′(b)Ω = D(j(b))Ω (2.3)

for all b ∈ A′.
Define the unital ∗-homomorphism

δ : F � F̃ → B(H),

on the algebraic tensor product F � F̃ as the linear extension of F × F̃ → B(H) :
(a, b) 7→ ab. Define the diagonal state

∆λ : F � F̃ → C
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of λ by

∆λ(c) := 〈Ω, δ(c)Ω〉

for all c ∈ F � F̃ . The relatively independent joining of A and A′ over F is the
state µ�λ µ′ on A�A′ given by

µ�λ µ′ := ∆λ ◦D �D′. (2.4)

Subsequently we denote this joining by

ω := µ�λ µ′

and also write

A�F A′ := (A�A′, ω, α� α′).

The cyclic representation of (A�A′, ω) obtained by the GNS construction will be
denoted by (Hω, πω, Ωω). Let

γω : A�A′ → Hω : t 7→ πω(t)Ωω.

By W we denote the unitary representation of

τ := α� α′

on Hω defined as the extension of

Wγω(t) := γω(τ(t))

for all t ∈ A�A′.
We also set

Hλ := γω(F ⊗ 1). (2.5)

Next we turn our attention to expressing the GNS representation of ω in terms
of H̄, which is convenient for our subsequent work. The key point is to construct a
natural unitary equivalence R : Hω → H̄ between W and Ū . In the classical case,
such a result appears in [12, pp. 63–64].

Proposition 2.1 We have a uniquely determined well-defined unitary operator

R : Hω → H̄

satisfying Rγω(a⊗ j(b)) = γµ̄(aeF b) for all a, b ∈ A.
Furthermore,

Ū = RWR∗.

Proof Since j is linear, we may define R0 : A�A′ → 〈A, eF 〉 via the prescription

R0(a⊗ b) := aeF j(b)

for a ∈ A and b ∈ A′. From the universal property of A � A′, R0 is well-defined
and linear. Note that R0(A ⊗ A′) ⊂ Nµ̄ with Nµ̄ = {x ∈ 〈A, eF 〉 : µ̄(x∗x) < ∞}
as in (2.2). Hence, we can consider

R : γµ̄(A�A′)→ H̄ : γω(t) 7→ γµ̄(R0(t)).
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We need to show that R is well-defined and uniquely extends to a unitary
operator Hω → H̄. For clarity, below, we distinguish the inner products of Hω
and H̄ by subscripts ω and µ̄. Note that for a, c ∈ A and b, d ∈ A′,

〈γµ̄(R0(a⊗ b)), γµ̄(R0(c⊗ d))〉µ̄ = 〈γµ̄(aeF j(b)), γµ̄(ceF j(d))〉µ̄
=µ̄(j(b∗)eF a

∗ceF j(d))

=µ̄(eF a
∗ceF j(d)j(b∗)eF )

=µ̄(D(a∗c)eFD(j(b∗d))

=µ(D(a∗c)D(j(b∗d)))

=
〈
Ω,D(a∗c)D′(b∗d)Ω

〉
=
〈
Ω, δ ◦ (D �D′)((a∗c)⊗ (b∗d))Ω

〉
=ω((a∗c)⊗ (b∗d)) = ω((a⊗ b)∗(c⊗ d))

= 〈γω(a⊗ b), γω(c⊗ d)〉ω ,

where we have used (2.3). So it follows that for all s, t ∈ A�F A′,

〈γµ̄(R0(s)), γµ̄(R0(t))〉µ̄ = 〈γω(s), γω(t)〉ω . (2.6)

Thus, R is well-defined (as γω(t) = 0 implies γµ̄(R0(t)) = 0) and can be extended
to an isometric linear operator, still denoted by R, fromHω to H̄. From [14, Lemma
4.3.10], γµ̄(AeFA) is dense in H̄. It follows that Rγω(A�A′) = γµ̄(R0(A�A′)) =
γµ̄(AeFA) is dense in H̄. Hence, RHω = H̄ and therefore R is a unitary operator.

For a, b ∈ A,

RWR∗(γµ̄(aeF b)) =RWγω(a⊗ j(b)) = Rγω(α(a)⊗ j(α(b)))

=γµ̄(α(a)eFα(b)) = γµ̄(ᾱ(aeF b))

=Ū(γµ̄(aeF b)),

which implies that Ū = RWR∗.

Note that we can express the relatively independent joining in terms of µ̄ using
R: For all a ∈ A and b ∈ A′,

ω(a⊗ b) = 〈Rγω(1), Rγω(a⊗ b)〉µ̄ = 〈γµ̄(eF ), γµ̄(aeF j(b))〉µ̄
=µ̄(eF aeF j(b)) = µ̄(D(a)eFD(j(b)).

If HW
ω denotes the vector space of all fixed points of W, then

H̄Ū := RHW
ω ,

must be the fixed points of Ū . We also have a copy of Hλ in H̄:

H̄λ :=RHλ = Rγω(1⊗ F̃ ) from (2.5)

=Rγω(1⊗ F̃ )

=γµ̄[R0(1⊗ F̃ )]

=γµ̄(eFF ).

(2.7)

Having obtained our unitary equivalence R in Proposition 2.1, we can rephrase
relative ergodicity ([5, Definition 4.1]) from a “basic construction” point of view:
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Definition 2.3 We say that A�F A′ is ergodic relative to a subsystem F of A,
if H̄Ū ⊂ H̄λ.

We recall the following definition:

Definition 2.4 ([1, Definition 3.7]) We call a system A weakly mixing relative to
the subsystem F if

lim
N→∞

1

N

N∑
n=1

λ
(
|D(a∗αn(a))|2

)
= 0 (2.8)

for all a ∈ A with D(a) = 0.

Since µ is tracial, Definition 2.4 coincides with [5, Definition 3.1] because of [5,
Proposition 3.8]. Thus the formulation of [5, Theorem 4.2] does not change:

Theorem 2.1 The system A is weakly mixing relative to F if and only if A�F A′

is ergodic relative to F.

In the next section this theorem will allow us to formulate relative discrete
spectrum in terms of the basic construction as a complementary concept to relative
weak mixing.

3 Relative Discrete Spectrum

In this section we develop our definition of relative discrete spectrum, which gen-
eralizes the classical definition to noncommutative systems. The relation to the
classical case is given in Proposition 3.2, while noncommutaive examples are given
in the subsequent two sections. We continue using the notation from the previous
section.

The inspiration for our noncommutative definition of relative discrete spectrum
is the treatment in [7] of the original work of Furstenberg and Zimmer (see [7, p.
193]). The key difference in this paper, is the use of what we will call U -µ̄-modules
(Definition 3.2), which play a role analogous to that of the finite rank modules
appearing in [7, Definition 9.2] and [7, Definition 9.10]. Unlike [7], we do not use
generalized eigenfunctions. Instead we opt to use the U -µ̄-modules to define a
subspace analogous to the vector space E(X/Y) of all generalized eigenfunctions
appearing in [7, Definition 9.10]. These U -µ̄-modules are defined in terms of the
standard right-A-module structure of H discussed below.

In order to motivate our definition of relative discrete spectrum, we are going
to make use of ideas from relative weak mixing, as developed in [1, Sections 3 and
4] and [13, Section 2], and subsequently studied further in [5] in connection to
relatively independent joinings.

We begin by defining

xa := j(a)x

for all x ∈ H and a ∈ A, making H a right-A-module. Of course, H is already a
left-A-module by A’s usual action on H, so H is in fact a bimodule, but it is the
right module structure that will be of particular significance for us.
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Definition 3.1 Given a closed subspace V of H, denote the projection of H onto
V by PV . We call V a right-F -submodule (of H) if V F ⊂ V , i.e. if xa ∈ V for all
x ∈ V and for all a ∈ F .

Proposition 3.1 Let V be a closed subspace of H. Then V is a right F -submodule
if and only if PV ∈ 〈A, eF 〉.

Proof Simply note that, for all a ∈ F,

j(F )V ⊂ V ⇔ PV ∈ (JFJ)′ = 〈A, eF 〉 ,

the last equality following from [14, Lemma 4.2.3].

We are interested in Hilbert subspaces V of H which are invariant under the
group {Un : n ∈ Z}, therefore we say that V is U-invariant if

UV = V,

rather than just assuming inclusion.

Definition 3.2 Suppose V ⊂ H 	HF is a U -invariant right-F -submodule. Call
V a U-µ̄-module if in addition V satisfies

µ̄(PV ) <∞.

Definition 3.3 By EA/F denote the closed subspace of H 	 HF spanned by all
U -µ̄-modules.

We now want to capture the idea that relative weak mixing and relative discrete
spectrum exist as complementary concepts ([19, §12.4] presents this point of view
in the commutative case). It is based on the following result, the one direction of
which is proven in [1, Proposition 3.8], although they also mention that the other
direction holds. We prove the latter using Theorem 2.1.

Theorem 3.1 The system A is weakly mixing relative to F if and only if EA/F =
{0}.

Proof Note that the statement of the theorem can be rephrased as follows: The
system A is weakly mixing relative to F if and only if there are no non-trivial
U -µ̄-modules.

That (2.8) holds if there are no non-trivial U -µ̄-modules, follows from [1, Propo-
sition 3.8]. We prove the converse as follows:

Assume there is a non-trivial U -µ̄-module V . Hence, PV ∈ Nµ̄ and we can set

x := γµ̄(PV ) ∈ H̄.

As UV = V, we have ᾱ(PV ) = UPV U
∗ = PV . Hence, x ∈ H̄Ū , with x 6= 0, since

PV 6= 0 and µ̄ is faithful.
Since PV eF = 0,

〈x, γµ̄(eF a)〉µ̄ = µ̄(P ∗V eF a) = 0,

for all a ∈ F. Hence, from (2.7), x ⊥ H̄λ, so x /∈ H̄λ (since x 6= 0) and thus

H̄Ū 6⊂ H̄λ.
In other words, A�F A′ is not ergodic relative to F. By Theorem 2.1 we are

done.
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Motivated by this result, we now present the main definition of this paper:

Definition 3.4 We say that the system A has discrete spectrum relative to F if
EA/F = H 	HF . Alternative terminology for this is to say that A is an isometric
extension of F.

Thus relative weak mixing and relative discrete spectrum correspond to the two
extremes of EA/F , and are, in this sense, complementary.

In the remainder of this section we show that the classical definition of relative
discrete spectrum, as well as the absolute case of noncommutative discrete spec-
trum, are special cases of this definition, confirming that it is a sensible definition
in a noncommutative framework. What will remain after that, is to show that
there actually are noncommutative systems satisfying Definition 3.4, which we do
in the next two sections.

The classical notion of relative discrete spectrum is defined as follows (see [7,
Definition 9.10]):

Definition 3.5 Assume that A is a classical system, i.e. A = L∞(η) for a stan-
dard probability space (Y,Σ, η). A F -submodule V of H = L2(η) is said to be of
finite rank if there are x1, ..., xn ∈ V such that

V =

{
n∑
i=1

aixi : a1, ..., an ∈ F

}
,

where ajxj is simply pointwise multiplication of functions. We call x ∈ H an
F -eigenvector of U if x belongs to some U -invariant finite rank F -module (for
simplicity, x = 0 is allowed). If H 	 HF is spanned by the F -eigenvectors of U ,
then we say that A has relative discrete spectrum over F in the classical sense.

Remark 3.1 In [7], the condition that H 	 HF is spanned by the F -eigenvectors
of U , is expressed as H being spanned by the F -eigenvectors of U . These two
conditions are equivalent. This is simply because HF is a finite rank U -invariant
F -module. Hence all elements of HF are F -eigenvectors of U , so if x ∈ H is an
F -eigenvector of U , then so is eFx ∈ HF , and therefore (1 − eF )x ∈ H 	HF as
well.

Definition 3.5 is indeed a special case of Definition 3.4 as is proved below in
Proposition 3.2. The proof uses direct integral theory, as it is used in [1, Lemma
4.1]. This is why we assume that (X,X , η) be standard, as it ensures that L2(η)
is separable ([11, Corollary 5.3]).

Proposition 3.2 Assume that A is a classical system, i.e. A = L∞(η) for a
standard probability space (X,X , η) and α(f) = f ◦ T for some fixed invertible
map T : X → X satisfying η(Z) = η(T−1(Z)) for all Z ∈ X . The system A has
discrete spectrum relative to F (in the sense of Definition 3.4) if and only if it has
relative discrete spectrum over F in the classical sense.

Proof Assume that A has discrete spectrum relative to F. The approach of the
proof is to express any U -µ̄ module V as the direct sum of finite rank modules,
using ideas from the proof of [1, Lemma 4.1].

Using [10, Theorem 14.2.1], since F is commutative, we have a unitary operator

Φ : H → H⊕ where H⊕ is a direct integral H⊕ =
∫⊕
Y
Hp dν(p) of Hilbert spaces
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Hp indexed by some standard probability space (Y,Y, ν). Thus, in particular, any
statement about a module V in H⊕ has a corresponding statement about Φ−1V
in H.

Define
φ : F → B(H⊕) : a 7→ ΦaΦ−1.

The von Neumann algebra F is then identified with the von Neumann algebra of
all diagonalizable operators φ(F ) = {Mf : f ∈ L∞(ν)} where Mf ∈ B(H⊕) is the
multiplication operator acting on x ∈ H⊕ via the equality (Mfx)(p) = f(p)x(p)
for almost all p ∈ X. Given any U -µ̄-module V, then as in the proof of [1, Lemma
4.1] we can write

ΦV =

∫ ⊕
Y

Vp dν(p),

for a measurable field of Hilbert subspaces Vp ⊂ Hp.
We shall now express ΦV as a direct sum of φ(F )-modules of finite rank. For

each n ∈ N ∪ {∞} write

Yn := {p ∈ Y : dim (Hp) = n}.

Each Yn turns out to be measurable [10, Remark 14.1.5]. Consider the projec-
tions MχYn

and define

Vn :=

∫
Yn

Vp dν(p) = MχYn
ΦV,

where χYn
denote the indicator functions. As in the proof of [1, Lemma 4.1],∫

Y
dim(Vp) dν(p) <∞, so ν(Y∞) = 0, hence V∞ = 0 and the collection {Yn : n ∈

N} satisfies ν(∪n∈NYn) = 1. It follows that ΦV can be identified with ⊕n≥1Vn.
It is now straightforward to verify that each Φ−1Vn is a U -µ̄-module: We have,

for every f ∈ F,

fΦ−1Vn = fφ−1(MχYn
)(V ) = φ−1(MχYn

)fV ⊂ φ−1(MχYn
)V = Φ−1Vn,

so that each Vn is a right φ(F )-module.
In a similar way to the proof of [1, Lemma 4.1], α induces dynamics on Y

leaving each Yn invariant, which in turn means that each Vn is U -invariant, since
ΦUΦ−1 is given by a measurable section of unitary operators Ψ : Y → qp∈Y U(Hp)
combined with S.

By construction, dim(Vp) ≤ n whenever p ∈ Yn and it follows that Φ−1Vn is
of finite rank.

So ΦV consists solely of φ(F )-eigenvectors and hence V and therefore (because
of Definitions 3.4 and 3.3) also H	HF are spanned by F -eigenvectors as required.

We now prove the converse. Assume that A has relative discrete spectrum
over F in the classical sense. Then we simply have to show that the projection PV
corresponding to a finite rank F -module V ⊂ H 	HF satisfies µ̄(PV ) <∞.

Consider then any finite rank F -module V :=
{∑n

i=1 fivi : fi ∈ F
}
.

We now give a description of Vp for almost all p. Put wi := Φvi for each
i = 1, 2, . . . , n. Thus,

ΦV =

{
n∑
i=1

Mgiwi : gi ∈ L∞(ν)

}
.
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Hence all vectors of the form Mgw for g ∈ L∞(ν) and w ∈ {wi : i = 1, 2, . . . , n}
form a dense spanning set for ΦV and thus, from [10, Lemma 14.1.3], for almost
all p,

Vp =

{
n∑
i=1

gi(p)wi(p) : gi ∈ L∞(ν)

}
= span{wi(p) : i = 1, 2, . . . , n}.

Similar to the proof of [1, Lemma 4.1], we thus have,

µ̄(PV ) =

∫
Y

dim(Vp) dν(p)) ≤
∫
Y

ndν(p) = n <∞.

We consider another special case of Definition 3.4 when F = C1 and λ = µ|F .
We take note that in this case the basic construction is given by 〈A, eF 〉 =

JF ′J = JB(H)J = B(H), using [14, Lemma 4.2.3]. Thus, since the trace on B(H)
is unique up to nonzero scalar multiples, we may take µ̄ to be the canonical trace
Tr on B(H). In particular, this means that our U -µ̄-modules are exactly the finite
dimensional U -invariant subspaces of H.

Proposition 3.3 Let A = (A,µ, α) be a system and F be the trivial system i.e
F = C1, λ = µ|F , and ϕ = α|F . Then A has discrete spectrum relative to F if and
only if A has discrete spectrum, i.e H is spanned by the eigenvectors of U.

Proof Note that Ω is always a fixed point of U . Let E denote the set of all
eigenvectors of U orthogonal to Ω. Assume that A has discrete spectrum, i.e.
span E = H 	 CΩ. For x ∈ E , let

Sx := {sx : s ∈ C}.

Then, it easy to verify that Sx is a U -µ̄-module. Moreover,

H 	HF = span{Sx : x ∈ E}.

Thus, A has discrete spectrum relative to F.
Conversely, assume that A has discrete spectrum relative to F. Then, as re-

marked above, all U -µ̄-modules V have finite dimension, and they span H 	 CΩ.
As each such finite dimensional U -invariant space V is spanned by eigenvectors of
U , H 	 CΩ is as well. It follows that A has discrete spectrum.

4 Skew Products

In order to complete the argument that our definition of relative discrete spectrum
(Definition 3.4) is sensible for noncommutative systems, we still need to exhibit
noncommutative examples. That is what we do in this section and the next.

In this section we focus on a skew product, starting with a classical system
and extending it by a noncommutative one.

The following result will be useful for both examples:
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Proposition 4.1 Let (B, ν) and (C, σ) be von Neumann algebras with faithful
normal tracial states ν and σ, both in their GNS representations on the Hilbert
spaces Hν and Hσ, with cyclic vectors Ων and Ωσ, respectively. Consider the von
Neumann algebra tensor product A := B⊗̄C and the faithful normal state µ :=
ν⊗̄σ. Set F := B ⊗ 1 with state λ := µ|F . Then

〈A, eF 〉 = B⊗̄B(Hσ).

The trace µ̄ of 〈A, eF 〉 is given by

µ̄(t) =
∑
i∈I
〈Ων ⊗ hi, t(Ων ⊗ hi)〉 = µ⊗̄Tr(t), (4.1)

for all t ∈ 〈A, eF 〉+ , where {hi : i ∈ I} is any orthonormal basis for Hσ and Tr is
the canonical trace on B(Hσ).

Proof Let Jν , Jσ and J = Jν ⊗ Jσ denote the modular conjugation operators
associated to ν, σ and µ, respectively. By [14, Lemma 4.2.3] and [17, Section 10.7
Lemma 1] we have

〈A, eF 〉 = JF ′J = (JνB
′Jν)⊗̄(JσB(Hσ)Jσ) = B⊗̄B(Hσ). (4.2)

We compute the trace µ̄ using [14, Lemma 4.3.4]. To do this, we need elements
vi of

〈
A′, eF

〉
for i ∈ I such that

∑
i∈I v

∗
i eF vi = 1 (see Remark 4.1 below). Let

vi = 1⊗ wi
where, for all z ∈ Hσ, wi ∈ B(Hσ) is defined by

wiz := 〈Jσhi, z〉Ωσ.

Note that, 〈
A′, eF

〉
= 〈JAJ, JeFJ〉 = J 〈A, eF 〉 J
= (JνBJν)⊗̄(JσB(Hσ)Jσ)

= B′⊗̄B(Hσ).

So we have vi ∈
〈
A′, eF

〉
.

In terms of the projection P of Hσ onto CΩσ we have eF = 1 ⊗ P , since
H = Hν ⊗Hσ and HF = Hν ⊗ (CΩσ). Hence

v∗i eF vi = 1⊗ w∗i Pwi.

For each i, the linear operator w∗i Pwi is the projection of Hσ onto CJσhi.
Hence, ∑

i∈I
v∗i eF vi = 1. (4.3)

Thus, applying the formula in [14, Lemma 4.3.4] in terms of Ω = Ων ⊗Ωσ, for
all t ∈ 〈A, eF 〉+,

µ̄(t) =
∑
i∈I

〈
Jv∗iΩ, tJv

∗
iΩ
〉

=
∑
i∈I
〈Ων ⊗ hi, t(Ων ⊗ hi)〉 .

Since µ̄ is faithful and the first equality of (4.1) holds, it follows from [16, Theorem
8.2] that the second equality of (4.1) holds.
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Remark 4.1 [14, Lemma 4.3.4] requires a net (vi) satisfying (4.3). However, the
assumption that I is a directed set is not used, neither in the proof of [14, Lemma
4.3.4] nor in any results that [14, Lemma 4.3.4] depends on.

We now turn to the skew product. Let (X,X , ρ) be a standard probability
space with compact Hausdorff space X and Borel measure ρ. We let S : X → X
be an invertible map such that S−1X ⊂ X and SX ⊂ X , and which is measure
preserving with respect to ρ, that is,

ρ(K) = ρ(S−1(K)),

for all K ∈ X .
We set

B := L∞(ρ), Ων := 1, ν(f) :=

∫
X

f dρ and β : B → B : f 7→ f ◦ S.

Then B is a system if we view B as operators acting on L2(ρ) via pointwise
multiplication: for every f ∈ L∞(ρ), we have an operator

Mf : L2(ρ)→ L2(ρ) : g 7→ fg.

We let

C = (C, σ, γ)

be a system such that Hσ in Proposition 4.1 is separable. Denote the unitary
representation of γ on Hσ by Uγ .

Now put

A := B⊗̄C.

Then

(L2(ρ)⊗Hσ, idA, 1⊗Ωσ)

is the GNS triple for A associated to the product state

µ := ν⊗̄σ.

Put

F := B ⊗ 1

and let λ := µ|F .
We construct the skew product dynamics α on A using the theory of direct

integrals (see for example [11] and [18, Section IV.8]). Consider the space of Hσ-
valued ρ-square integrable functions L2(ρ;Hσ). Then L∞(ρ) is ∗-isomorphic to the
von Neumann algebra M of all diagonalizable operators on L2(ρ;Hσ) ∼= L2(ρ)⊗
Hσ ([11, Proposition 5.2]). In effect, any f ∈ L∞(ρ) is identified with Mf ⊗ 1.
Furthermore, 1⊗Ωσ is represented by Ω ∈ L2(ρ,Hσ) given by Ω(p) = Ωσ for all
p ∈ X. If we put N (p) = C for all p ∈ X, then from [11, Corollary 19.9] and its
proof we have the isomorphism∫ ⊕

X

C dρ(p) :=

∫ ⊕
X

N (p) dρ(p) ∼= B⊗̄C.
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We identify A = B⊗̄C with this integral in the remainder of this section. The
elements a =

∫⊕
X
a(p) dρ(p) of

∫⊕
X
C dρ consist of decomposable operators with

a(p) ∈ B(Hσ) for all p ∈ X, such that

‖a(·)‖ ∈ L∞(ρ),

and for any z ∈ L2(ρ;Hσ) the element az ∈ L2(ρ,Hσ) is given by

(az)(p) = a(p)z(p)

for all p ∈ X. Moreover, from [18, Theorem IV.8.18], we have a(p) ∈ C. Thus, we

may represent each a ∈
∫⊕
X
C dρ by a map a : X → C : p 7→ a(p). In particular,

a = b⊗ c ∈ A is given by a(p) = b(p)c, for any b ∈ B = L∞(ν) and c ∈ C.
Let

k : X → Z

be any measurable map. For a ∈
∫⊕
X
C dρ, define for all p ∈ X,

α(a)(p) := γk(p)(a(Sp)). (4.4)

Then α is the skew product dynamics, where k acts as the generator of a cocycle.
It is straightforward to verify that α is a well-defined ∗-automorphism of A leaving
µ invariant, i.e. that A = (A,µ, α) is a system.

Notice that F is invariant under ϕ = α|F , since for all p ∈ X,

α(b⊗ 1)(p) = (b ◦ S)⊗ 1. (4.5)

We describe the unitary representation U of α. Note first that

(UaΩ)(p) = (α(a)Ω)(p) = α(a)(p)Ω(p) = γk(p)(a(Sp))Ωσ

= Uk(p)
γ (a(Sp)Ωσ) = Uk(p)

γ (aΩ)(Sp).

Let x ∈
∫⊕
X
Hσ dρ(p) and approximate x by a sequence (xn) = (anΩ) in AΩ.

Since, ∫
X

‖xn(Sp)− x(Sp)‖2 dρ(p) = ‖xn − x‖2 → 0 as n→∞,

it follows as in the proof of the completeness of Lp spaces, that there is a subse-
quence (‖xni(Sp)− x(Sp)‖) which tends to 0 except for p in a null set N0 ⊂ X.

Thus,

(Ux)(p) = lim
i
Uk(p)
γ xni(Sp) = Uk(p)

γ x(Sp),

for all p ∈ X\N0. Without loss, we may define Ux such that this holds for all
p ∈ X. Then it follows that

(U−1x)(p) = U−k(S−1p)
γ x(S−1p). (4.6)

To conclude, we discuss a concrete example of C. The main points from this
example are summarized in Proposition 4.2.
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Example 4.1 Let G be a countable group endowed with the discrete topology and
let T : G → G be any group automorphism such that for each g ∈ G the orbit of
g, T Zg := {Tng : n ∈ Z}, is a finite set (we refer to T Zg as a finite orbit). Consider
the dual system on

C := L(G),

the group von Neumann algebra of G. Thus, C is the von Neumann algebra on
`2(G) generated by the following set of unitary operators:

{l(g) : g ∈ G} (4.7)

where l is the left regular representation of G, i.e. the unitary representation of G
on `2(G) with each l(g) : `2(G)→ `2(G) given by

[l(g)f ](h) = f(g−1h)

for all f ∈ `2(G) and g, h ∈ G. Equivalently,

l(g)δh = δgh

for all g, h ∈ G, where δg ∈ `2(G) is defined by δg(g) = 1 and δg(h) = 0 for h 6= g.
Setting

Ωσ := δ1

where 1 ∈ G denotes the identity of G, we can define a faithful normal trace σ on
B by

σ(a) := 〈Ωσ, aΩσ〉

for all a ∈ C. It follows that (`2(G), idC , Ωσ) is the cyclic representation of (C, σ).
We have a unitary Uγ : `2(G)→ `2(G), defined by

Uγ(f) = f ◦ T.

We define a ∗-automorphism γ on C by

γ(c) = UγcU
∗
γ ,

for all c ∈ C. Then, (C, σ, γ) is a system.
Using Proposition 4.1, the basic construction is given by

〈A, eF 〉 = L∞(ρ)⊗̄B(`2(G)).

For each g ∈ G let
Rg := span (UZ

γ δg)

and let Qg be the projection of `2(G) onto Rg. Set

Vg := L2(ρ)⊗Rg

and let Pg = 1⊗Qg be the projection of H := L2(ρ)⊗ `2(G) onto Vg.
We have

µ̄(Pg) =
∑
h∈G

〈Ων ⊗ δh, Pg(Ων ⊗ δh)〉 =
∑
h∈G

〈δh, Qgδh〉 = dim(Rg) <∞,

since all orbits are finite.
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The Vg’s , for g 6= 1, span H 	 HF = L2(ρ) ⊗ Ω⊥σ , since the Rg’s span Ω⊥σ .
As Rg is spanned by an orbit, we have UγRg = Rg. It follows that if x⊗ y ∈ Vg,
then,

U(x⊗ y)(p) = Uk(p)
γ (x⊗ y)(Sp) = Uk(p)

γ (x(Sp)y) = x(Sp)Uk(p)
γ y ∈ Rg,

for all p ∈ X, since x ⊗ y is represented by p 7→ x(p)y in
∫⊕
X
Hσ d(ρ). Hence

U(x⊗y) ∈ L2(ρ)⊗Rg, so UVg ⊂ Vg. Using (4.6), it similarly follows that U−1Vg ⊂
Vg, so UVg = Vg.

The Vg’s are trivially right-F -modules, since F = L∞(ρ) ⊗ 1. Hence the Vg’s
are indeed U -µ̄-modules which (when excluding g = 1) span H 	HF as required
by Definition 3.4.

We briefly summarize:

Proposition 4.2 Consider a dual system C generated from a discrete countable
group G, with automorphism T : G→ G with finite orbits, and a classical system B
obtained from a standard measure-preserving system (X,X , ρ, S). Form the system
(B⊗̄C, µ, α) with µ as a vector state from 1⊗ δ1 and dynamics given by equation
(4.4). Then (B⊗̄C, µ, α) has discrete spectrum relative to (B ⊗ 1, µ|B⊗1, α|B⊗1).

Taking G to be the free group on a finite or countable set of symbols, with T
induced by a finite orbit bijection of the symbols, provides a concrete and non-
trivial realization of C.

5 Finite Extensions

In this section we present a second example of relative discrete spectrum. In this
case, unlike the previous section, we start with a noncommutative system and
extend it by a finite dimensional noncommutative system (hence the name “finite
extension”).

Let Mn = Mn(C) denote the n× n matrices over C.

Definition 5.1 Consider a system B = (B, ν, β). Let n ∈ N. Consider the von
Neumann algebra A = B �Mn with faithful normal trace µ = ν � tr, where tr is
the normalized trace on Mn. Suppose further that there is a ∗-automorphism α of
A such that α(b ⊗ 1) = β(b) ⊗ 1. Represent B as the subsystem F of A given by
F = B⊗1, λ(b⊗1) = ν(b) and ϕ(b⊗1) = β(b)⊗1. Then we refer to A = (A,µ, α)
as a finite extension of F. Equivalently, we say that A is a finite extension of B.

Note that we can view B �Mn as all n× n matrices with entries in B.
There is a general reason why finite extensions are isometric extensions (Propo-

sition 5.2): if the trace on the basic construction is finite, we automatically have
relative discrete spectrum, as we now show (Corollary 5.1).

Proposition 5.1 Let A be a system with subsystem F. Then the subspace H	HF
is a U-invariant right F -submodule.

Proof Consider H	HF and its corresponding projection 1A−eF . Since 1A−eF ∈
〈A, eF 〉 , H 	 HF is a right F -module using Proposition 3.1. Furthermore, since
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α(F ) = F, we have U∗HF = HF . Consequently, for x ∈ H 	HF and y ∈ HF , we
have

〈Ux, y〉 =
〈
x, U∗y

〉
= 0, (5.1)

so that U(H 	HF ) ⊂ H 	HF . Similarly, we have U∗(H 	HF ) ⊂ H 	HF .

Corollary 5.1 Suppose that A is a system with subsystem F and assume that µ̄
is finite, in the sense that µ̄(x) <∞, for every x ∈ 〈A, eF 〉+ . Then A has discrete
spectrum relative to F.

Proof Since µ̄(1A− eF ) <∞, H	HF is spanned by a U -µ̄-module, namely itself.

Since the basic construction of a finite dimensional von Neumann algebra is
again finite dimensional, the trace on the basic construction is finite and we have:

Corollary 5.2 Every system on a finite dimensional von Neumann algebra has
discrete spectrum relative to every subsystem.

Another example follows from [9, Proposition 3.1.2]:

Corollary 5.3 Suppose that both A and F are type II1 factors and that their index
[A : F ] is finite. Then A has discrete spectrum relative to F.

Using Corollary 5.1, we can also prove the following:

Proposition 5.2 If A is a finite extension of F, then A has discrete spectrum
relative to F.

Proof Without loss of generality, assume that (B, ν) in Definition 5.1 is in its GNS
representation B → B(Hν) with cyclic vector Ων . One can easily verify that the
GNS triple for Mn is (Cn � Cn, πn, Λ), where πn : Mn → Mn �Mn : c 7→ c ⊗ 1,
and Λ = 1√

n

∑n
j=1 ej ⊗ ej with {ej} an orthonormal basis for Cn. Thus the GNS

triple for A = B �Mn is given by (Hν � Cn � Cn, π,Ω), where Ω = Ων ⊗ Λ and
π : B �Mn → B �Mn �Mn : a 7→ a⊗ 1.

From Proposition 4.1,

〈A, eF 〉 = B �Mn �Mn

and
µ̄ = ν � Tr,

where Tr := Trn�Trn, with Trn the usual trace (sum of diagonal entries) on Mn.
As µ̄ is finite, A has discrete spectrum relative to F, by Corollary 5.1.

Example 5.1 We give a concrete realization of a finite extension for which the
dynamics is not compact nor a tensor product of the dynamics on the underlying
algebras. For simplicity, we focus on the case n = 2 in Definition 5.1.

We let B1 = (B1, ν1, β1) and B2 = (B2, ν2, β2) be systems.
Consider B = B1 ⊕B2 which we view as the set of all matrices of the form[

b1 0
0 b2

]
for b1 ∈ B1 and b2 ∈ B2.
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Let s ∈ (0, 1) ⊂ R and put

ν = s(ν1 ⊕ 0) + (1− s)(0⊕ ν2).

Then ν is a faithful normal state on B. So B = (B, ν, β), with β = β1 ⊕ β2, is a
system.

Set

A = B �M2 and µ = ν � tr.

We now describe dynamics on (A,µ). Let

W =

[
w1 w2

w3 w4

]
∈ A,

be unitary, where wi ∈ B, and define α(a) := WaW ∗ for all a ∈ B �M2. Then
A = (A,µ, α) is a system.

From direct calculations, the requirements thatW satisfy α(b⊗1) = W

[
b 0
0 b

]
W ∗ ∈

B ⊗ 1 for every b ∈ B, and that α(b⊗ 1) = β(b)⊗ 1, yield

β(b) = w1bw
∗
1 + w2bw

∗
2 = w3bw

∗
3 + w4bw

∗
4 (5.2)

and

w1bw
∗
3 + w2bw

∗
4 = w3bw

∗
1 + w4bw

∗
2 = 0

for all b ∈ B. The direct sum structure of B will allow us to satisfy the latter
requirement easily, while still giving nontrivial dynamics. This is done by setting

w1 = v1 ⊕ 0 and w4 = v4 ⊕ 0

for v1, v4 ∈ B1, and

w2 = 0⊕ v2 and w3 = 0⊕ v3

for v2, v3 ∈ B2. Then (5.2) reads

v1b1v
∗
1 ⊕ v2b2v

∗
2 = v4b1v

∗
4 ⊕ v3b2v

∗
3

for every b = b1 ⊕ b2 ∈ B. The vi are necessarily unitary, since W is. It follows
that (5.2) is satisfied exactly when v∗4v1 ∈ B′1 and v∗3v2 ∈ B′2.

We now show that α is not a product of the ∗-automorphism β and a ∗-

automorphism on M2. By direct calculation, for every m =

[
m1 m2

m3 m4

]
∈M2,

α(1B ⊗m) =


m11B1

0 m2v1v
∗
41B1

0
0 m41B2

0 m3v2v
∗
31B2

m3v4v
∗
11B1

0 m41B1
0

0 m2v3v
∗
21B2

0 m11B2
.


So, α(1B ⊗m) is not of the form

1B ⊗ t =

[
t11B t21B
t31B t41B

]
.
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Thus, α cannot be a tensor product of dynamics on B and M2, respectively, unless
B1 = 0 and v2v

∗
3 = v3v

∗
2 = 1B1

, or B2 = 0 and v1v
∗
4 = v4v

∗
1 = 1B1

.
Now consider a specific case. Let B1 be the group von Neumann algebra gen-

erated from a free group G on two symbols c and d. Let ν1 be the trace on B1

(Example 4.1). The map β1 : B1 → B1 : a 7→ l(d)al(d)∗ is a ∗-automorphism of
B1. Furthermore, since ν1 is a trace, ν1(β1(b1)) = ν1(b1). Note that in the cyclic
representation (`2(G), id, δ1), with 1 ∈ G the identity, the unitary representation
of β1 is given by

Uβ1
δg = Uβ1

l(g)δ1 = δdgd−1

for all g ∈ G (i.e. Uβ1
= l(d)r(d) where r is the right regular representation of G).

Assume that B2 6= 0.
Let v1 = v4 := l(d). Then we show that B is not compact. If we consider the

orbit UZ
β1
δc of δc under Uβ1

UZ
β1
δc = {. . . , δd−2cd2 , δd−1cd1 , δc, δdcd−1 , δd2cd−2 , δd3cd−3 , . . .},

then we have dmcd−m 6= dncd−n, and

‖δdmcd−m − δdncd−n‖ =
√

2

for all m,n ∈ Z with m 6= n. Hence, UZ
β1
δc cannot be totally bounded, so that, as

we are in a metric space, the closure of UZ
β1
δc cannot be compact. It follows that

B is not a compact system, i.e. B does not have discrete spectrum.
Thus we have constructed a finite extension A of a non-compact system B,

such that α is not the product of the dynamics on B with the dynamics on M2.

It ought to be possible to take an infinite direct sum of copies of A above, to
obtain an isometric extension of B which is not a finite extension, by weighing the
traces of the copies of A by weights adding up to one, and allowing for possibly
different finite extension dynamics on the copies of A. However, the foregoing finite
extension already makes our main point, namely, it gives a purely noncommutative
example of relative discrete spectrum.

6 Further Questions

We end the paper with an informal discussion of some problems related to relative
discrete spectrum.

We can consider an intermediate system between a system and an isometric
extension of it, and ask if the intermediate system leads to two new isometric
extensions. (In the classical theory such a result holds; see [7, Lemma 9.12]). In
the noncommutative case it can be shown that the intermediate system is an
isometric extension of the system, but the question is if the original isometric
extension is also an isometric extension of the intermediate system. One obstacle
is relating the modules of the different pairings with one another.

A technical problem when using our definition of relative discrete spectrum, is
deciding if a given projection in the basic construction has finite trace.

Lastly, is it possible to formulate our Definition 3.4 of relative discrete spectrum
in a way that more closely resembles the classical Definition 3.5? For instance, we
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would like to know if there is a sensible notion of generalized eigenvalue. Gener-
alized eigenvectors appear to be “virtual objects” in our definition and it would
be interesting to see whether or not one can find an equivalent formulation of our
definition directly in terms of generalized eigenvectors.
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