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The aboveground biomass of grass has long been 
recognised as an important feature of grazing lands, as it 
determines forage availability for animals and measures 
management effects (Mannetje 2000). In semi-arid 
rangelands, monitoring grass biomass is challenging given 
the high variability of production, due to inter-annual climate 
fluctuations, heterogeneity of the environment and logistical 
constraints for field measurements (Karl et al. 2017). 
Thus, rangeland-monitoring activities have been limited to 
plot scales and short time frames. However, the inherent 
high variation in grass production caused by complex 
interactions of broad scale changes in climate and localised 
events, such as drought, grazing and fire (Hempson et al. 
2007), cannot be well understood at such low spatial and 
temporal scales. Remote sensing has been used to predict 
grass production from environmental variables (Richard et 
al. 2012), but it does not represent the processes leading 
to grass biomass production. In future, climate variability is 
projected to increase in semi-arid regions (Jia et al. 2019) 
and this will increase fluctuations in grass production, 
rendering sustainable management more difficult. 
Accordingly, monitoring approaches should be tailored to 
meet information needs for the anticipated more variable 
or dynamic climate. Understanding the dynamics of grass 

production caused by interactions of multiple environmental 
factors is necessary for predicting the productivity 
responses to an increasingly fluctuating climate.

Agricultural systems modelling is useful for providing 
quantitative analyses of complex interactions affecting 
components of rangeland systems and feedbacks of many 
variables (Jones et al. 2017). In the past two decades, 
empirical and mechanistic modelling gained huge attention 
globally in predicting grass biomass production (Snow 
et al. 2014). In southern Africa, simulation modelling 
has been limitedly applied to empirical models for plant 
growth (Wiegand et al. 1998; Oomen et al. 2016) and 
a few deterministic and stochastic models for plant and 
animal production (Illius et al. 1998; Richardson et al. 
2000; Kazembe 2010). However, empirical models give 
spurious results if they are applied to regions that lack the 
experimental data used to develop them. This highlights 
the need to embrace robust dynamic models that contain 
default parameters that are adjustable across regions 
and use many variables of climate, soil, and vegetation 
representative of the real system.

Dynamic models, commonly known as process-based 
biophysical models (PBMs), simulate soil, plant, and animal 
processes at a high level of detail for individual species 
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in mixed swards. The PBMs explicitly represent stocks 
and flows of carbon, nitrogen or energy using differential 
equations that link the whole plant organism to processes in 
lower levels, such as cells or organs (Thornley and Johnson 
2000). The models were developed with the aim to balance 
for complexity, realism and flexibility which allow them to 
be readily applied to regions that lack information about 
specific grass species (Rickert et al. 2000; Johnson 2011). 
Process-based models are thus often used as research 
models, because of their strong theoretical background. The 
major drawback in applying PBMs in data-limited regions is 
that, in addition to inherent errors of model structure, there 
are errors associated with system input variables and data 
measured for deriving parameters and evaluating the model.

The precision of PBMs depends on their ability to use 
spatially distributed climate input variables, parameters and 
constants that should be adjusted. In developing countries, 
climate data is often unavailable at farm-level, since national 
meteorological stations are sparsely distributed. Parameters 
and state variables are also unknown, as they cannot be 
fully included in experiments, due to their high variability 
in space (Johnson 2011). The increasing availability of 
high temporal- and spatial- resolution geographical data of 
environmental variables provide a means for adapting PBMs 
to resource-constrained environments (Angerer 2012). 
Remote sensing and geographic information systems (GIS) 
are inseparable tools important for retrieving input variables 
for PBMs (Ovando et al. 2018), yet they have been rarely 
explored in southern Africa.

Model users in resource-constrained areas can also 
benefit from using spatial data in providing independent 
observed data required for evaluating models. Given its 
large area coverage and high temporal frequencies of data 
collection, remote sensing has the potential to overcome 
challenges in obtaining long-term field measurements, 
as it provides site-specific grass production variables for 
model evaluation (Scanlon et al. 2005; Angerer 2012). 
Once discrepancies in model output are adequately 
assessed, PBMs can be applied with confidence to 
improve management planning. By predicting grass 
biomass production on a timely basis, PBMs help to 
enhance our understanding of the complex interactions 
that cause inherent variability in rangelands (Rickert et al. 
2000). This knowledge assist in screening management 
practices suitable and effective for maximising grass and 
animal production. When used to predict future events, 
models help to identify risk areas that require emphasis 
on management (Jones et al. 2017). This study was, 
therefore aimed at developing local parameter sets for the 
soil water and plant growth submodels of the Sustainable 
Grazing Systems (SGS) model and, evaluating the model’s 
adequacy in predicting native grass biomass production at a 
cattle ranch in southern Zimbabwe.

Materials and methods

Study area
The Nuanetsi Cattle ranch is found in the southern region 
of Zimbabwe (21°25′12″ S, 30°43′48″ E) on an undulating, 
plane landscape of the northern Limpopo river basin (ISCRI 
2005). The ranch covers 113 913 ha of land at an altitude 

of 480 m asl. The climate is warm, with strongly seasonal 
wet summers and long cool dry winters. The rainfall pattern 
is sharply unimodal and most of the rain occurs between 
November and March, often as high intensity storms of short 
duration that are unevenly distributed. The long term mean 
annual rainfall (40-year mean) is 462 mm with an interannual 
coefficient of variation of 35% (Oxfam-UNDP/GEF 2015), 
with the late summer (January to March) contributing 40% of 
the annual rainfall. Wet season rainfall is strongly affected by 
El Nino and La Nina phenomena (Makarau and Jury 1997). 
Maximum daily temperatures in summer are frequently 
above 32 °C (Figure 1), whereas mean annual temperature 
is 25 °C. The length of growing period ranges between 
90 and 120 days. The soils are formed from gneiss and 
granite geological formations (Farrell 1968). At landscape 
scale, the vegetation is dominated by moderately tall C. 
mopane tree stands in nutrient-rich soils that cover most of 
the area. These soils support a medium subcanopy layer 
of productive, palatable perennial suit of tufted grasses, 
mostly Urochloa mosambicensis and Panicum maximum. 
Some patches of nutrient-poor soils comprising of sparse 
tree-shrub layer of Combretum and Grewia spp. that are 
associated with short wiry, unpalatable grass species, such 
as Eragrotis spp. and Aristida spp., are visible at broad 
scale (Farrell 1968). Forbs contribute a small proportion 
of the herbaceous vegetation in these savannas and are 
only found in heavily utilised areas (Taylor and Walker 
1978). At local level, three vegetation types dominate the 
study area namely; closed woody life forms, closed to 
open tree/shrubland, and open herbaceous vegetation. 
Extensive commercial cattle ranching has been the main 
land use since early 1900s (Walker et al. 1981). Cattle are 
stocked throughout the year at moderate stocking rates in 
multi-paddock grazing systems. Each management unit 
comprise of two to five paddocks, with paddocks ranging 
from 300 to 1 500 ha.

Parameterisation of the modelling tool

Overview of the SGS pasture model
The SGS pasture model is an Australian biophysical 
model comprising of nested empirical and mechanistic 
submodels that seek to analyse and explain interlinked 
processes amongst water, nutrients, herbaceous plants, 
animals, and management components in grazing lands. 
Processes amongst components are driven by daily 
weather variables at the plot or paddock level. The model 
was originally developed by Johnson and Thornley (1983) 
and Johnson and Thornley (1985) with the main emphasis 
on the cell-level physiological response of pasture species 
to climatic conditions, with subsequent improvements by 
Johnson and Thornley (1987) and Johnson et al. (1989). 
The plant growth submodel uses solar radiation to estimate 
net radiation through calculations of light interception 
and photosynthesis in a mixture of up to five herbaceous 
species. Water is included in the grassland through rainfall 
and is intercepted by the herbaceous canopy, litter, or bare 
soil. The soil water submodel was upgraded by Johnson 
et al. (2003), whereas the soil nutrient submodel was 
also improved by Johnson et al. (2008) and documented 
by Johnson (2008). The soil water submodel simulates 
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uptake of nutrients and water from the soil by each species 
and their partition between roots, shoots and seeds, plant 
development, tissue turnover, and senescence, and 
respiration from plant growth and maintenance. The SGS 
model is large, comprising of many differential equations 
in its submodels. Detailed equations used in model 
development can be found in Johnson (2008) and Johnson 
(2016). The model has been used to assess pasture growth 
rates (Cullen et al. 2008) and impacts of climate change 
on C3 and C4 grasses in subtropical and temperate regions 
of Australia (Cullen et al. 2009). Recently, the model has 
been used to simulate the growth of tropical C4 perennial 
and annual grasses and legumes in northern Australian 
rangelands (Doran-Browne et al. 2014).

Derivation of input variables and parameters for the SGS model
The submodels for soil water, nutrients and pasture are the 
main biophysical components of the SGS pasture model 
that were parameterised in this study. The submodels 
have over 100 biophysical system parameters of soil water 
and nutrients, canopy structure and growth of pasture 
species that could potentially be adjusted. However, these 
parameters were not available at the level of detail required 
to allow the model to be adapted to the study area. To 
overcome this challenge, an integrated framework was 
used to derive parameters from geographical layers of 
topography, climate, soil and vegetation, satellite images 
and extensive review of published experiments for southern 
African savannas (see Figure 2). Consequently, a total 
of eighteen parameters were adjusted and the remainder 
default parameter values were retained.

The Advanced Spaceborne Thermal Emission and 
Reflection Radiometer digital elevation model (ASTER 
DEM) was used to stratify the whole ranch into four land 
types following the patch hierarchy approach of Venter 
et al. (2003) (Figure 3). In this approach, the terms crest, 
mid-slope, foot slope, and valley bottom are used to refer to 
the relative topographic position of land types starting from 
interfluve to drainage channel. Elevation, slope, aspect, 
and latitude of plots or paddocks for land types to which 

the model was applied were derived from the ASTER DEM. 
Additional information about geology and landform was 
obtained by overlaying the Nuanetsi ranch map on the map 
of the Soil and Terrain of Southern Africa database (ISCRI 
2005) using GIS software.

Spatially aggregated data for daily solar radiation (Wm−2) 
and rainfall (mm) and spatially interpolated data for daily 
minimum and maximum temperature (°C) for the 1982 to 
2017 period were used as inputs to run the SGS pasture 
model. Daily global solar radiation was obtained from 
the HelioClim-1 database (Lefevre et al. 2014) and the 
Solar Radiation Data portal (Schroedter-Homscheidt et 
al. 2016) at a spatial resolution of 5 km. The Zimbabwe 
Sugar Association Experiment Station located 60 km 
north of Nuanetsi ranch provided daily data for solar 
radiation and minimum and maximum temperature that 
was used to correct for bias in satellite-based estimates. 
Daily minimum and maximum temperature were spatially 
interpolated for each land type using an inverse distance 
weighting approach (Moeletsi et al. 2016). Daily rainfall data 
available at a spatial resolution of approximately 10 km 
were obtained from the National Oceanic and Atmospheric 
Administration Climate Prediction Centre African Rainfall 
Climatology version 2 dataset (NOAA-CPC-ARC2) (Novella 
and Thiaw 2013). A spatio-temporal bias correction scheme 
was applied to this data using gauge data from the Mwenezi 
District Agritex office. All GIS processes and cartography 
were done in ArcGIS software and original projection 
systems for datasets used were converted to the World 
Geological Survey 84 datum system.

Soil and plant parameters
Explanatory variables of soil profile layers of sites used in 
model calibration were singled out from soil survey data 
previously collected across the Nuanetsi subcatchment 
by the Chemistry and Soil Research Institute (CSRI) of the 
Department of Research and Specialist Services. Estimates 
of soil physical variables of the crest- and mid-slope soils 
and, foot slope soil were obtained from CSRI (2007) and 
CSRI (2003), respectively. These surveys show that mafic 
gneiss was dominant in 79 and 65% of the pits surveyed 
in the crest and mid-slope land types, respectively (CSRI 
2007), whereas fine alluvium soil family was common in 
60% of sampled pits in foot slope (CSRI 2003). The valley-
bottom land type was excluded from parameterisation, 
as it comprises of riparian vegetation, usually occupying 
insignificant area of some paddocks demarcated by 
riverbanks. Soil layer depths for the crest land type were 
adjusted to represent moderately deep soil with a total 
depth of 80 cm (Table 1). The crest soil profile was set to a 
relatively deeper A horizon, compared with the corresponding 
horizon in mid-slope soil. Parameters for the mid-slope land 
type were set to a shallow depth of 60 cm, with a horizon A 
of intermediate-depth underlying B horizon of moderate clay 
content (CSRI 2007). In foot-slope soil catena, soil depth 
was also adjusted to typify shallow alluvial soils (CSRI 2003). 
Available water capacity (AWC) was set at between 10.0 and 
14.9% volume (CSRI 2007; CSRI 2003).

Plant parameter values were modified for herbaceous 
species that were identified in a species composition 
assessment conducted across the study area, as described 
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later below. The parameter values for canopy height were 
obtained from the Tropical Forages online database (Cook 
et al. 2005). Adjustments to parameter values for dry matter 
partitioned to shoot, leaf fraction of new shoot growth, leaves 
per tiller and specific leaf area were based on Ernst and 
Tolsma (1992). The maximum rooting depths of grasses 
were set at 15 and 25 cm for stands occurring in the crest 
and mid- and foot slope land types, respectively (CSRI 2003; 
2007) (Table 2). The minimum and maximum temperatures 
for tropical grasses range between 10 and 15 °C and 30 
to 35 °C, respectively (Cooper and Tainton 1968). The 
default minimum and optimum growth temperatures of 
12 and 35 °C were thus retained. The maximum leaf net 
photosynthesis rate was adjusted to 35 µmol m−2 s−1, as 
measured by Mantlana et al. (2008) in south-central Africa. 
In all submodels used in this study, default data were used 
where a site or regional data were not available.

Measured and remotely sensed grass aboveground biomass
Grass species composition and biomass were measured 
across the land types found at Nuanetsi ranch in February 
2017 for sampling plots where simulations for calibrating the 
SGS model were performed. Firstly, the ranch was stratified 

into eight vegetation types using FAO’s 250 m resolution 
land cover classification system. Then, forty 30 m x 30 m 
sampling plots were randomly selected in grassland areas 
that were at least 0.1 ha and were used for measuring both 
species composition and biomass. The sample size has 
previously proved adequate for grass biomass estimation 
in the study area (Svinurai et al. 2018). For grass species 
composition assessment, each sampling plot was divided 
by two transects diagonally, each 43 metres in length, and 
oriented at 45° and 135° to the magnetic north. Starting 
at the 1.5 m point along each transect, grass species 
composition was visually assessed by a field taxonomist in 
0.25 m2 quadrats at 2-m intervals using the dry weight rank 
method (Mannetje and Haydock 1963). In each quadrat, 
the first, second, and third most abundant species (on a 
dry weight basis), were identified to which the ranks of 1, 2, 
and 3 were assigned, respectively. At the end of sampling, 
ranks were tallied for each species, and weighted by 0.7, 0.2 
and 0.1, the multipliers for ranks 1, 2, and 3, respectively. 
Approximately twenty grass species were identified, but 
only two native graminoid herbaceous species were widely 
spread across the ranch. Urochloa mosambicensis, a 
loosely tufted, productive and highly palatable perennial 
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Factor Parameter Units Default 
duplex

Foot 
slope soil

Default 
medium

Mid s
lope soil

Crest 
soil

Soil physical 
variables

Altitude m asl 404 441 487
Parent material – – Alluvium – Mafic gneiss Mafic gneiss
A horizon depth cm 50 12.8 50 11.3 17.2
B1 horizon depth cm 100 16.4 100 18.6 25
B2 horizon depth cm 200 30 200 30 40

Soil chemical 
variables

A horizon clay 
composition 

% 30 10 30 12 12

B1 horizon clay 
composition 

% 30 17 30 18 20

B2 horizon clay 
composition 

% 30 17 30 18 20

Table 1: Soil physical and chemical variables of land types used for model calibration 
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grass comprised 90% of species composition i.e. first and 
second dry-weight ranks in half of sampled plots, whereas 
Eragrostis curvula, another tufted, productive and moderately 
palatable perennial grass was dominant in a quarter of the 
surveyed plots. The other plots had mixed grass species 
in low abundance. Grass aboveground biomass was then 
measured in four randomly selected 0.25 m2 quadrats within 
each sampling plot by clipping to 5 cm stubble aboveground 
using shears. The biomass was weighted and then pooled 
and bagged for drying in a hot air oven for determination of 
dry matter content.

Other than the single-season grass biomass, there were 
no other observed grass biomass data for calibrating or 
evaluating the SGS model at the study area. Thus two 
separate datasets of remotely sensed grass biomass were 
developed for these purposes. For model calibration, we 
calculated the normalised difference vegetation index 
(NDVI), a proxy for grass AGB from spectral reflectance of 
30 m pixels of Landsat 8 Operational Land Imager image 
corresponding to the plots sampled above. Plant biomass 
data for model evaluation was derived from a statistical 
model for end-of-season grass AGB that was developed from 
NOAA-CPC-ARC2 rainfall in combination with grass AGB 
estimated from peak-season Landsat images. To build the 
statistical model, a set of nineteen cloud-free pre-processed 
Landsat images available in May between 1992 and 2017 
were classified to mask out the woody vegetation layer. The 
period coincides with peak grass biomass prior to the onset 
of grass senescence in southern African savannas. Then, a 
multivariate regression model for grass AGB developed by 
Svinurai et al. (2018) for the study area was applied to all 
images to produce grass AGB maps. Grass AGB for each 
map was statistically resampled to ~10 km grid-cells to match 
the resolution of the satellite-based rainfall dataset. Finally, 
grass biomass for all grid cells were grouped for all years 
and, paired with corresponding seasonal rainfall into single 
linear, power, and exponential regression models to screen 
the most precise and accurate model using the bootstrapping 
technique. The following exponential regression model 
produced the most precise (R2 = 0.81) and accurate (RMSE, 
1 559 kg ha−1) fit: AGB = 829.9e0.0037x, where AGB is grass 
aboveground biomass (kg ha−1) and x is total wet season 
rainfall (mm). Thus, this statistical model was used to predict 
grass biomass in grid-cells corresponding to sites where the 
SGS model was evaluated.

Model simulations
A manual, iterative procedure of manipulating default model 
parameter values typical for Australian rangeland systems 
was used to adapt the model to local agro-ecological 
conditions. The procedure was aimed to provide one set of 
parameters that represent the real conditions at sampled 
plots and, best fit with measured or remotely sensed grass 
aboveground biomass. Simulation runs for grass biomass 
production were performed in twenty-eight plots, as the other 
plots comprising of mixed grass species of low abundance 
were excluded from parameterisation. The simulations were 
performed between 2007 and 2017 by adjusting parameters 
accordingly for each climate grid cell, land type and grass 
species. For model evaluation, three separate simulation 
experiments were conducted between 1982 and 2017 using 

Fa
ct

or
Pa

ra
m

et
er

 
U

ni
ts

D
ef

au
lt 

na
tiv

e 
C

4 g
ra

ss
U

ro
ch

lo
a 

m
os

am
bi

ce
ns

is
E

ra
gr

os
tis

 
cu

rv
ul

a
R

ef
er

en
ce

 

C
an

op
y

M
ax

im
um

 h
ei

gh
t 

cm
50

10
0

12
0

C
oo

k 
et

 a
l. 

(2
00

5)
Sp

ec
ifi

c 
le

af
 a

re
a 

at
 a

m
bi

en
t C

O
2 

m
2  l

ea
f k

g 
D

M
−1

16
15

12
Er

ns
t a

nd
 T

ol
sm

a 
(1

99
2)

G
ro

w
th

M
ax

im
um

 le
af

 n
et

 p
ho

to
sy

nt
he

si
s 

ra
te

 a
t 

re
fe

re
nc

e 
co

nd
iti

on
s 

µm
ol

 C
O

2 m
−2

 s
−1

20
35

35
M

an
tla

na
 e

t a
l. 

(2
00

8)

R
oo

t
M

ax
im

um
 ro

ot
 d

ep
th

 
cm

10
0

20
20

D
ye

 a
nd

 W
al

ke
r (

19
80

)
D

ep
th

 to
 5

0%
 o

f r
oo

t m
as

s 
cm

20
10

10
C

SR
I (

20
07

)
Te

m
pe

ra
tu

re
Lo

w
-te

m
pe

ra
tu

re
 e

ffe
ct

s:
 F

ul
l

°C
3

3
3

C
oo

pe
r a

nd
 T

ai
nt

on
 (1

96
8)

Lo
w

-te
m

pe
ra

tu
re

 e
ffe

ct
s:

 In
iti

al
 

°C
7

7
7

C
oo

pe
r a

nd
 T

ai
nt

on
 (1

96
8)

Ta
bl

e 
2:

 P
la

nt
 s

pe
ci

es
 a

nd
 c

om
m

un
ity

 g
ro

w
th

 p
ar

am
et

er
s 

va
lu

es
 u

se
d 

fo
r g

ra
ss

es
 a

t s
im

ul
at

ed
 s

ite
s



Svinurai, Hassen, Tesfamariam, Ramoelo and CullenS34

generic values for three land types dominating the study 
area. These values were obtained by averaging all values for 
each individual parameter across each land type to produce 
a single value. Firstly, daily grass biomass production 
simulations were run separately for all combinations of 
land type and grass species in three 500 ha paddocks 
constituting a grazing management unit, using adjusted 
parameter sets (Figure 3). Then, a global sensitivity analysis 
was performed to determine the extent of improvement 
made by parameter adjustments and the deviations of 
model output behaviour from known behaviour of biomass 
production by grasses native to the study region. This was 
achieved by running the model using default (Australian) 
parameter values of native C4 grass, and adjusted values for 
duplex and medium-texture soils corresponding to foot slope 
and, crest and mid-slope soil types. The third simulation 
experiment was conducted to show the importance of the 
hypothesis that residual dry matter of stubble influence leaf 
regrowth rate after defoliation and subsequent biomass 
production. This simulation experiment was performed 
with grass cut to residual dry matter levels of 500, 750 and 
1 000 kg DM ha−1 at the end of each month. In all simulations 
for model calibration and evaluation, interpretation of results 
was simplified by implementing a maintenance growth 
submodel so that the animal’s role in the model was to 
graze the paddock and return nutrients as urine and dung. 
Daily simulations of grass biomass production at each plot 
or paddock were performed between July and June following 
the summer season weather calendar. In addition, outputs 
in the first 10-year lead-in period in all simulations were 
discarded to allow stabilisation of soil organic carbon pools 
in the simulated system. Thus, outputs for the 2017 and the 
1992 to 2017 seasons were used to calibrate and evaluate 
the SGS model, respectively.

Analysis of model outputs
The model outputs analysed included daily grass growth rate 
(kg DM ha−1d−1) and biomass production (kg DM ha−1). Daily 
outputs were averaged over each calendar month to convert 
them to values of monthly averages for each plot or paddock. 
Model outputs for the three paddocks were averaged to 
come up with weighted grass growth rates and production 
for each grazing management unit. The behaviour of model 
outputs was explored qualitatively by examining the percent 
decrease or increase in outputs resulting from default and 
adjusted parameters. Percentiles of monthly growth rates 
were then calculated, and comparisons were made between 
outputs obtained from default and adjusted parameters 
of soil and grass species. To ascertain the reliability of 
outputs, the grass growth rates, and biomass production 
were compared with published literature for tropical grazing 
lands of southern Africa. A standard procedure for evaluating 
performance of models involving analysis of summary 
statistics i.e. mean, minimum, maximum and mean bias, root 
mean square error (RMSE), decomposition of RMSE, i.e. 
bias, slope, and random components, and graphical analysis 
of residuals (Mcphee and Walmsley 2017) was used to 
analyse the measured, remotely-sensed and simulated data. 
The coefficient of determination (R2) was used to measure 
the precision with which the model predicted measured 
or remotely sensed grass AGB. Since the sample size 

was small relative to the spatial extent of each land type, 
regression statistics for analysis were generated for the three 
land types combined. A plot of residuals versus predictor 
variables was used to assess the envelope of acceptable 
precision around the line of zero deviation and the proportion 
of points that lie within it (Mitchell and Sheehy 1997).

Results

Calibration of the model
Annual mean grass aboveground biomass measured in 
all plots retained for model fitting was 3 877 kg DM ha−1, 
whereas the modelled mean was 3 071 kg DM ha−1. 
Minimum measured and simulated biomass was 1 450 and 
2 968 kg DM ha−1, respectively, whereas maximum values 
of 5 370 and 3 157 kg DM ha−1, corresponding to measured 
and simulated biomass was obtained. The mean bias was 
807 kg DM ha−1, whereas the relative bias was 0.21. The 
relationship between measured and modelled grass AGB 
showed that the SGS model represented herbage biomass 
reasonably well, accounting for up to 60% variation in grass 
AGB (R2 = 0.57; p < 0.01) (see Figure 4a). Figure 4b is a 
plot of residuals versus predictor variables that shows 
the deviation of individual predictions from the paired 
observations (line of zero deviation) for the whole dataset. 
The results show that 56% (9 of 16) of all predictions of 
grass AGB fell within the 95% confidence limits of their 
respective observations, whereas 25% (4 of 16) and 19% 
(3 of 16) were under- and over-predictions, respectively. The 
RMSE calculated from the study revealed that model outputs 
deviated from the corresponding field measured herbage 
biomass by 820 kg DM ha−1. Modelled and remotely sensed 
grass AGB were significantly correlated across all land types 
with an R2 value of 0.46 for NDVI (Figure 5).

Sensitivity analysis
The grass production trend predicted in this study showed 
a pattern of growth and aboveground biomass production 
known for grasses native to tropical rangelands of southern 
Africa (Figures 6 and 7). In winter, the growth rates 
of U. mosambicensis predicted using adjusted parameters 
were low, with median biomass production falling below 0.5 
kg DM ha−1 d−1. The median growth rate increased rapidly, 
reaching peak biomass of 33 and 21 kg DM ha−1 d−1 in 
January and February, respectively. The mean growth 
rate ranged between 2.9 and 7.2 kg DM ha−1 d−1 between 
November and March across land types, whereas the 
median growth rate varied from 0.9 to 5.5 kg DM ha−1 d−1 

(see Figure 6a). Observable differences in grass growth 
between land types occurred during peak of season period 
between December and February. The median growth 
rate of U. mosambicensis in mid-slope land type was 7 
to 24% higher than in the upper slope land type at peak 
of season. There was also an abrupt 18% decline in the 
median growth rate of local grass species in mid- and foot 
slope land types in January, whereas a relatively low growth 
rate was maintained in crest land type (Figure 6a). Highest 
growth rates of the local grass species were predicted at 
peak-season at 750 kg DM ha−1 residual DM followed by 
growth rates for simulations run at 1 000 kg DM ha−1 residual 
DM (Figure 6b). The least growth rate predictions were 
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obtained when residual DM was cut at 500 kg DM ha−1. The 
median growth rate of U. mosambicensis stands cut to 750 
and 1 000 kg DM ha−1 residual DM dropped suddenly by 12 
and 18%, respectively, in January.

Simulated grass biomass portrayed a seasonal pattern 
like that of growth rate (Figure 7). Between November and 
March, absolute monthly grass AGB production ranged 
between 115 and 228 kg DM ha−1 across all land types. 
The maximum monthly grass AGB production during this 
period was 209, 220 and 228 kg DM ha−1 for crest-, mid- 
and foot-slope land types, respectively. Adjustment of 
parameters for moderately deep soil in crest land type led 
to high growth by the default native C4 grass relative to local 
grass species (Figure 7a). However, in shallow mafic-gneiss 
derived soils in mid- and foot slope land types, parameter 
modifications resulted in lower growth rates of default native 
C4 grass, compared with local grasses (Figures 7b and 7c). 
There were no observable differences in biomass production 
between local grass species across land types. Biomass 
production by local grass species was 26 to 98% higher than 
biomass production by default native C4 grass, with these 
differences highest at peak of season (Figures 7b and 7c).

Model evaluation
As with predictions for field biomass, there were huge 
discrepancies in summary statistics and residuals between 
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simulated and remotely sensed grass biomass across 
all land types. The mean remotely sensed biomass 
varied between 3 644 and 4 170 kg DM ha−1 whereas 
the mean simulated biomass ranged between 1 674 and 
1 997 kg DM ha−1. Minimum remotely sensed and simulated 
biomass was 1 445 and 1 249 kg DM ha−1, respectively, 
whereas maximum values of 7 214 and 2 281 kg DM ha−1 
corresponding to remotely sensed and simulated biomass 
were attained. The SGS model had a tendency of 
underestimating remotely sensed biomass by between 51 
and 59% across all land types, with an overall mean bias 
error of −1 970 kg DM ha−1. The mean bias ranged from 

−1 970 to −2 461 kg DM ha−1, whereas the relative bias 
varied from −0.51 to −1.18. Despite the underestimation of 
remotely sensed grass biomass by the SGS model, the 
model predictions were significantly correlated with remotely 
sensed grass biomass (p < 0.05), accounting between 63 
and 72% of the variation. Analysis of deviation of individual 
predictions from corresponding observations across all 
land types reveal that 39% (19 of 49) of all grass biomass 
predictions fell within the 95% confidence limits of their 
respective observations, whereas 31 (15 of 49) and 31% 
were under- and over-predictions, respectively. The RMSE 
of all predictions across land types was 981 kg DM ha−1 and 
ranged from 1 122 to 1 396 kg DM ha−1.

Discussion

Calibration of the model
The relationship between measured and simulated grass 
biomass showed that the SGS model represented herbage 
biomass reasonably well, accounting for up to 60% variation 
in grass biomass production. Similar levels of agreements 
have been observed in simulation studies conducted in 
other tropical and temperate regions. Using the SGS model, 
Cullen et al. (2008) observed an R2 of 0.58 in fertilised 
perennial grasses in subtropical region of south-eastern 
Queensland, whereas Doran-Browne et al. (2014) obtained 
an R2 of 0.6 in native perennial and annual grasses in 
tropical region of northern Australia. In temperate prairie 
grasslands, the APEX model underestimated growth of 
five individual perennial grass species (R2 = 0.25–0.67) 
(Zilverberg et al. 2017), whereas the GPFARM model 
accounted for 66% variability of observed forage production 
(Andales et al. 2006). These agreements are below the 
commonly accepted level of high agreements (R2 > 0.8) 
for model calibration. High agreements between measured 
and predicted grass biomass are generally obtained for 
empirical simulation models, because their parameters 
fit well with measured data (Thornley and Johnson 2000; 
Wallach et al. 2014). Notwithstanding the high accuracy of 
empirical models, outputs still vary considerably in native 
pastures, due to random spatial variability. In northern 
Australian rangelands, 47 to 64% of end-of-season biomass 
predictions from GRASP were within 95% confidence 
intervals of field data (Cobiac 2006). Such large deviations 
of individual seasonal predictions from measured grass 
biomass were observed in this study.

High spatial variability in grass production is an inherent 
feature exhibited within local grass communities in 
southern African rangelands. For example, Svinurai et 
al. (2018) observed grass production to vary from 1 340 
to 7 530 kg DM ha−1 in a season. Poilecot and Gaidet 
(2011) also observed native grass AGB production to vary 
from 1 433 to 4 257 kg DM ha−1 in shallow sandy soils in 
northern Lowveld game ranch of Zimbabwe. In undulating 
landscapes of Lowveld regions of southern Africa, variability 
in grass production often results from uneven distribution 
of rainfall and high diversity of grass species that evolve 
from their competition for soil water and nutrients (Venter 
et al. 2003). This random variation leads to huge errors 
when predicting grass AGB using point-based models and 
could not be accounted for by the SGS model using the 
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current parameter sets. It is thus challenging to obtain high 
agreements between measured and simulated variables in 
complex natural systems, because natural variability is high 
(Oreskes et al. 1994). In addition, the assumptions of linear 
regression could not be met, and this highlights the need 
for testing other assessment measures that do not consider 
individual seasonal predictions.

The SGS model predicted grass AGB measured in 
respective sampling plots with a reasonable average error 
acceptable for estimating grass AGB in southern African 
savannas. Trollope and Potgieter (1986) estimated a RMSE 
of 898 kg DM ha−1 from disc pasture meter measurements 
across seven vegetation types in the Kruger National 
Park. Given that plant parameters used in this study were 
derived from times and locations not covered by field 
measurements, long-term simulations are required to 
evaluate further the stability SGS model in simulating grass 
biomass in the region.

Sensitivity analysis
The patterns of grass growth displayed by model outputs 
agree with the typical behaviour of summer growth of 
perennial grasses in the tropical region of southern Africa. 
For example, low grass growth rates were observed in 
winter, because there is no rainfall and temperatures 
are low, whereas the growth rates in summer increased 
rapidly, because of high rainfall and temperatures. The 
SGS model also represented the effects of mid-season 
dry spells on median grass growth reasonably by showing 
a decline in growth rate in January (Figure 6). Frequent 
mid-season dry spells are a characteristic feature of arid 
savannas in the Limpopo river basin (Huntley 1982). This 
was confirmed by the DM accumulation pattern of outputs 
predicted by the SGS model.

In addition, there is a good agreement between estimates 
of monthly growth rates predicted by the SGS model and 
growth rates observed in other rangelands in the region. 
In the northern Limpopo river basin, Kelly and Walker 
(1976) observed daily growth rate to vary from 6.6 to 
11 kg DM ha−1 d−1 in moderately- utilised open vegetation, 
depending on seasonal rainfall. Cresswell et al. (1982) 
observed a peak mean grass biomass growth rate of 
5 kg DM ha−1 d−1 in the southern Limpopo river basin. 
In drier Succulent Karoo rangeland where vegetation 
is less productive, Richardson et al. (2010) simulated 
optimum forage growth rate of 2 kg DM ha−1 d−1 using a 
short-term mechanistic model. As with growth rate, the 
simulated pattern of grass production was expected for 
shallow sandy-loam soils. Similar grass production trends 
have been observed in shallow crest soils of the southern 
region of Kruger National Park, with mean monthly grass 
production ranging from 40 to 160 kg DM ha−1 (Alard 2009). 
In Bloemfontein, monthly growth rates ranged between 
100 and 400 kg DM ha−1 at peak of season, depending on 
seasonal rainfall (de Waal 1990). The model output also 
successfully showed the pattern in grass production known to 
exist along the slope of Lowveld granitic/gneiss catena. Dye 
and Walker (1980) also observed lower grass productivity 
in crest- relative to mid- and foot- slope land types. Thus, 
the comparability of simulated biomass production to those 
observed in the region builds model user confidence in 

applying the SGS model to similar environments using the 
parameter sets developed in this study.

Model evaluation
The modelled grass AGB showed an acceptable level 
of representation of remotely sensed grass AGB for 
southern African savannas. These findings concur with 
Boone et al. (2002) and Boone et al. (2004), who found 
reasonable agreement between the SAVANNA model 
outputs and NDVI in northern Tanzania (R2 ≥ 0.60) and in 
north-western South Africa (R2 = 0.42), respectively. In 
addition, Popp et al. (2009) found that NDVI account for 
most variation (R2 = 0.69–0.79) in modelled vegetation 
biomass in southern Namibia. The SGS model can thus 
be used with some confidence basing on its precision level 
that is comparable to other simulation models. Factors 
that present challenges when comparing measured with 
simulated biomass in complex natural systems mentioned 
earlier also contribute to the moderate performance of 
correlations between simulated and remotely sensed 
biomass. Environmental heterogeneity, and inter-annual 
climate fluctuations cause variation in spectral reflectance 
properties of grass vegetation. The variation in grass 
vegetation reflectance is affected by vegetation structure, 
density and condition which vary in space, due to wide 
species diversity and grazing (Kumar et al. 2016). Climate 
variables also play an important role in systems modelling, 
as they affect model outputs (Ovando et al. 2018). Daily 
rainfall and solar radiation inputs used in this study were 
derived from interpolation of satellite estimates, whereas 
temperature was spatially interpolated using data measured 
at weather stations. The process of deriving these inputs 
might have introduced substantial amounts of non-random 
errors, due to the absence of measured weather data at 
the study area. However, given that weather data was not 
available on the ranch, these climate data were the only 
suitable choices and, were considered as representative. 
Given the inherent uncertainties associated with inputs, 
parameters and remotely sensed biomass used in this 
study, it was imperative to test the extent to which the 
model predicts responses in the whole set of outputs.

The SGS model output overall predicted remotely sensed 
grass AGB at an accuracy level that is comparable to field 
measurements. The average errors values of simulated 
grass AGB (981 to 1 396 kg DM ha−1) fall within the range 
of errors of measured (930 kg DM ha−1, Svinurai et al. 2018) 
and remotely sensed grass biomass (1 171 kg DM ha−1, 
Dwyer 2011) in the Limpopo river basin. In southern 
Limpopo river basin, Mutanga and Rugege (2006) found 
RMSEs ranging from 830 to 1 374 kg DM ha−1 from 
geospatial and remote sensing models, whereas Dwyer 
(2011) found the RMSE to vary between 1 171 and 
1 711 kg DM ha−1. These results imply that when model 
parameters are derived from independent experiments to 
represent natural systems, statistical tests that consider 
complete set of predictions provide plausible assessment of 
model accuracy.

Overall, the study findings suggest that individual 
seasonal predictions deviate considerably from both 
measured and remotely sensed grass AGB and, the 
high natural variability of semi-arid savannas is the major 
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source of uncertainty. When summarised, under- and 
over-predictions refuted each other to produce acceptable 
error values. Therefore, the parameter sets developed in 
this study can be used with some confidence for predicting 
grass biomass in the region. However, the major simplifying 
assumption made in the SGS model was that grass 
biomass production and the return of urine are uniform. 
Although this may be a reasonable approximation for the 
relatively homogenous grasslands, the phenomenon is 
rarely true for savanna rangelands in which abiotic and 
biotic factors have interacted over time, causing a high 
degree of spatial and temporal variation in grass community 
production (Venter et al. 2003). This highlights the need for 
incorporating in the model an automated approach, such as 
a GIS submodel, to explicitly represent the spatial variation 
in grass biomass production. Furthermore, the current 
modelling approach is relevant to commercial ranches 
in the Limpopo river basin with large, well-managed 
paddocks. However, these systems preclude proper 
understanding of the dynamics of grass biomass production 
under uncontrolled management in common property 
grazing lands dominant in southern Africa. Thus, further 
testing of the SGS model under a variety of environmental 
conditions in communal rangelands is required to gain more 
confidence in applying the model in the region.

Conclusions

This study developed an integrated workflow for calibrating 
and evaluating process-based pasture simulation 
models that can benefit model users in data-constrained 
environments. The behaviour of SGS model outputs 
was successfully explored qualitatively by examining the 
sensitivity of outputs, and quantitatively using regression 
statistics. The model predicted biomass production patterns 
known for grasses native to tropical regions of southern 
Africa. Growth predictions of local grass species were 
higher than those of default native C4 grass by 26 to 98% 
across land types. The SGS model represented measured 
and remotely sensed grass biomass at reasonable overall 
performance errors despite huge differences in individual 
prediction measures. These findings indicate that measures 
for individual predictions provide low performance scores 
when dynamic models are tested in natural systems, 
whereas better scores are obtained with measures for 
whole predictions. The parameter sets developed can be 
used to apply the SGS model to similar soil types within the 
region, where there are no basic data for model calibration 
and assessment.
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