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Abstract This paper presents a new approach to the problem of coupled lon-

gitudinal and transversal propagation of stress waves in an isotropic thick and

elastic rod, based on the Mindlin-Herrmann theory. The novelty is that, the

Hamilton vriational principle is used not only for derivation of the govern-

ing equations and set of natural boundary conditions, but also for obtaining

the exact solution in terms Green functions directly from the Langrangian.

The success of this approach is based on the existence of multiple orthogo-

nalities of the eigenfuctions. The proposed method is much easier than the

standard approach of building Green functions. A numerical example illus-

trates the method of finding eigenfrequencies and eigenfunctions for isotropic

Mindlin-Herrmann rod.
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1 Introduction

Modern theories of one-dimensional rod vibrations take into account the lateral

effects, which are substantial in the case of relatively thick rods. For exam-

ple, in the Rayleigh-Love [1–3] and Rayleigh-Bishop [4,5] models, the lateral

displacements are supposed to be proportional to the product of longitudinal

strain of the rod, its Poisson ratio and the distance from the neutral line of the

cross-section. Lack of physical clarity in the interpretation of certain higher

effects, such as independent shear displacement and radial motion which de-

scribe transverse deformation have also been associated with these approaches

[2]. The theory of longitudinal stress wave propagation in an elastic rod which

couples axial and independent lateral displacements was first established by

Mindlin and Herrmann in 1950 [6] and later on, was developed in more details

by Graff in his book [7]. Krishnaswamy and Batra have investigated the same

model with various boundary conditions and shown that the analysis of the

corresponding frequency spectrum can be considered in three situations, de-

pending on the domain in which the eigenfrequency belongs to [8–10]. Recently

Krawczuk, Grabowska and Palacz, Zak and Krawczuk, and Anderson [2,11,

12] in their work on different theories of longitudinal vibrations of rods have

analysed the frequency equation of each theory including the one of Mindlin

and Herrmann, also providing a comparison regarding their accuracy and ap-

plicability. These authors have based their approach to wave propagation in

a elastic continuum medium only on the analysis of the frequency equation,

which shows the relationship between the governing factors of the phenom-

ena, these being: time frequency, spacial frequency or wave number and phase

velocity.

In the Mindlin-Herrmann model, which is the main focus of this paper,

the lateral displacements are independent of the longitudinal strain and the

Poisson ratio. They are described by the product of an unknown function,

called transverse deformation and the distance from the neutral line of the

rod. Compared to single mode models, this representation increases the num-
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ber of unknown functions and hence, the model is described by two partial dif-

ferential equations. Consequently, the model is more accurate as it has wider

frequency range in which the effect of longitudinal vibration of the rod can be

analysed [2,12,13]. Nevertheless, on needs to be mindful of the fact that, simi-

lar to Classical, Rayleigh-Love, Rayleigh-Bishop models, the Mindlin-Herrman

model is based on plane cross-section theory. Therefore, it is not suitable to

high frequency vibrations where the effect of the cross-section deplanation is

substantial. In our approach, the derivation of the system of equations of mo-

tion is based on an application of the energy and variational method in the

process of which the associated natural and essential boundary conditions are

automatically obtained. In the course of this work, the multiple orthogonalities

method for vibration problems in [14] is applied to solve the Mindlin-Herrmann

model analytically in terms of Green functions. The great advantage of using

Green functions lies in the fact that, it allows for analysis of the influences of

the initial conditions on the wave propagation. It is necessary to emphasise

that our approach for deriving Green functions is different from the various

methods available in the literature, which either use Driac delta function or a

single orthogonality condition of the eigenfunctions [15–17]. The originality of

the method is that, it combines the Ritz method and the variational principle.

It consists of two main steps. Firstly we prove two orthogonality conditions

of the system of eigenfunctions of the corresponding Sturm-Liouville problem.

Secondly, assuming that the general solution of the problem can be decom-

posed in the form of a Fourier series with respect to the eigenfunction system,

this can then be substituted into the Lagrangian, and after this by applying

the orthogonality conditions of the eigenfunction and the corresponding norms,

the simple form of the Lagrangian is obtained which holds the Euler-Lagrange

equation. The solution of the resulting time-ordinary differential equation is

substituted back into the assumed solution to construct the Green function

that is equivalent to obtaining the analytical (exact) solution of the problem.

It is important to stress that the two orthogonality conditions arise natu-

rally from the Lagrangian. The physical meaning of the first orthogonality
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consists of the orthogonality of eigen-velocities of the deformations involved

in the expression of kinetic energy. The physical meaning of the second or-

thogonality consists of the orthogonality of two stress-strain terms involved

in the expression of strain energy. Thus the first and the second orthogonali-

ties originate respectively from the inertial forces and the strain energy, which

jointly describe the elastic forces in the system . Here it is also necessary to

emphasise that exact solutions of models including those for vibrations of dis-

tributed structures are important for both theoretical and numerical analysis

of these models. In the later one these solutions form the reference results

for testing the accuracy of the numerical algorithms using for example finite

difference and finite element method. The Mindlin-Herrmann model and pro-

posed approach, based on two orthogonalities of the eigenfunctions could also

be applied to composite rods, because it does not need the Poisson ratio as in

the Rayleigh-Love and Rayleigh-Bishop models.

The main theoretical results of the paper are as follows: the formulation

and proof of two kinds of orthogonality conditions of the eigenfunctions; the

method of obtaining the exact solution of the system of partial differential

equations in terms of Green’s functions using the Lagrangian functional of

the system; transformation of the differential operator of the Sturm-Liouville

problem to self-adjoint form; proof of the positivity of the operator and the

corresponding eigenvalues. The self-adjoint properties of the operator are used

as an alternative technique to prove the eigenfunction multiple orthogonality

conditions.

The content of this paper is arranged in the following way: Section 2

presents the derivation of the system of equations of motion with the asso-

ciated natural boundary conditions. Section 3 deals with free vibrations and

the corresponding Sturm-Liouville problem is investigated. In Section 4 the

two orthogonality conditions of the eigenfunctions are established. The Green’s

functions are derived in Section 5. Section 6 is devoted to the numerical simula-

tion of the model and a critical comparison of Mindlin-Herrmann and Classical

model. In order for the paper to be more self-contained, the derivation of the
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Mindlin-Herrmann model is shown in Appendix A and the differential operator

in the Sturm-Liouville problem and its properties are discussed in Appendix

B.

2 Mindlin-Herrmann model

The aim of this section is to formulate the two mode Mindlin-Herrmann model

and set notations that will be use throughout this paper. The model is pre-

sented in [2] and [7,11] in Cartesian and cylindrical coordinate respectively and

used in [13,19] as improvement of the single mode classical, Rayleigh-Love and

Rayleigh-Bishop models. According to Mindlin-Herrmann theory of longitu-

dinal stress wave propagation, the axial displacements u and the transverse

(lateral) displacements v and w are assumed to be function of the form:

u = u1(x, t), v = v(x, y, t) = yu2(x, t), w = w(x, z, t) = zu2(x, t) (1)

where x ∈ D = (0, l) is the axial distance along the rod of length l, y and z are

the lateral distance from the x-axis (neutral line), t ≥ 0 is the time. Here u2 is

the transverse deformation. Using Hamilton variational principle the equation

of motion or Mindlin-Herrmann model for vibrating isotropic rod is obtained

[7]: {
ρü1 − (λ+ 2µ)u′′

1 − 2λu′
2 = f(x, t)

ρIpü2 + 4(λ+ µ)Su2 − µIpu
′′
2 + 2Sλu′

1 = 0
(2)

with the following essential boundary conditions at fixed end

u1|x=0,l = 0, u2|x=0,l = 0, (3)

and natural boundary conditions at free ends

(λ+ 2µ)u′
1 + 2λu2|x=0,l = 0, µIpu

′
2|x=0,l = 0, (4)

where the upper dot and the prime denoted the derivative with respect to time

and x respectively, λ and µ are Lame’s constant defined by λ = Eη
(1−2η)(1+η)

and µ = E
2(1+η) , in which E is the Young modulus of elasticity, ρ is the mass

density, S =
∫
(s)

ds is the cross-sectional area, Ip =
∫
(s)

(
y2 + z2

)
ds is the
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Polar moment of inertial, η is the Poisson ratio and f = f(x, t) is the external

distributed force.

Remark 1 The system of equation (2) can be solved mathematically with any

combination of four of the above eight boundary conditions but not all of them

have a physical meaning.

We consider the following mix boundary conditions (no longitudinal displace-

ment and no transversal force are applied at the ends of the rod) in the rest

of the paper:

u1|x=0,l = 0, u′
2|x=0,l = 0, (5)

In addition to Equations (2) and (5) it is necessary to state the initial condi-

tions to obtain a unique solution:

u1|t=0 = g(x),
∂u1

∂t
|t=0 = h(x), u2|t=0 = ϕ(x),

∂u2

∂t
|t=0 = φ(x). (6)

More details on the derivation of Eqs. (2)-(4) are given in Appendix A.

In what follows, system of Eq. (2) and associated boundary conditions (5) will

be transformed into matrix form, which will simplify the process of finding of

the solution. Multiplying the first and second equations of system (2) by Sa

and b (a and b are non zero arbitrary constants), respectively and dividing

both equation by ρ leads to:
Saü1 −

(λ+ 2µ)Sa

ρ
u′′
1 − 2λSa

ρ
u′
2 =

Sa

ρ
f(x, t)

bIpü2 +
2λSb

ρ
u′
1 −

µIpb

ρ
u′′
2 +

4(λ+ µ)Sb

ρ
u2 = 0

(7)

Letting

u1 =
1

aS
v1, u2 =

1

bIp
v2, f1(x, t) =

Sa

ρ
f(x, t), q2 =

b2

a2
=

S

Ip
, (8)

the system of equations (7) becomes:
v̈1 −

(λ+ 2µ)

ρ
v′′1 − 2λq

ρ
v′2 = f1(x, t)

v̈2 +
2λq

ρ
v′1 −

µ

ρ
v′′2 +

4(λ+ µ)q2

ρ
v2 = 0

(9)
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The system of equations of motion (9) can be written in the following matrix

form:

v̈−Av = f, (10)

where

v(x, t) =

(
v1(x, t)
v2(x, t)

)
, A =

 a11
∂2

∂x2
a12

∂

∂x

−a12
∂

∂x
a22

∂2

∂x2
− c22

 , f(x, t) =

(
f1(x, t)

0

)
(11)

and

a11 =
(λ+ 2µ)

ρ
, a12 =

2λq

ρ
, a22 =

µ

ρ
, c22 =

4(λ+ µ)q2

ρ
. (12)

Using notations (8) and (12), the Lagrangian (A.8) can be rewritten in the

following form

L =
ρIp
2

∫ l

0

(
q2u̇2

1 + u̇2
2 − a11q

2u′2
1 − 2a12qu

′
1u2 − c22u

2
2 − a22u

′2
2 +

2

ρ
q2fu1

)
dx

(13)

The new form of the boundary conditions (5) is:

Bv|Γ = 0 (14)

where

B =

(
1 0
0 ∂

∂x

)
(15)

is the boundary differential operator and Γ = {0, l}.

3 Free vibration of the Mindlin-Herrmann rod: the Sturm-Liouville
problem

The objective of this section is to derive the solution of the Sturm-Liouville

problem corresponding to Mindlin-Herrmann model. In fact the double or-

thogonality conditions of the obtained eigenfunctions (to be proven in section

4) will help to build the Green’s functions for the model. Let us assume a

harmonic vibration of the rod and seek the solution of Eq. (10) with f = 0, in

the form:

v = V(x)eiωt (16)
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where V(x) =

(
V1(x)
V2(x)

)
, i2 = −1 and ω is the angular frequency.

From formula (8) we set

v = Tu (17)

where T =

(
aS 0
0 bIp

)
and u =

(
u1

u2

)
.

As Tu(x, t) = V(x)eiωt, this implies that u(x, t) = T−1V(x)eiωt and thus we

can set

U(x) = T−1V(x) or V(x) = TU(x), (18)

where U(x) =

(
U1(x)
U2(x)

)
.

Substituting expression (16) into Eqs. (10) and (14) leads to the following

Sturm-Liouville problem:

AV+ ω2V = 0 (19)

with the associated mix boundary conditions for fixed ends and free shear

force at the ends respectively,

BV|Γ = 0, (20)

where A and B (total differential operator) are the same operator as above

with ∂
∂x replaced by d

dx .

Remark 2 The Sturm-Liouville problem (19)-(20) is defined by a system of

differential equations. Despite the fact that there is a lack of theory of general

Sturm-Liouville (especially if operator A and B depend on the spectral pa-

rameter ω), it is sometimes possible to solve such a problem. Some examples

of Sturm-Liouville problems for a system can be found in [24].

In this specific case, the solution V(x) can be sought in the form:

V(x) = peγx =

(
p1
p2

)
eγx (21)

where p is the non-zero constant vector amplitude and

γ = γ(ω) = α(ω) + ik(ω) (22)
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is the propagation coefficient, in which α(ω) and k(ω) are the attenuation

coefficient and wave number, respectively.

Substituting expression (21) into (16) leads to

v(x, t) = peγx+iωt, (23)

therefore v(x, t) is sought in the form of travelling wave. Substituting expres-

sion (21) into Eq. (19) yields a homogeneous system of two equations of two

unknowns p1 and p2

Ãp+ ω2p = 0 (24)

where

Ã =

(
γ2a11 γa12
−γa12 γ2a22 − c22

)
. (25)

The characteristic equation of the determination of the non-trivial solution of

system (24) is

γ4a11a22 + γ2
[
a212 + ω2 (a22 + a11)− c22a11

]
− ω2

(
c22 − ω2

)
= 0 (26)

or

γ4ϑ+ γ2β − ζ = 0 (27)

where ϑ = a11a22, β = β(ω) = a212 + ω2 (a22 + a11) − c22a11, ζ = ζ (ω) =

ω2
(
c22 − ω2

)
.

Solving Eq. (27) for γ2 gives

γ2
1 = γ2

1 (ω) =

√
β2 + 4ϑζ − β

2ϑ
, γ2

2 = γ2
2 (ω) =

−
√
β2 + 4ϑζ − β

2ϑ
. (28)

It is noticed that γ1 is real and γ2 is real or purely imaginary (in this case all

the input energy contributes only to the activation of the lateral motion). The

fundamental system of the solutions of Eq. (19) is:

{eγ1x, e−γ1x, eγ2x, e−γ2x}. (29)

Thus

v1(x) = c1e
γ1x + c2e

−γ1x + c3e
γ2x + c4e

−γ2x (30)
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and

v2(x) = c5e
γ1x + c6e

−γ1x + c7e
γ2x + c8e

−γ2x (31)

where c5, c6, c7, c8 are the constants which can be expressed in terms of c1, c2, c3, c4.

Substituting Eqs. (30)-(31) into the first equation of the system (19) gives

{(a11γ2
1 + ω2)c1 + a12γ1c5}eγ1x + {(a11γ2

1 + ω2)c2 − a12γ1c6}e−γ1x+
+{(a11γ2

2 + ω2)c3 + a12γ2c7}eγ2x + {(a11γ2
2 + ω2)c4 − a12γ2c8}e−γ2x = 0

.

(32)

Since the exponential functions in Eq. (32) are linearly independent, one can

assert that
(a11γ

2
1 + ω2)c1 + a12γ1c5 = 0

(a11γ
2
1 + ω2)c2 − a12γ1c6 = 0

(a11γ
2
2 + ω2)c3 + a12γ2c7 = 0

(a11γ
2
2 + ω2)c4 − a12γ2c8 = 0.

(33)

Thus we obtain

c5 = −a11γ
2
1 + ω2

a12γ1
c1, c6 =

a11γ
2
1 + ω2

a12γ1
c2

c7 = −a11γ
2
2 + ω2

a12γ2
c3, c8 =

a11γ
2
2 + ω2

a12γ2
c4

(34)

Remark 3 The relationship between c1, c2, c3, c4 and c5, c6, c7, c8 respectively

can also be obtained by substituting Eqs. (30)-(31) into the second equation

of the system (19). These relationships are derived in a form which is different

from (34) but equivalent for γ1 and γ2 being solutions of (26).

After substituting (34) into (30), the boundary condition (20) for the functions

v1 and v2 given in (29)-(30) results in the following homogeneous system for

c1, c2, c3 and c4:

c1 + c2 + c3 + c4 = 0
(a11γ

2
1 + ω2)(c1 + c2) + (a11γ

2
2 + ω2)(c3 + c4) = 0

c1e
γ1l + c2e

−γ1l + c3e
γ2l + c4e

−γ2l = 0

(a11γ
2
1 + ω2)(c1e

γ1l + c2e
−γ1l) + (a11γ

2
2 + ω2)(c3e

γ2l + c4e
−γ2l) = 0

. (35)

The existence of a non trivial solution of the homogeneous system (35) requires

that its coefficient matrix D(ω) is singular, that is,

|D(ω)| = 0. (36)

The transcendental equation (36) has many roots and can be solved in dif-

ferent ways. The numerical example in Section 6 use the method in [23] for
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approximating ω. Note that Eq. (36) is also the characteristic equation for the

Sturm-Liouville problem (19)-(20). Hence the roots ωn, n = 1, 2, · · · of (36)

are the eigenvalues of (19)-(20). The corresponding eigenfunctions are

v1n(x, ωn) = c1e
γ1(ωn)x + c2e

−γ1(ωn)x + c3e
γ2(ωn)x + c4e

−γ2(ωn)x (37)

and

v2n(x, ωn) =
a11γ

2
1(ωn) + ω2

n

a12γ1(ωn)
(c2e

−γ1(ωn)x − c1e
γ1(ωn)x)

+
a11γ

2
2(ωn) + ω2

n

a12γ2(ωn)
(c4e

−γ2(ωn)x − c3e
γ2(ωn)x). (38)

The solution of the system (35) is obtained by choosing the value of one

constant (c4 for example) and the remaining three unknowns are obtained by

the substitution method.

4 Orthogonalities of the eigenfunctions

In this section we prove two kinds of orthogonality properties of the eigenfunc-

tions of the Sturm-Liouville problem (19)-(20) in L2(D) and H1(D) = W 1
2

space respectively. The first orthogonality condition is well-known in the the-

ory of spectral and Sturm-Liouville problems [20–22] and it is derived here

just to show the similarity with the technique of getting the second orthogo-

nality which is not well-documented in the literature. Both orthogonalities are

the corner stone in our new approach of finding the analytical solution of the

Mindlin-Herrmann model.

Let Vn =

(
V1n

V2n

)
and Vm =

(
V1m

V2m

)
be two distinct eigenfunctions cor-

responding respectively to different eigenvalues ωn and ωm satisfying Eqs.

(19)-(20)

AVn + ω2
nVn = 0, (39)

AVm + ω2
mVm = 0. (40)

Remark 4 The operator A is self-adjoint on the class of functions C2(D) sat-

isfying boundary condition (20). This is discused further in Appendix B.
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Multiplying Eqs. (39) and (40) by Vm and Vn (inner product) respectively

gives

(AVn,Vm) + (ω2
nVn,Vm) = 0, (41)

(AVm,Vn) + (ω2
mVm,Vn) = 0, (42)

Subtracting Eq. (41) from Eq. (42) and using the self-adjoint property of the

operator A, leads to

(Vn,Vm) =

∫ l

0

[V1nV1m + V2nV2m]dx = 0 for n ̸= m (43)

To express the orthogonality in terms of the original vector U (indirectly u),

we substitute formula (18) into Eq.(43), so the resulting equation gives the

first orthogonality condition

(Un,Um)1 =

∫ l

0

[SU1nU1m + IpU2nU2m]dx = 0 for n ̸= m (44)

or ∫ l

0

[SU1nU1m + IpU2nU2m]dx = (Un,Um)1δnm (45)

where δnm is the Kronecker symbol.

The corresponding square norm can be written in the following form

∥Un∥21 =

∫ 2

0

(SU2
1n + IpU

2
2n)dx (46)

In order to prove the second orthogonality, we multiply Eq. (39) and Eq. (40)

by ω2
mVm and ω2

nVn (inner product) respectively leading to

(ω2
mAVn,Vm) + (ω2

nVn, ω
2
mVm) = 0 (47)

(ω2
nAVm,Vn) + (ω2

mVm, ω2
nVn) = 0 (48)

Subtracting Eq. (47) from Eq. (48) and using the self-adjoint property of the

operator A, gives

(AVn,Vm) =

∫ l

0

AVn ·Vmdx = 0. (49)
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Substituting expression (18), into (49) and multiplying the resulting equation

by -1 yields∫ l

0

(
−(aS)2a11

d2U1n

dx2
U1m − (bIp)

2a22
d2U2n

dx2
U2m − (abSIp)a12

dU2n

dx
U1m

)
dx

+

∫ l

0

(
(abSIp)a12

dU1n

dx
U2m + (bIp)

2c22U2nU2m

)
dx = 0

(50)

Integrating by parts the first integral of Eq. (50), afterwards dividing the

resulting equation by a2SIp and applying boundary conditions (20), leads to

the second orthogonality condition

(Un,Um)2 =∫ l

0

(
q2a11U

′
1nU

′
1m + qa12(U2nU

′
1m + U2mU ′

1n) + a22U
′
2nU

′
2m + c22U2nU2m

)
dx

= 0 for n ̸= m
(51)

or∫ l

0

(
q2a11U

′
1nU

′
1m + qa12(U2nU

′
1m + U2mU ′

1n) + a22U
′
2nU

′
2m + c22U2nU2m

)
dx

= (Un,Um)2δnm

(52)

where

(Un,Un)2 =

∥Un∥22 =

∫ l

0

(
q2a11U

′2
1n + 2qa12U2nU

′
1n + a22U

′2
2n + c22U

2
2n

)
dx (53)

Remark 5 It is also possible to obtain the same kind of orthogonalities, by

using any combination of two of the four boundary conditions (A14)-(A15)

(see Appendix A).

5 Solution of the problem: Green’s function

5.1 Solution of the Midlin-Herrmann model

Assume that the solution of the inhomogeneous system of the initial boundary

problem (2)-(6) can be written as a Fourier series expansion with respect to
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the eigenfunction system

{(
U1n

U2n

)}∞

n=1

which is collinear to

{(
V1n

V2n

)}∞

n=1

,

u1(x, t) =
∞∑

n=1

U1n(x)Φn(t), u2(x, t) =
∞∑

n=1

U2n(x)Φn(t) (54)

where the unknown function Φn(t) need to be determined.

Substituting expression (54) into the Lagrange functional (13) gives

L =
1

2

∞∑
n=1

Φ̇2
nρ

∫ l

0

{
SU2

1n + IpSU
2
2n

}
dx

+

∞∑
n=1

Φ̇nΦ̇mρ

∫ l

0

{SU1nU1m + IpU2nU2m} dx

−1

2
ρIp

∞∑
n=1

Φ2
n

∫ l

0

{
c22U

2
2n + a22(U

′
2n)

2 + q2a11(U
′
1n)

2 + 2qa12U
′
1nU2n

}
dx

−ρIp

∞∑
n<m

ΦnΦm

∫ l

0

{
c22U2nU2m + a22U

′
2nU

′
2m + q2a11U

′
1nU

′
1m

}
dx

−ρIp

∞∑
n<m

ΦnΦm

∫ l

0

qa12(U
′
1nU2m + U ′

1mU2n)dx+
∞∑

n=1

SΦn

∫ l

0

f(x, t)U1ndx

(55)

Using orthogonality conditions (44) and (51) and their associated square norm

formulas (46) and (53), equation becomes:

L =
∞∑

n=1

Ln, (56)

where

Ln =
1

2

{
ρΦ̇2

n∥Un∥21 − Φ2
nρIp∥Un∥22 + 2ΦnS

∫ l

0

f(x, t)U1ndx

}
. (57)

From the variational principle, the Lagrangian (56) satisfies the system of

Euler-Lagrange differential equations (A.9) (see Appendix A), [25]. Here we

assume that if (A.9) holds for L then Ln satisfy the following differential

equation

∂

∂t

(
∂L

∂Φ̇n

)
+

∂

∂x

(
∂L

∂Φn

)
− ∂L

∂Φn
= 0, for n = 1, 2 . . . (58)
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Hence, we obtain the following time dependant ordinary differential equation

Φ̈n(t) +Ω2
nΦn(t) = fn(t), for n = 1, 2 . . . (59)

where Ωn =

√
Ip∥Un∥2
∥Un∥1

and fn(t) =
S

ρ∥Un∥21

∫ l

0

f(x, t)U1ndx. The gen-

eral solution of Eq. (59) is of the form

Φn(t) = Φn(0) cos(Ωnt) +
Φ̇n(0)

Ωn
sin(Ωnt) +

1

Ωnt

∫ l

0

fn(τ) sin[Ωn(t− τ)]dτ.

(60)

To conveniently determine constants Φn(0) and Φ̇n(0), we need the initial

conditions (6) which should also be expanded into Fourier series with respect

to eigenfunctions system

g(x) = u1(x, 0) =

∞∑
n=1

Φn(0)U1n(x), h(x) = u̇1(x, 0) =

∞∑
n=1

Φ̇n(0)U1n(x),

ϕ(x) = u2(x, 0) =
∞∑

n=1

Φn(0)U2n(x), φ(x) = u̇2(x, 0) =
∞∑

n=1

Φ̇n(0)U2n(x).

(61)

Using the properties of the above expansion, orthogonality condition (44) and

the norm formula (46), we can express Φn(0) and Φ̇n(0), as Fourier coefficients

Φn(0) =
1

∥U1∥1

∫ l

0

(SU1n(x)g(x) + IpU2n(x)ϕ(x)) dx,

Φ̇n(0) =
1

∥U1∥1

∫ l

0

(SU1n(x)h(x) + IpU2n(x)φ(x)) dx.

(62)

Substituting expression (62) into Eq. (60), we then substitute the resulting ex-

pression into Eq. (54) to obtain the solution of the problem for the longitudinal

vibrations of the Mindlin-Herrmann isotropic, thick rod

u1(x, t) =

∫ l

0

Sg(ξ)
∂G1(x, ξ, t)

∂t
dξ +

∫ l

0

Ipϕ(ξ)
∂G2(x, ξ, t)

∂t

+

∫ l

0

Sh(ξ)G1(x, ξ, t)dξ +

∫ l

0

Ipφ(ξ)G2(x, ξ, t)dξ

+
1

ρ

∫ t

0

∫ l

0

f(x, t)G1(x, ξ, t− τ)dτdξ (63)
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u2(x, t) =

∫ l

0

Sg(ξ)
∂G3(x, ξ, t)

∂t
dξ +

∫ l

0

Ipϕ(ξ)
∂G4(x, ξ, t)

∂t

+

∫ l

0

Sh(ξ)G3(x, ξ, t)dξ +

∫ l

0

Ipφ(ξ)G4(x, ξ, t)dξ

+
1

ρ

∫ t

0

∫ l

0

f(x, t)G3(x, ξ, t− τ)dτdξ, (64)

where

G1(x, ξ, t) =
∞∑

n=1

(
U1n(x)U1n(ξ) sinΩnt

Ωn∥Un∥21

)
, (65)

G2(x, ξ, t) =
∞∑

n=1

(
U1n(x)U2n(ξ) sinΩnt

Ωn∥Un∥21

)
,

G3(x, ξ, t) =

∞∑
n=1

(
U2n(x)U1n(ξ) sinΩnt

Ωn∥Un∥21

)
,

G4(x, ξ, t) =
∞∑

n=1

(
U2n(x)U2n(ξ) sinΩnt

Ωn∥Un∥21

)
are the Green’s functions.

5.2 Examples

In this subsection we give a concise application of the method outlined above

to two single mode models of longitudinal wave propagation

5.2.1 Classical model

Here u2 = 0 (η = 0) and Ip = 0 which means no lateral motion and all

deformations are parallel to the neutral line. The equation of motion is

∂2u1

∂t2
− c2

∂2u1

∂x2
=

1

ρ
f(x, t), (66)

where c =
√

E
ρ is the phase velocity of the rod. The solution of the initial

boundary value problem (5)-(6) and (66) is given as follows

u1(x, t) =

∫ l

0

Sg(ξ)
∂G1(x, ξ, t)

∂t
dξ +

∫ l

0

Sh(ξ)G1(x, ξ, t)dξ

+
1

ρ

∫ t

0

∫ l

0

f(x, t)G1(x, ξ, t− τ)dτdξ (67)
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where G1 is given by Eq. (65) in which

∥Un∥21 =

∫ l

0

U2
1n(x)dx, ∥Un∥22 =

∫ l

0

U ′2
1n(x)dx, Ωn =

c∥Un∥2
∥Un∥1

(68)

5.2.2 Rayleigh-Bishop model

We assume that lateral deformation is proportional to the longitudinal strain,

that is u2 = ηu′
1 . The equation of motion is

S

(
∂2u1

∂t2
− c2

∂2u1

∂x2

)
+ Ipη

2 ∂2

∂x2

(
∂2u1

∂t2
+ c21

∂2u1

∂x2

)
=

1

ρ
f(x, t), (69)

where c1 =
√

µ
ρ is the velocity of the shear wave (so-called S-wave) in the

lateral direction. The solution of the initial boundary value problem (5)-(6)

and (69) is given as follows

u1(x, t) = S

∫ l

0

(
g(ξ)

∂G1(x, ξ, t)

∂t
+ h(ξ)G1(x, ξ, t)

)
dξ

+Ipη
2

∫ l

0

(
g′(ξ)

∂2G1(x, ξ, t)

∂t∂ξ
+ h′(ξ)

∂G1(x, ξ, t)

∂ξ

)
dξ

+
S

ρ

∫ t

0

∫ l

0

f(x, t)G1(x, ξ, t− τ)dτdξ (70)

where G1 is given by Eq. (65) in which

∥Un∥21 =

∫ l

0

(
SU2

1n(x) + Ipη
2U ′2

1n(x)
)
dx, Ωn =

∥Un∥2√
ρ∥Un∥1

(71)

and

∥Un∥22 =

∫ l

0

(
SEU ′2

1n(x) + µIpη
2U ′′2

1n (x)
)
dx. (72)

6 Numerical example and comparison of vibration theories

Here we consider an isotropic, thick, short rod, consisting of a cylindrical sec-

tion made of a copper-based (80%Cu − 20%Zn composition), whose charac-

teristics are available in Table 1. The axial and lateral ends of the rod are fixed

and free respectively. To solve the characteristic equation (36), we apply the

method of bracketing root developed in [23], with the help of the mathematical
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Table 1 The charateristics of the rod

Parameter Symbol Value Unit
Modulus of elasticity E 1011 Nm−2

Mass density ρ 8.5103 kgm−3

Radius r 0.50 m
Length l 1 m
Area A 0.7853 m2

Poisson ratio η 0.34
Polar moment of inertia Ip 0.098 m4

Phase velocity c 3426.971 ms−1

software, Mathcad to implement and illustrate all the results. Results obtain-

ing for Mindlin-Herrmann model will be compared to those of the single-mode

Classical model.

0 1.5 10
3× 3 10

3× 4.5 10
3× 6 10

3× 7.5 10
3×

2

0

2

4

6

8

log D ω( )( )

sign D ω( )( )

ω 2π( )
1

Fig. 1 Graph used to estimate the values of eigenfrequencies of the Mindlin-Herrman model

0 1.5 10
3

× 3 10
3

× 4.5 10
3

× 6 10
3

× 7.5 10
3

×

6

4

2

0

2

log sin
ω

c
L

sign sin
ω

c
L

ω 2π( )
1

Fig. 2 Graph used to estimate the values of eigenfrequencies of the Classical model

In Fig. 1, only the downward spikes are informatives, in fact they indi-

cate the solutions of the characteristic equation (36) or eigenvalues distri-

bution except the third downward spike that shows only the change form

a hyperbolic to a trigonometric function. This is well observed in Fig 3 at
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0 2 10
3

× 4 10
3

× 6 10
3

× 8 10
3

×

0

10

20

30

Re γ2 ω( )( )

Im γ2 ω( )( )

γ1 ω( )

ω 2π( )
1

Fig. 3 Propagation coefficients of Mindlin-Herrmann model

ω(2π)−1 = 3.343 × 103Hz where the curve of Imγ2(ω) (dotted line) meets

the solid line one Reγ2(ω). At that particular point the effect of the lateral

attenuation coefficient (α2 = Imγ2(ω)) vanishes and the lateral wavenumber

(k2 = Reγ2(ω)) appears and increases substantially. Moreover the first, sec-

ond, fifth, sixth, eighth and ninth downward spikes correspond to the first six

axial vibration modes. The fourth, seventh and tenth downward spikes corre-

spond to the first three pure transversal vibration modes. The first six and four

Table 2 Eigenfrequencies of Mindlin-Herrmann and Classical models

Axial mode of Mindlin-Herrmann model Classical model Unit
1.637× 103 1.715× 103 Hz
2.883× 103 3.430× 103 Hz
3.75× 103 5.145× 103 Hz
3.855× 103 6.860× 103 Hz
4.793× 103

6.726× 103

eigenfrequencies of the axial mode of Mindlin-Herrmann and Classical mod-

els are recorded in Table 2. It shows that the eigenfrequencies of the of the

Classical theory are larger than those of the Mindlin-Herrmann theory which

is in agreement with the comparison of vibration theories based on their fre-

quency spectra (the dispersion curve of the classical theory is always above the

curves of other rod vibration theories) done by Krawczuk et .al and Zak and

Krawczuk [2,11]. Moreover in the same frequency range [0, 7.500× 103] there
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are six axial eigenfrequencies associated with the Mindlin-Herrmann model

and only four for the Classical model (see Fig 1 and 2). The latter observa-

tion is a proof that Mindlin-Herrmann theory is more accurate than Classical

theory.

0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

U11 x( )

U12 x( )

U13 x( )

U14 x( )

U15 x( )

x

Fig. 4 The axial eigenfunctions associated with the first five axial eigenvalues

0 0.2 0.4 0.6 0.8 1

10

0

10

U21 x( )

U22 x( )

U23 x( )

U24 x( )

U25 x( )

x

Fig. 5 The transversal eigenfunctions associated with the first five axial eigenvalues

0 0.2 0.4 0.6 0.8 1
0.05

0

0.05

U11 x( )

U12 x( )

U13 x( )

x

Fig. 6 The transversal eigenfunctions associated with the first three lateral eigenvalues
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0 0.2 0.4 0.6 0.8 1
1

0.5

0

0.5

1

U21 x( )

U22 x( )

U23 x( )

x

Fig. 7 The Axial eigenfunctions associated with the first three lateral eigenvalues

The graph of the axial eigenfunctions of the Mindlin-Herrmann theory,

showing the shape of the longitudinal wave propagation at different modes

is plotted in Fig 4. It is important to emphasise that the behaviours of the

axial wave propagation (as illustrate in Fig 4) in Mindlin-Herrmann theory are

comparable to those of Classical theory but with different eigenfrequencies. Fig

5 shows the shape of the lateral waves displacement at different axial angular

frequencies (eigenvalues) caused by the effect of the axial wave propagation.

In fact, to realise zero displacement in the axial direction at x = 0, l, we need

to apply substantial forces. Hence, the stresses at these points are quite large

and according to Hooke’s Law, stresses are proportional to strains and in this

particular case u2 = ηu′
1 (see Eq. (1)). It is clearly visible in Fig 4 and 5

that both the axial and lateral wave vibrate in opposition and alternatively

between their absolute maximum values and nodes. The behaviours of the pure

transversal wave displacement associated with the first three eigenvalues due

to input energy and the deformations produce in the axial direction by the

effect of the lateral displacements are illustrated in Fig 6 and 7 respectively.

Remark 6 In practice the Mindlin-Herrmann model can be applied for rela-

tively long (slender) rods. In this example we apply it to short rod (that is,

diameter is comparable to the length) to illustrate both effects of radial and

longitudinal vibrations and compare the spectrum with those of the classical

model for rod with the same characteristics.
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7 Conclusion

The general analytical solution in terms of Green’s functions of the Mindlin-

Herrmann model for longitudinal vibration of an isotropic rod with constant

cross-section is presented here. The model is a system of two hyperbolic equa-

tions and is derived by applying the energy method and the Hamilton’s varia-

tional principle in the process of which boundary conditions are obtained. The

self-adjoint property of the operator of the corresponding Sturm-Liouville op-

erator is used to prove two types of orthogonality conditions of the associated

eigenfunctions. The method of multiple orthogonalities for vibration problems

is used to derive the exact solution for the model. A numerical simulation

of the eigenfunctions is considered to show the harmonics visible as distinct

spikes, which provide an insight into the mechanism that generates the entire

signal inside the rod. Although the solution technique presented in this paper

is based on Mindlin-Herrmann model, the same approach is used to tackle free

and forced vibration problems of thick and short rods based on Rayleigh-Love

and Rayleigh-Bishop models.

Appendix A Derivation of the Mindlin-Herrmann Model

The aim here is to show how to derive the equations of motion and the associated boundary

conditions using the Hamilton variational principle.

Using Eq. (1) the strains are obtained as follows

εxx = ∂u
∂x

= u′
1, εyy = ∂v

∂y
= u2, εzz = ∂v

∂z
= u2 = εyy

εxy = ∂u
∂y

+ ∂v
∂x

= yu′
2, εyz = ∂v

∂z
+ ∂w

∂y
= 0, εzx = ∂w

∂x
+ ∂u

∂z
= zu′

2.
(A.1)

The stresses of the rod are

σxx = (λ+ 2µ)εxx + λ(εyy + εzz) = (λ+ 2µ)u′
1 + 2λu2

σyy = (λ+ 2µ)εyy + λ(εxx + εzz) = 2(λ+ µ)u2 + λu′
1

σzz = (λ+ 2µ)εzz + λ(εxx + εyy) = 2(λ+ µ)u2 + λu′
1 = σyy

σxy = µεxy = µyu′
2, σyz = µεyz = 0, σzx = µεzx = µzu′

2,

(A.2)

Kinetic energy is as follows:

K =
ρ

2

∫ l

0

∫
(s)

(
u̇2 + v̇2 + ẇ2

)
dsdx (A.3)
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Substituting expression (1) into Eq. (6) leads to

K =
ρ

2

∫ l

0

(
Su̇2

1 + u̇2
2Ip

)
dx, (A.4)

The arguments in all functions are sometimes omitted for simplicity.

Strain energy is as follows:

P =
ρ

2

∫ l

0

∫
(s)

(σxxεxx + σyyεyy + σzzεzz + σxyεxy + σyzεyz + σzxεzx) dsdx (A.5)

where σij , εij are given by Eqs.(A.1) and (A.2). Hence

P =
1

2

∫ l

0

{
S
[
(λ+ 2µ)u′2

1 + 4λu2u
′
1 + 4(λ+ µ)u2

2

]
+ µIpu

′2
2

}
dx. (A.6)

Let W be the work done by the distributed force f = f(x, t)

W =

∫ l

0

∫
(s)

fu1dsdx =

∫ l

0
fu1Sdx. (A.7)

The Lagrangian is as follows:

L = K − P +W

=
1

2

∫ l

0

{
ρSu̇2

1 + ρIpu̇
2
2 − (λ+ 2µ)Su′2

1 − 4λSu′
1u2 − 4(λ+ µ)Su2

2

}
dx

+
1

2

∫ l

0

{
2fu1S − µIpu

′2
2

}
dx

(A.8)

Applying the Hamiltonian principle to the Lagrange functional Eq. (A.8) we obtain the

system of equations of motion in general form:
d
dt

(
∂L
∂u̇1

)
+ d

dx

(
∂L
∂u′

1

)
− ∂L

∂u1
= 0

d
dt

(
∂L
∂u̇2

)
+ d

dx

(
∂L
∂u′

2

)
− ∂L

∂u2
= 0

(A.9)

and the associated boundary conditions in general form is as follows

u1|x=0,l = 0, u2|x=0,l = 0 for fixed ends (A.10)

or

∂L

∂u′
1

|x=0,l = 0,
∂L

∂u′
2

|x=0,l = 0 for free ends. (A.11)

We assume that the rod has a constant cross-section and that parameters such as λ, µ, S

and IP are constants. Hence the explicit form of Eq. (A.9) is as follows{
ρü1 − (λ+ 2µ)u′′

1 − 2λu′
2 = f(x, t)

ρIpü2 + 4(λ+ µ)Su2 − µIpu′′
2 + 2Sλu′

1 = 0
(A.13)
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with the following corresponding boundary conditions

u1|x=0,l = 0, u2|x=0,l = 0 for fixed ends (A.14)

or

(λ+ 2µ)u′
1 + 2λu2|x=0,l = 0, µIpu

′
2|x=0,l = 0 for free ends. (A.15)

Appendix B Analysis of the operator of the Sturm-Liouville problem

In this section our goal is to determine the nature of the operator A of the Sturm-Liouville

problem.

We firstly prove that A is self-adjoint on the class of functions C2(D) satisfying boundary

condition (20). Let u =

(
u1

u2

)
and v =

(
v1
v2

)
. We define the scalar product as follow:

(u,v) =

∫ l

0
u · vdx (B.1)

(Au,v) =

∫ l

0
Au · vdx

=

∫ l

0

(
a11

d2u1

dx2
v1 + a12

du2

dx
v1

)
dx

+

∫ l

0

(
−a12

du1

dx
v2 + a22

d2u2

dx2
v2 − c22u2v2

)
dx

(B.2)

Integrating twice and once by part the terms with the second and first derivative respectively

of the expression (B.2) and applying boundary conditions (20) we obtain

(Au,v) =

∫ l

0

(
a11u1

d2v1

dx2
− a12u2

dv1

dx

)
dx

+

∫ l

0

(
a12u1

dv2

dx
+ a22u2

d2v2

dx2
− c22u2v2

)
dx

=

∫ l

0
u1

(
a11

d2v1

dx2
+ a12

dv2

dx

)
dx

+

∫ l

0
u2

(
−a12

dv1

dx
+ a22

d2v2

dx2
− c22v2

)
dx

=

∫ l

0

(
u1

u2

)
.A

(
v1
v2

)
dx

= (u, Av)

(B.3)

Equality (B.3) shows that the operator is self-adjoint which means that all the eigenvalues

of the Sturm-Liouville problem (19)-(20) are real.
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