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ABSTRACT 

In the study of transport phenomena, mass, momentum 

and energy are increasingly recognized of fundamental 

importance. The prediction of the mechanical transport in the 

ocean is a difficult task. Parallel flow through a straight channel 

provides a good understanding in connection with flow in 

estuaries. Thus to study the transport through estuaries, a 

simple case of an unsteady incompressible flow and heat 

transfer of a non-ionized fluid with charged SPM between two 

infinite parallel plates has been considered. The solutions of the 

governing equations of flow field have been obtained by 

using Crank-Nicholson finite difference technique. An 

illustration of dependence of physical variables on non-

dimensional parameters viz. diffusion parameter, finite 

volume fraction, concentration parameter, magnetic 

parameter has been depicted through figures and tables.  

The direction of heat transfer has been discussed by taking a 

situation 2cr EP  in both frozen flow and equilibrium flow 

regimes. The electrification of particles has an effect on 

reduction of the velocity of carrier fluid as well as SPM but on 

increase of the temperature of carrier fluid and SPM.   

 

INTRODUCTION 

There have been several investigations of 

Couette flow of dusty fluid. Saffman [1] has formulated the 

basic equations for the flow of dusty fluid and has presented the 

modified form of Navier-Stokes equations for the fluid and the 

particle phases. Michael and Miller [2] have studied the flow 

produced by the motion of an infinite plane in a steady dusty 

gas occupying the semi-infinite space above it. Later, Baral [3] 

has discussed the plane parallel flow of conducting dusty gas. 

Jana and Datta [4] have studied Couette flow and heat 

transfer in a rotating system and have found closed form 

solutions to study heat transfer characteristics. Nag et 

al. [5] have studied the Couette flow of a dusty gas 

between two parallel infinite plates for impulsive start 

as well as for uniformly accelerated start of one of the 

plates and have found the solution of the problem with 

the help of Laplace transform technique.  Mitra and 

Bhattacharyya [6] have studied the unsteady hydromagnetic 

laminar flow of a conducting dusty fluid between two parallel 

plates started impulsively from rest. Datta and Mishra [7] 

have studied unsteady Couette flow and heat transfer of 

a dusty fluid filling the gap between two infinite parallel 

plates kept at arbitrary temperature and found the 

solution to be valid for any time by using Laplace 

transform followed by its Numerical Inversion. Datta 

and Mishra [8] have studied Couette flow of a dusty 

fluid in a rotating frame of reference for impulsive start 

as well as for uniformly accelerated start of one of the 

plates by using Laplace transform technique followed by 

Numerical inversion. Aboul-Hassan et al. [9] have studied 

the temperature distribution in a dusty  conducting fluid 

flowing through two parallel infinite plates due to the motion  

of one of  the plates. Panda et al. [10] have studied the 

unsteady Couette flow and heat transfer of a dusty fluid 

with the inclusion of volume fraction and Brownian 
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diffusion of SPM in the mathematical formulation. They 

have obtained the solution by using Crank-Nicholson 

finite implicit scheme. Attia [11] has studied the unsteady 

Couette flow and heat transfer of a dusty conducting fluid 

between two parallel plates with variable viscosity and electric 

conductivity. He has obtained the solution numerically 

using finite differences. Govindarajan et al. [12] have 

investigated the three dimensional couette flow of dusty 

viscous fluid with transpiration cooling by applying the 

transverse sinusoidal injection at the stationary plate and 

constant suction at the moving plate. Gireesha et al.[13] have 

studied the unsteady laminar flow of an electrically 

conducting viscous incompressible fluid with embedded 

non-conducting identical spherical particles bounded by 

two infinite flat plates under the influence of a uniform 

magnetic field and have obtained the solution of the 

problem with the help of Laplace transform technique. 

Attia [14] has studied the unsteady Couette flow and heat 

transfer of a dusty conducting fluid between two parallel plates 

with temperature dependent viscosity and thermal conductivity.  

The fluid is acted upon by an exponential decaying pressure 

gradient under an applied external uniform magnetic field. He 

has solved the coupled momentum and energy equations   

numerically using finite differences. Eguía et al [15] have 

investigated the effects of dependence on temperature of the  

viscosity and electric conductivity, Reynolds number and 

particle concentration on the unsteady MHD flow and heat 

transfer of a dusty, electrically conducting fluid between 

parallel plates in the presence of an external uniform magnetic 

field using the network simulation method (NSM).  

In most of the theoretical and experimental studies 

of the flow  of  dusty fluids between two infinite parallel 

plates, the volume fraction of suspended particles, the 

diffusion of particles through carrier fluid and also the 

effect of charged suspended particulate matter have been 

neglected.But consideration of finite volume fraction in 

flow analysis is well justified at high fluid density and 

at high particle mass fraction. The random motion of the 

SPM must be taken into account for all practical 

purposes. Again Loeb [16] and Soo [17] have described 

that a very slight charge on solid particles has a 

significant effect on concentration distribution in the 

flow of a gas-solid system. Contribution of charges on 

the solid particles to dynamics of a gas-solid suspension 

includes elementary relations of electrostatics and 

electrodynamics. 

In this study, the finite volume fraction, Brownian 

diffusion and electrification of SPM are considered in a 

non-ionized incompressible fluid to show their effects 

on the unsteady flow and heat transfer between two 

infinite parallel plates due to the motion of one of them.  

NOMENCLATURE 
 

                      p                      Pressure of fluid phase 

h  Distance between two parallel plates  

 t  Time 

(x, y, z)  Space coordinates 

p   Density of the particles in the free stream 

(u, v, w)  Velocity components of fluid phase  

(up, vp, wp)  Velocity components of  

  particle phase 

(Fx, Fy, Fz)  Components of the force due to  

electrification of particles  

U  Free stream  velocity 

pV,V


 
 Velocity vectors of fluid & particle  

phases respectively 

T  Temperature of fluid phase 

 Tp  Temperature of particle phase 

T0, Th  Temperatures of the lower & upper  

plates respectively 

10 ff C,C   Skin friction coefficients at the 

Lower and upper plates respectively  

Re  Fluid phase Reynolds number 

(, p)  Non-dimensional temperature of  

Fluid and particle phases respectively 

Ec  Eckret number 

Pr  Prandtl number 

 (,p)   Densities of fluid and particle phases  

respectively 

(, p)  Coefficients of viscosities of fluid  

and particle phases 

 (,p)    Kinematic coefficient of viscosities of  

fluid and particle phases respectively 

Nu  Nusselt number 

                          K  Thermal conductivity 

E  Electric field intensity 

J  Current density 

B0  Constant field intensity (= e H0) 

H0  Constant field strength 

 

eF


 
 Force due to electrification of  

charged SPM 

M  Magnetic number  

   Concentration parameter (p/) 

U  Free stream  velocity 

  Electrical conductivity of the medium 

J2/  Energy source due to magnetic field  

   Dimensionless co-ordinate 
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perpendicular to the plate 

e   Magnetic permeability 

   Diffusion parameter (p/) 

 s  Density of the material of  

  the particle 

   

   Volume fraction of the suspended  

particles 


w
  Skin friction 

  Ratio of specific heats (C s/Cp) 

  Velocity equilibration length  

B  Electromagnetic field intensity 

  Non-dimensional velocity 

Relaxation length 

 

FORMULATION OF THE PROBLEM & SOLUTION  

 

Consider the motion of a fluid with uniformly 

distributed electrified dust particles filling the gap 

between two infinite insulated parallel plates. At time t 

< 0 both the fluid and the plates are assumed to be at 

rest. At t = 0 the upper plate begins to move impulsively 

in its own plane with a velocity U, while lower plate, at 

a distance h apart remains fixed. The lower and upper 

plates are maintained at uniform temperature T0 and Th 

respectively. 

A Cartesian coordinate system has been chosen 

with x-axis along the lower plate and in the direction of 

motion, y-axis perpendicular to it and z-axis lying on the 

lower plate. It is assumed that the intensity B


 of the 

magnetic field of constant strength H0 is acting in the 

direction of y-axis and fixed relative to it.  Magnetic 

permeability e is constant throughout the field. The 

electric field E


 = 0 as there exist no applied or 

polarization voltage.  

In the present problem the components of 

E,B,V,V p


 are given by:  

       000000000 0 ,,E;,B,B;,,uV;,,uV pp 


 

The Lorentz force eF


 due to electrification of SPM has 

the components  0,0,2

0 pe uBF 


 

and the energy source due to the magnetic field  

22

0

2

puB
J





 

Now the governing equations of flow field for 

unsteady incompressible non-ionized fluid with charged 

SPM after using the non-dimensional variables are given 

by: 
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The initial and boundary conditions for this problem are:  















011,1

000,0

0100

tforatu

tforatu

tforinuu p







                       (6) 

Employing Crank-Nicholson finite implicit scheme, 

equations (1) to (5) are reduced to the following forms:  

ipipipi DCBA
n,in,in,i


 11111
                  (7) 

in,iin,iin,ii FuCuEuA   11111                      (8) 

ippipippi FuCuEuA
n,in,in,i


 11111
              (9) 

in,iin,iin,ii HCGA   11111                (10) 

   
DD

DRBB in,ip

n,ip


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
 1

; i = 0, N              (11) 
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Where, Ai = 1; Bi = 2 +

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As no slip condition is not satisfied by the 

particles, so the compatibility conditions at the plates 

are considered for p and up. 

Using the compatibility condition at lower and 

upper plates for p 
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we obtain for i = 0, 
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HEAT TRANSFER  

The heat transfer characteristic is expressed in 

terms of the Nusselt number, defined as  
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Where q
w0

 and q
w1

 represent the rates of  heat  transfer  

per  unit area at  the plates   y = 0   and y = h 

respectively and are given by 
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DISCUSSION OF RESULTS AND CONCLUSION  
 

From Tables 1 to 3 the following typical results 

have been observed. In frozen flow regime, which refers 

to small times, the heat is transferred from lower plate to 

fluid, fluid to upper plate and the Nusselt number 

remains positive indicating that the heat transfers f rom 

fluid to upper plate for all values of Pr Ec  < 2.In the 

equilibrium flow regime, which refers to large times, 

heat flows from upper plate to fluid, fluid to lower plate 

and the Nusselt number remains negative indicating that 

the heat transfers from upper plate to fluid for all values 

of Pr Ec  < 2. 

 

Table - 1          Pr = 0.72 ,  Ec = 0.05  (PrEc < 2)  

t 
0wq  

1wq  Nu 

0.0075 2.010 -24.645 26.655 

0.0175 2.018 -21.880 23.898 

0.0225 2.020 -19.070 21.090 

0.2525 -2.285 25.415 -27.735 

0.4325 -4.820 27.740 -32.560 

0.4775 -5.570 28.310 -33.880 

 

Table - 2          Pr = 0.72 ,  Ec = 2.77  (PrEc  2) 

t 
0wq  

1wq  Nu 

0.0075 2.595 -27.665 30.260 

0.0175 2.920 -20.985 23.905 

0.0225 3.050 -16.375 19.425 

0.2525 -3.215 13.500 -16.715 

0.4325 -5.120 15.715 -20.835 

0.4775 -6.460 17.440 -23.900 

 

 

 

Table - 3          Pr = 0.72, Ec = 4.16 (PrEc > 2) 

t 
0wq  

1wq  Nu 

0.0075 2.895 -29.870 32.765 

0.0175 3.380 -27.190 30.570 

0.0225 3.580 -15.000 18.580 

0.2525 -4.360 26.290 -30.650 

0.4325 -6.000 28.380 -34.380 

0.4775 -8.500 29.640 -38.140 

 

From Tables 4 to 8, it has been observed that the 

Nusselt number remains positive and increases with the 

increase of , , M and Re, but decreases with increase 

of  in the frozen flow regime. Further the Nusselt 

number remains negative and decreases with the 

increase of , M and Re, but increases with the increase 

of  and  in the equilibrium flow regime.  

 

Table – 4    Variation  of  Nusselt number  for  different values 

                    of    in frozen flow and equilibrium flow  regimes 

 

t  
0wq  

1wq  Nu 

0.0175 0.01 2.018 -21.865 23.883 

0.0175 0.02 2.019 -21.880 23.899 

0.0175 0.03 2.020 -21.887 23.907 

0.4775 0.01 -56.270 -29.740 -26.530 

0.4775 0.02 -58.740 -32.820 -25.920 

0.4775 0.03 -62.620 -38.840 -23.780 

 

Table – 5   Variation of  Nusselt number for different  values  

                  of    in frozen flow and  equilibrium flow regimes       

 

t  
0wq  

1wq  Nu 

0.0225 0.01 2.022 -19.07 21.092 

0.0225 0.02 2.019 -19.04 21.059 

0.0225 0.03 2.015 -19.01 21.025 

0.4775 0.01 -4.800 31.74 -36.540 

0.4775 0.02 -0.870 29.95 -30.820 

0.4775 0.03 2.585 27.56 -24.975 
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Table – 6   Variation  of  Nusselt number for  different values   

                   of M in  frozen flow and equilibrium flow regimes   

  

t M 
0wq  

1wq  Nu 

0.0225 1.0 2.021 -19.067 21.088 

0.0225 2.0 2.022 -19.068 21.090 

0.0225 3.0 2.025 -19.069 21.094 

0.4775 1.0 2.595 28.415 -25.820 

0.4775 2.0 -9.820 33.900 -43.720 

0.4775 3.0 -11.800 35.740 -47.540 

 

Table – 7   Variation of   Nusselt   number for different values  

                  of    in frozen flow and equilibrium flow  regimes 

 

t  
0wq  

1wq  Nu 

0.0175 0.01 2.020 -19.07 21.090 

0.0175 0.02 2.035 -19.27 21.305 

0.0175 0.03 2.050 -19.47 21.520 

0.4775 0.01 -4.800 23.87 -28.150 

0.4775 0.02 -8.800 24.13 -32.930 

0.4775 0.03 -9.000 25.27 -34.270 

 

Table – 8   Variation  of    Nusselt   number for different values    

                   of  Re in frozen flow and  equilibrium flow regimes  

 

t Re 
0wq  

1wq  Nu 

0.0225 6.0 2.022 -19.069 21.091 

0.0225 5.0 2.018 -19.028 21.046 

0.0225 4.0 2.014 -18.988 21.002 

0.4775 6.0 -5.270 29.610 -34.880 

0.4775 5.0 -4.860 27.790 -32.650 

0.4775 4.0 -3.520 25.380 -28.900 

 

From Tables 9 to 13, the following observations 

have been made in the frozen flow regime. The skin 

friction at the lower plate remains positive and decreases 

with the increase of  and Re, but increases with the 

increase of ,  and M. Similarly the skin friction at the 

upper plate remains negative and decreases with the 

increase of ,  and Re, but increases with the increase 

of  and M.  

 Again from Tables 9 to 13, the following 

observations have been made in the equilibrium flow 

regime. The skin friction at either of the plates is 

positive and increases with increase of . The skin 

friction at either of the plates remains positive and 

decreases at the lower plate, but increases at the upper 

plate with the increase of M. Skin friction increases at 

the lower plate, but decreases at the upper plate with the 

increase of Re and back flow occurs at the lower plate. 

The skin friction increases at the lower plate, but 

decreases at the upper plate with the increase of . Skin 

friction decreases at the lower plate, but increases at the 

upper plate with increase of .      

           
Table – 9 Variation  of  Skin friction  coefficients  at  different 

           values of   in frozen flow and equilibrium flow regimes 

 

t  
0f

C  
1f

C  

0.0175 0.01 0.000819 -0.0175276 

0.0175 0.02 0.000821 -0.0175315 

0.0175 0.03 0.000824 -0.0175321 

0.4775 0.01 0.000705 0.4513800 

0.4775 0.02 0.001530 1.2980000 

0.4775 0.03 0.223520 2.3840000 

 

Table – 10 Variation  of  Skin friction  coefficients  at different 

           values of   in frozen flow and equilibrium flow regimes 

 

t  
0f

C  
1f

C  

0.0225 0.01 0.000470 -0.018055 

0.0225 0.02 0.000495 -0.018045 

0.0225 0.03 0.000520 -0.018040 

0.4775 0.01 0.000705 0.451380 

0.4775 0.02 0.002580 0.013275 

0.4775 0.03 0.002820 0.010670 

 
Table – 11 Variation  of  Skin friction  coefficients  at different              

          values of M  in frozen flow and equilibrium flow regimes 

 

t M 
0f

C  
1f

C  

0.0225 1.0 0.0004701 -0.0180670 

0.0225 2.0 0.0004703 -0.0180603 

0.0225 3.0 0.0004705 -0.0180540 

0.4775 1.0 0.0028200 0.0105700 

0.4775 2.0 0.0020950 0.0709200 

0.4775 3.0 0.0007050 0.4513800 
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Table – 12 Variation  of  Skin friction  coefficients  at different              

           values of   in frozen flow and equilibrium flow regimes 

 

t  
0f

C  
1f

C  

0.0175 0.01 0.000470 -0.018055 

0.0175 0.02 0.000310 -0.018195 

0.0175 0.03 0.000160 -0.018330 

0.4775 0.01 -0.000705 0.451380 

0.4775 0.02 -0.004350 0.925650 

0.4775 0.03 -0.007980 1.351000 

 

Table – 13 Variation  of  Skin friction  coefficients  at different              

          values of Re in frozen flow and equilibrium flow regimes 

 

t Re 
0f

C  
1f

C  

0.0225 6.0 0.0004705 -0.018054 

0.0225 5.0 0.0005100 -0.018019 

0.0225 4.0 0.0054850 -0.017983 

0.4775 6.0 -0.0006350 0.448600 

0.4775 5.0 -0.0007050 0.451380 

0.4775 4.0 -0.0008200 0.453315 

 

The increase in magnetic number M is to 

decrease the magnitude of fluid as well as particle 

velocities (Figures 1 & 2), whereas the fluid and particle 

temperature increase (Figures 3 & 4) throughout the 

flow regime.  

        

        
 

Figure 1   Velocity profile u for the fluid phase at  

                 different values of M 

 

         

 

Figure 2   Velocity profile up for the particle phase at  

                 different values of M 

 

           
 

Figure 3   Temperature profile θ for the fluid phase at  

                 different values of M 

 

         
 

Figure 4   Temperature profile θp for the particle phase  

                 at different values of M 
 

The fluid and particle velocities become 

oscillatory for large values of diffusion parameter  
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(Figures 5 & 6). The fluid temperature increases with 

the increase of diffusion parameter  (Figure 7), but the 

particle temperature becomes oscillatory for large 

diffusion parameter  (Figure 8). 

 

     
 

Figure   5    Velocity profile u for the fluid phase at different  

                    values of ε 

 

        
 

Figure   6   Velocity profile up for the particle phase at  

                  different values of ε 

  

      
 

Figure   7   Temperature profile θ for the fluid phase at     

                    different values of ε 

 

       
Figure   8    Temperature profile θp for the particle phase at  

                     different values of ε 

 

The effect of concentration parameter  on fluid 

velocity is to decrease near the lower plate and to 

increase towards the upper plate (Figure 9). But the 

particle velocity decreases as concentration parameter  

increases (Figure 10). The temperature of both the fluid 

and particles increase with the increase of concentration 

  of particles (Figures 11 & 12).  

         
 

Figure   9    Velocity profile u for the fluid phase at different  

                     values of α 

 

         

 

Figure   10    Velocity profile up for the particle phase at  

                      different values of α 
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Figure   11   Temperature profile θ for the fluid phase at  

                     different values of α 

 

 
 

Figure   12   Temperature profile θp for the particle phase at  

                     different values of α 

 

The fluid velocity increases with increase of 

volume fraction  of the particles whereas the particle 

velocity shows a decreasing trend (Figures 13 & 14). 

The fluid and particle temperature decrease near the 

lower plate and increase towards the upper plate with 

increase of volume fraction  (Figures 15 & 16). 

 

 
Figure   13   Velocity profile u for the fluid phase at different  

                      values of  

 

 

 
Figure   14   Velocity profile up for the particle phase at  

                      different values of  

 

           
 

Figure   15   Temperature profile θ for the fluid phase at  

                      different values of  

 

         

Figure   16   Temperature profile θp for the particle phase at  

                      different values of  
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