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Abstract

In this paper, a linear hyperbolic system of balance laws with boundary disturbances in one
dimension is considered. An explicit candidate Input-to-State Stability (ISS)-Lyapunov
function in L2 —norm is considered and discretised to investigate conditions for ISS of the
discrete system as well. Finally, experimental results on test examples including the Saint-
Venant equations with boundary disturbances are presented. The numerical results

demonstrate the expected theoretical decay of the Lyapunov function.
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Introduction

We consider a k x k system described by the following linear hyperbolic system of balance

laws with variable coefficients
W (z,t)+ A(x)0: W(z,t) + II(z)W(z,t) =0, (z,t) € [0,]] x [0,+00), (1)

where W := W(z,t) : [0,1] x [0, +00) — R is a state vector,

A(z) = diag {A*(z), —A (z)}, with At (z) = diag{A\i(z) >0:i=1,...,m}and
—A (z) = diag{M\i(z) <0:i=m+1,...,k}, is a non-zero diagonal matrix and

II(z) € R*** is a non-zero matrix. Corresponding to the diagonal entries of A(z), the state
vector Wis specified by W = [W+ W', where W+ € R™ and W~ € RF ™.

The system (1) is subject to an initial condition set as
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W(z,0) = Wy(z), z € (0,1), (2)

for some function Wy : (0,1) — R* and linear feedback boundary conditions with
disturbances defined by

{W*{D,t)] _K[W+(£,t)

W (1, 1) = W‘[U,t)] + Mb(t), t € [0, +o00),

(3)

0
K+
and K+ € RE™>*™ Af ¢ R¥F is a non-zero constant diagonal matrix, and b € R¥isa

where K € R¥** is a constant matrix of the form K = [ Jﬁ;_ ] with K mmib-)

vector of disturbance functions. It is for such a system that the Input-to-State Stability (ISS)
will be discussed in this paper.

In science and engineering, many important physical phenomena, in particular flow of fluids
such as flow of shallow water, gas, traffic and electricity, have mathematical models that
describe the dynamic behaviour of the flow in terms of mathematical equations. These
mathematical models are mainly represented by hyperbolic systems of balance laws, e.g.
Saint-Venant equations, isentropic Euler equations, or Telegrapher’s equations. The solution
of linear hyperbolic systems of balance laws under an initial condition, boundary conditions
and initial-boundary compatibility conditions exist and are unique (see [5, 26]). Stabilisation
problems with boundary controls (also called boundary feedbacks or boundary damping) of
such systems have been an active research field as demonstrated by these papers, [4,

L? —norm and H?—norm, respectively, in the sense of exponential stability. For the most
part, a strict Lyapunov function has played a central role in the investigation of conditions for

stability.

Recently, the stabilisation of linear hyperbolic systems of balance laws with boundary
disturbance created another dimension in the field. In [24, 27, 29], an input-to-state stability
(ISS) which is an exponential stability in the presence of disturbances was introduced for

hyperbolic system of conservation laws and balance laws.

Our aim is to analyse a numerical feedback boundary stability of such systems with boundary
disturbance. This method has been presented in a few papers, for instance, [2, 3, 13, 15,16,17,
20]. In these studies, a discrete L? —Lyapunov function is constructed and used to investigate
conditions for exponential stability of discretised hyperbolic systems. Furthermore, the decay
of the discrete L2 —Lyapunov function has been shown and numerical computations have

been done to compare with analytical stability results.



In this paper, we extend our result [3] in the presence of boundary disturbances. For this
reason, we discretise the ISS-Lyapunov function to investigate conditions for ISS in the sense

of discrete ISS. Furthermore, the decay of ISS-Lyapunov functions is explicitly defined.

This paper is organised as follows: In Sect. 2, the problem is described. Basic definitions and
theoretical results are stated and presented in Sect. 2. In Sect. 3, the numerical methods and
discretisation are discussed and presented. Also the numerical results are discussed and
presented in Sect. 3. The discussion in Sect. 3 is applied to computational examples in Sect. 4.

Finally, conclusion and references are given at the end.
Preliminaries and Analytical Results

In this section, necessary definitions and theoretical results for the continuous problem will be
presented. Firstly, reference will be made to the existence of solutions. This will be followed by

a definition of a Lyapunov function and a stability proof in Theorem 1.

In this paper, the sets RF, R¥** and ]Hﬁx"‘ are the set of k—order real vectors, k—order real
matrices and k—order positive real matrices, respectively. In addition, the sets C? and C! are

the set of continuous and once continuously differentiable functions in RE, respectively. For a
[
given function f : [0,1] — R¥, L2 —norm is defined as || f|| ;2 = / |F(z)|*dz, where |-| is
0

the Euclidean norm in R*. Furthermore, L2(0, 1) is called the space of all measurable
functions f for which || f|| ;2 < oc.

In order to discuss ISS of steady-state, W = 0, of the system (1) with initial condition (2) and
boundary conditions (3), we make the following assumptions: For all z € [0, ], and
t € [0, +00), we assume that

At1.: The real diagonal matrix A is of class C'' ([0, I]).
A2.: The real matrix IT is of class C°(]0, I]).
A3.: The vector of boundary disturbances, b, is a class of C°([0, +00)).

Consider Assumptions A1—Ag, existence and uniqueness of a solution to the system (1) with
initial condition (2) and boundary conditions (3) were discussed in detail in [21]. This was
accompanied by the proof of existence and uniqueness. For brevity, such details will not be

presented in the current paper.



Below, we provide a definition of ISS stability:
Definition 1

(ISS) The steady-state W = 0 of the system (1) with the boundary conditions (3) is ISS in
L?—norm with respect to disturbance function b if there exist positive real constants n > 0,
¢ > 0,C; > 0and Cy > 0 such that, for every initial condition Wy(z) € L?((0,1); R¥), the
L2 —solution to the system (1) with initial condition (2) and boundary conditions (3) satisfies

9 E 9
W, E) 2o pmy < Cre m”Wﬂ”Lﬁ(iﬂJ];R"i‘

o %(1 + %) sup (|b(s)|2) , t € [0,+00).

n s(0,¢]
Remark 1

(1) The second term on the right hand side (RHS) of the inequality (4) estimates the
influence of the disturbance function b(f) on the solution of the system (1) with the
boundary conditions (3).

(2) A similar problem was considered in [27] for the case in which A and IT in Eq. (1) are

constants.

(3) In[27], it was pointed out that stabilisation in the L? norm does not necessarily
guarantee convergence of the maximum norm of W(-,t) over the domain [0, [] in space.

To guarantee such convergence, in [27], stability is considered in the H ! horm.

(4) In this paper, analysis will be made in the L2-norm.

Similar to Definition 1, we define an ISS-Lyapunov function as follows:
Definition 2

(L% —1SS-Lyapunov function) For any continuously differentiable positive definite diagonal
matrix P(z) = diag {p1(z),---,px(z)}, z € [0,1], an L2—function defined by

CW )= [ WP, € 0420, ®)

is said to be an ISS-Lyapunov function for the system (1) with the boundary conditions (3) if
there exist positive real constants 7 > 0, £ > 0 and » > 0 such that, for all functions
b(t) € C([0, +00)), for L2 —solutions of the system (1) satisfying the boundary conditions



(3), and for all t € [0, +00),

LD < e, 1) +v (1 + %) sup ([b(e)F). ©)

The following proposition presents preliminary results which will be used in the proof of the

main result of this section in Theorem 1:
Proposition 1

Let y and z be vectors in R¥. For any real constant £ > 0, any matrix A and any positive semi-
definite matrix B in R¥** the following holds:

(a) —QyTA{y — = —y Ay + 2z Az — (y — z]TA(y — 2, (7)
(b) j:2yTBz < §yTBy + %ZTBZ. (8)
Proof

The proof of the above statements is straightforward: a) Consider a quadratic form to obtain

the Eq. (7) as follows:

(y—2)"Aly —2) =y Ay + 2" Az — 2y Az,
= —yTAy + 2" Az — 2yTAz + 2yTAy,
——y Ay +2z"Az+2y" A(ly — 2).

b) The following inequality implies the inequality (8):

o= (o) » (o )

=ty By + %zTBz T 2y' Bz.
In Lemma 1 below, the boundedness of the Lyapunov function is established:

Lemmal

Assume P(z) = diag {p1(z),...,pr(z)} is a positive definite diagonal matrix for all
z € [0,1]. Let



T mm{ min (p1(z)), .. ., min (Pk(mn}ﬂ snd

O<z<l "<zl
= max { max(p(2). ... pax(ou(2) |,

where p;(z), i = 1,...,kare diagonal entries of P(x) . Then, the inequality

i I
2 ; 2
gfé Widz < L(W(-,1)) gﬁ.ﬁ W2da.

C)
holds.
Proof
Since the diagonal matrix P(z) = diag {p1(), . .., pr(z)} is positive definite for all
z € [0,1], for every W, the following holds:
(WP < W' P(z)W < BW]*, VW € RF, z € [0,1], (10)

where

¢ min { i (1 (o)) .., guin () | and

— max{ max(pn (&), ..., pax(ou(a) |

O<z<l P <zl

Thus, Inequality (9) is obtained.
Further, a version of the well known Gronwall’s Lemma is stated as follows:
Lemma 2

(Gronwall’s Lemma) Let y € C1([0,+00)),z € R,a € R, and

y'(t) < —ay(t) +2z, y0)=c>0, t>0.

Then

i —at E
y(t) < (c— E)e +2, >0
Proof

The proof of a general case of Gronwall’s Lemma is given in Lemma 1.1.1 in [23]. Therein the

coefficients a and z are functions of t. We adopt the proof by considering constants a and z. [



We now state the stability result as follows
Theorem 1

(Stability) Assume the system (1) with the boundary conditions (3) satisfies Assumptions A1—
A3. Let £ be any positive real number and P(z) = diag{P* (z), P~ (z)}, where
P*(z) = diag{pi(),. . .,pm(2)} and P~ (z) = diog{pms1(z), - ., pi(z)} bea

continuously differentiable positive definite diagonal matrix. Assume that the matrix
—A(z)P'(z) — A'(z)P(z) + O (z)P(z) + P(z)II(z), (12)

is positive definite for all € [0, [] and the matrix

{A*'(E)P‘f(:i) 0 ] e [A+-(0)P+(o) 0

0 A= (0)P~(0) 0 A ()P () K,

is positive semi-definite. Moreover, let v be the largest eigenvalue of the matrix

A*(0)P*(0) 0
M [ 0 A-(e)P-(z)] M-

Then the L2 —function defined by (5) is an ISS-Lyapunov function for the system (1) with
boundary conditions (3) and parameters £, v. Moreover, the steady-state W(z,t) = 0 of the
system (1) with boundary conditions (3) is ISS in L2 —norm with respect to the disturbance

function b.

Remark 2

Several approaches for the construction of Lyapunov functions for hyperbolic systems have
been considered (see [4, 7, 10, 12, 14]). In [6], explicit Lyapunov functions were constructed to
study the exponential stability for a class of physical 2 x 2 hyperbolic systems with
nonuniform steady states. In this paper, we consider a general quadratic Lyapunov function

described in [4, 28].

At this point, we proceed with the proof of Theorem 1:
Proof

We consider the L? —function (5) as a candidate ISS-Lyapunov function. By computing a time
derivative of the candidate ISS-Lyapunov function along C'! solutions as in [5] (see Section

5.1) and [7], we obtain



dL(W(-,t)) I
LECD) __ 1y a@ypiaw],
f W (—A(2)P'(z) — N'(z)P(z)

+I0(z) " P(z) + H(:r:)) Wdz. (13)
At this stage the boundary conditions (3) are inserted to obtain:

— [WTA(2)P(2)W],
Tra+ + +
= e (]TA—(O)?P—w)] e
(g L
|+ 00
o 1] e <J o)
W (1, 1) +(0)P+(0) W (1, t)
i W(l,t) ALJFO([]')JF‘JF(J)'L I UI o
+[ ] [ P (] [ ( )]
”(K[w-(o,t)D % A-@P- (E)]Mb(t)’

A*+(0)P*(0) 0
0 A ()P (1)

_|_

X

+b(t) M" Mb(t).
| |

We use Proposition 1(b) on the RHS of Eq. (14) to obtain:

- [WTA(x)P(a:)W]‘
S [
L G RN A
N (1 * E) R [M(O)f O A‘(I)OP‘(E)] Mo
(WA’ ([ATOP@) 0
- [W-(o,t) ([ 0 A‘(O)P‘(O)]

S e [A+(0)f+(0) A—(x)op—(t)] K) [K((;?J

1 ot | A(RLTED) 0
+(1+ g).ﬁ(t) M { ; A 0p- a)]Mb(t). 5

Therefore, inserting Eq. (15) into Eq. (13) gives:



dC(W(-.1) _

I
—[ WT(—AI.UP'(.U —A(@Px) +Nx) Px) + Pc.t)n(.u)
dt 0

+ ik - +
Wdx — u'_cl.l) ( ATPT() - 0 )
W0, 1) g 0 AT ()P (O)

+ + r+
_”+E)K7[A @P*©0) 0 ]x)[“, u.n]

0 AP () W (0,1)
f B ¥ 7 p ATPT(0) 0
+('+;)"‘” M [ 0 A-(P-@) | MPO.

Applying the assumption that v is the largest eigenvalue of the matrix

A*(0)P+(0) 0
= [ 0 A (J)P-(zJ i

using the assumption in Theorem 1 for the matrix (12), Inequality (16) is reduced to

dC(W(-.1)) g ' ,
% < —f w' (—Au)P (x) — (@) P(x) + (x)" P(x) + P(x)ﬂ(.n)
0

o ;
Wdx + v(l + ?) B(t)2,

' R B ;
<— [ WIQ)Wdx +v(1+— b(s)?). (17
=, mesas e ) et |
where Q(z) = —A(z)P'(z) — A'(z)P(z) + l(z) " P(z) + P(x)II(z). Furthermore, by the
assumption in Theorem 1 for the matrix (11), i.e. positive definiteness of Q(x) , there exist
n > 0 such that W' Q(z)W > nW ' P(z)W. Thus, the inequality (18) below is obtained:
dc(wi(-,t)) 1 2
=g S W)+ (14 ¢ ) sup (b))

se(0,t]

(18)

<l

with 7 = min { ngigs IS [ Iﬂlin Ek(a‘:)}, where E;(z), i = 1,...,k, are eigenvalues

of the matrix Q(z)P ! (z).

For the purpose of completing the proof, the Gronwall’s Lemma 2 is applied to obtain:

LW(,t) <e™ (ﬁ(W(-,on = (1 - %) e (|b(s)|‘*‘))

v 1 2
+2(1g) (o),

< e ™ L(W(-,0))+ = (1 o 1) sup (|b(s)|2) L t>0.
n €/ <oy (19)
Now insert the inequality in (9) into inequality (19), to obtain



AW )22 pmey
12

= 1
< pe ,#||W0||,2:2{[01g};m*} 2 " (1 + E) SF‘!BPt] (Ib(3)|2) , 12 0. (20)

Therefore, from the inequality (20), the constant coefficients in the condition for exponential
stability (4) can be assigned to C; = 8/ and Cs = v/(, hence Theorem 1 is proved. [

Remark 3

ISS of a k x k uniform linear hyperbolic system of balance laws which can be written as
W + Ao W + 1IW = 0, (21)

where A, M € R¥** are non-zero diagonal matrices, and IT, K € R*** are non-zero matrices

with the boundary conditions (3) was analysed in [27].

Having established the stability of the continuous model, Eq. (1), we now move on to analyse

the stability of the discretised form of the same equation in the next section.

Numerical Discretisation and Stability for a Balance Law with Boundary
Disturbance

The discretisation of the balance law in Eq. (1) will be discussed first. This will be followed by
the discrete presentation of the Lyapunov function and the stability analysis of the discrete
system. In order to solve the linear hyperbolic system of balance laws (1) numerically, a first-
order Finite Volume Method (FVM) is considered. Thus, the upwind scheme, is applied to
discretise space together with Euler schemes for temporal discretisation. The details of the use
of the approach can be found in [25]. Specifically, we fix T' > 0 and discretise the domain with
(z,t) € [0,1] x [0, T] by taking uniform space and time step sizes as Az = [/J and

At =T/N,where J, N > 0, respectively. The values .J and N denote the number of cells in

space and time, respectively. Denote grid points by

T 1 = 4AB, §=0,....d, ETr=u0ll n=20,...
2

Further, denote left and right boundary pointsby® 1 = O0andx; 1 = [, respectively. In
2 2

addition, cell centres are denoted by z; = (j + %) Az, j=0,...,J — 1 and the left ghost-
point (outside the domain) is denoted = ; and the right ghost-point is denoted z ;.

A first order numerical scheme as described in [25] is considered. The approximate cell

average of the state variable, W, over the jth cell at time t" (n = 0,..., N) is defined by

10



wr !

il o )
g =Ef LWL =0, d =0

. 1

iy (22)

= (23)
Therefore, the solution W(z;,t") is approximated by W’;‘. Hence, forn =0,...,N — 1,
j=20,...,J — 1, the non-uniform system (1) is discretised as

wHit] w+“? Atfar, o W — Wi, - w+:
wEH T Iwl Ax] 0 -A; we, —wr| T vl
] J g it i+1 i J (24)

with the CFL condition is given by

At
2 max (max (), -..o max {wl}) <1

0<j<-1 (25)
Consequently, the initial conditions (2) and the boundary conditions (3) are discretised as
o _. ; - -

I’I’} _WD,_‘,"J J_D':"':J ]-r (26)
and

W+ﬂ+1 W+'ﬂ.+1

| = 1 [emet, im0, N,
Wit W (27)

respectively. The boundary conditions W+"; and W~} are applied at ghost-points z_; and

x y, respectively

The aim of this paper is to investigate conditions for numerical boundary feedback
stabilisation in the sense of the following definitions of discrete ISS and discrete ISS-Lyapunov
function.

Definition 3

(Discrete ISS) The steady-state W’j"' =0,j=0,...,J -1, n=0,...,N — 1ofthe
discretised system (24) with the discretised boundary conditions (27) is discrete ISS in
L?—norm with respect to discrete disturbance function b, n = 1,..., N if there exist
positive real constants > 0, £ > 0, C; > 0and Cs > 0 such that, for every initial condition
W’J.U € Lﬂ((a:j_% 1 i1 );R¥), j=0,...,J — 1, the L2 —solution of the discretised system
(24) with initial condition (26) and boundary conditions (27) satisfies
A.r:z:;m-; Mo Cle’""Ax:Z:; wﬂh% (l - El‘)a?,’g., (121?), n=1,...,N.

(28)

11



Definition 4

(A discrete L2 —ISS-Lyapunov function) For any positive definite diagonal matrix
P; = diag{p1;,..-,Px;},7=0,...,J — 1, adiscrete L?—function defined by
£t = &mEWj“TPjo“, n=0,...,N,

=0 (29)
is said to be a discrete ISS-Lyapunov function for the discretised system (24) with the
discretised boundary conditions (27) if there exist positive real constants i > 0, £ > 0 and
v > 0 such that, for all discrete functions b*, n = 1,..., N, for L? —solutions of the
discretised system (24) satisfying the discretised boundary conditions (27), and for all

n=0,...,N—1,

£n+1 o ‘cﬂ 1 3
— =g = ol
At = +”’( +g)oi‘i£n(' ") (30)

Before stating the main theorem of this section, we present two preliminary results:

Lemma 3

Assume P; = diag {p1,...,Px;} is positive definite diagonal matrix forall j = 0,...,J — L
Let

= min min py;,..., min pg. > and

¢ {Dg‘g—lp A g e 3'}
=max{ max pi;,..., INax Pg;

p {ngs-f—lp 31 pgpera P ‘"}’

where py j, ..., px; are diagonal entries of the diagonal matrix P;, j =0,...,J — 1. Then, the
following inequality holds:

J-1 J-1
CAz) WP < L < pAz | [Wr.
i—0 =0

Proof

Since the diagonal matrix P; = diag {pi;,..-,Pk;}, 5 =0,...,J — 1 ispositive definite, for
all W’;.“, n=0,...,N— 1, wehave

nl2 1 n n|2
(Wrl < WP BWP < BWE, j=0,...,0 — 1, (32)

Where

12



§=mjn{ min pij,... minlp;:j}and

0<j<] -1 T0<j<d -
=max<{ max pPj.,..., Max Pg.¢.
B { ogng—lp 1’ ’ngg.}—lp 3}

Then, the inequality (32) implies the inequality (31). L
Now we present an equivalent Gronwall’s Lemma for the discrete case:
Lemma 4

Let a > Dand z € R. Suppose for discrete functions y™, n =0,...,N — 1,

1 n
yn+ —y ” B
<—ay+z Y =0
Then
n+l o i o n+1l i _ -
Y g(c a)(l alt) +a’ =05 N =1
for 0 < aAt < 1. (34)
Proof

By recursively applying the inequality (33), we obtain
y™ < (1 —aAt)*! +2AtY (1—aAt), n=0,...,N -1
=0 (35)

Then, the inequality (35) implies the inequality (34) for sufficiently small At,
0<1l—aAt<1.00

In the sense of the definitions of discrete ISS and discrete L? —ISS-Lyapunov function, we

state the numerical stability result as follows:
Theorem 2

(Stability) Let T' > 0 be fixed and the CFL condition (25) hold. Let £ be any positive real
number and P; = diag {P}‘", P }» where Pj"' = diag {p1,.-.,Pm;} and

P = diag {Pmi1j5---sPrj}> 3 =0,...,J — 1be positive definite diagonal matrix. Assume
that the matrix

13



pt.pt
o= 1 j
Aj ( Az ) 0
. Py P,
0 o 'A'j+1 ( Az )
Af-AY, -
( j ﬂzj ) 'F:'r:"'l 0

Aja 4y —
0 - ( jﬁz : ) l:t‘if—]

=+ ]:[jTPj + .F}Hj,
(36)

is positive definite forall j = 0,...,J — 1, and the matrix

AL . Pr 0 /et L 0
[J—IJ ]_(1+£)KT[ -1-0 ]K’

0 AP 0 AzPr, an
with P y = P(z_;) and Py = P(z) is positive semi-definite. Moreover, let & be the largest

eigenvalue of the matrix

+ p+
M’ [A‘lpﬁ ’ ] M.
0 AP,

Then the discrete L2 —function defined by (29) is a discrete ISS-Lyapunov function for the
discretised system (24) with discretised boundary conditions (27) and parameters &, v.
Moreover, the steady-state 1 =0,j=0,..., J—1,n=0,...,N — 1 of the discretised
system (24) with discretised boundary conditions (27) is discrete ISS in L2 —norm with
respect to discrete disturbance function ", n =1,...,N.

Proof

By using the discrete L?—function (29) and the discretised system (24), the time derivative of
the candidate ISS-Lyapunov function (5) is approximated as follows: foralln =0,..., N — 1,

Eufl s
At

= 4 ¥ 1
SE (] 173 (7 2]0)
- r—a+l -~ —ntl | T r - - — .
Ar o \LV7; ol ) | L "=l L9 LV 5l

Ax (‘[wwl]T [
- J
- a1

At =0 L

-]
O\.+
\.~°|O
—
Prn——
= =
| -+
LT | =
+ =+
| SRR
| pm— |
==
| =
S e, D
L—]
]

| e
Oux
~_|O
| IR
~
= =
| -+
- AN A
T &
—
——

14



7y — || a1 |~ | w2 -lw=l]
At j=0 W j 0 Pj W j W j 0 P} W j
o 2 [“,+;+1 N W*';:|T [Pf 0 ] [“,.+;+1:|
— | sl - pnt1
At =0 W y o= W j 0 Pj W j
-1 e L + +r+l 41
At &~ |W—; o0 P ||w it —w$
At this stage Eq. (24) will be inserted to give:

£ﬂ+] . ﬁl’l
At

1 [A}_l 0 ] [W+;.‘ — W+;.‘_1] !
T T i _n _n o n+l
K E A B kg i~ W B0 W
. wtn 0 P ||w-ntt
+ 11, : 3 1

w-"

7

L [AY, 0 ([wrrowen,
J-1 'W+;}:|T !JF:: 0 ] Ar 0 — A __::+1 =

_A J+l J
mz_: w-" 0 P- wn ’
=0 L J b J
+1I; n
W=
n n T
(ilﬂf-l 0 ”W%—Wn_l]
| L ] (W Rl | [ 8w
= wtn 0 P w-"
F +]-_-[J J J J |
\ " w

7

1 [A;_l 0 ] [W+;—W+;‘_1]\

nl Ax e = =2

e 1 [W+? B Az | 0 —Aj, i W
e | 0 P W
i 1 e

w=; /

] ki
A+ 0 W+n W+n T
R ! i~ o
L1l Az| 0 —A, =W [P; u]

+ AtAz it
; Wk L
+1I;

J
—n

i
1 [A;_l 0 ] lW+;‘—W+}‘_1

Az| 0 A [Wa-w;

Wt -
+ I0;

J

*

At this stage Eq. (24) is substituted again and Proposition 1 is applied to obtain the following:

15



j=0
J-1

4 i

i+ J

—Ax Y WrT (T P; + P;M;) Wy

J=0
J-1

.
1 [ w+it —w
+AAx Y (=0 i T
3 pAr A
J-1 nqT + + "
E—Z[:tl] [Aj—n”j . ][‘”]
j=o bt J
J-1

2 9T A+ pt
+ [W‘_“-_,] Aj_,Pj -0 ) [
W= 0 Ai+lpi

0 AjaP;

W

J

Pf 0
0 P;

0

|t

S - W [Ar
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Foralln=0,....,N—-1, j=0,...,J — 1, we have

= 22 I
o 2
J—-1 n + p+
_ [“”i AjFia 0 ]
7 LW ) 0 A FL]
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0

‘We substitute (39) into (38) to obtain:
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J
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The boundary conditions (27), the inequality (8) in Proposition 1 and the assumption in

N-L

(40)

Theorem 2 are used to simplify the boundary term in (40) as follows:

Wi T[ASLPF 0 w5,
W 0 AP W
P [At,Po* 0 ] [w+‘i ]
0 AP LW

= — wﬂ;' F Aj_le 0 W+7;1
"o 0 AgPLJ[L W
Trat pt : "
AT P 0 wt
1 -170 J-1
]”"") [ 0 A;P;-I](K[ L ]“W)

Aj,Pf 0 W,
0o Ajpo || w

W0 K W+;;l
o a;p )% ws
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ALPS 0 TyYT
) [ 5° Aspy, |(07)+0TH
+

i

-
T [ S L]
- W Ay P, W=

W] er[AL AT 0 Wty
a2 I RV L
i §

wt_ 1" . [AL,PF 0 wtt
1| -170 K J-1
”[ o 0 AP, L

tpr o ] AT pF 0
-170 R Mbn oy bnTMT [ -170 il
0 AJ Pl—l 0 AJ Pl—l

A, Pf 0 _] [w+;;,]
0 A P WS
w1 r[AT A0 WS,
SR I R L

1 At Pt 0
+(1+- b‘TMT[ -1 " ]Mb“,
( 5) 0 AP,

|

I

|
=
= 3
Iwa

ea
—
=]
rm—

5v(|+£l)|b"|2.n=0.....N—I. (41)
where v is the largest eigenvalue of the matrix
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AT Pt 0
7 [ < L
0 A; Py (42)
Inserting (41) into (40), foralln = 0,..., N — 1, we have
u*‘ c u+“ " [ALPf -Afe 0 wt"
. 1" j+
IZ_;)[ ] [ 0 Aj Py —AG P l][“‘f]
J-1 1
—Ax Y wiT(n] Py + pim;) WE +;(1+ )b"l'
j=0 §
J-1 a+l n
wHt _ws
+A'MZ(A1|:t ”,_ ]
[Pf 0](1 [ Wt u+"])
0 p}— Al n+l _“-IJI
J-1 1
=—A.\'2“"TH}“"+I( {) "2 4 O(AD),
- (43)
whereforj=0,...,J — 1,
i s P
Al ( == ) 0
0, — —
0 e e
i 25 ! Az
[/ AY_AF,
( Jﬂzj )P_’:I_-l 0
a . .
0 - (—’m )Pj 1
=
+ Pl T By (44)

By the assumption in Theorem 2 for ©;, j = 0,...,J — 1, there exist a positive real number
n=> Osuchthatforeveryﬁfj“, n=0,...,.N—1, j=0,...,J — 1, wehave
W}“T E-)jo“ = nWj“TPjo?‘. Thus, (43) is approximated as

F R i 1 5
<_ T = 5 p— P —
= <L +u(1+£)ﬂggn(|b|)+O(At),n 0,...,N—1,

with

=min{ min F;...., min FE
" {o-c i<J-1 153 Yogi<d1 kit

where Fy ..., Bg;

; are eigenvalues of Gij_l,j S § I 2 R

From Lemma 4 and by using (1 — nﬂt)“ﬂ < g MDAt < o™ (e have
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Ll < (z“ — % (1 4 1) sup (|b’|2)) (1 —nAt)™H

£ D<s<n

+5 g e (1)

+ 1
<e™ £"+E(1+_) sup ([b*f*), n=0,...,N—1.
n ¢ ( ) (46)

0<s<n

Thus, forall j=0,...,J —1,andn =0,..., N — 1, by using (31) and (46), we have

i 12 m\u—i i 012 14 1 ( 2)
CAz Y [WIPH" <Be™ Az ) WP +— (1 s —) sup ([b%]7).
=0 J =0 ! n €] 0<s<n (47)

Therefore, to show that (47) implies the condition for the discrete ISS (28), we let C; = /¢
and Cy = v/(. Hence, the proof of Theorem 2 is completed. [

Remark 4

Similar to the discrete system (24), for uniform steady-state case, the system (21) is discretised

as follows
et wt'] At[A+t o J[wr—wt, (W’
] — p ‘ - '
L‘ “.”} [“*] Ax [” A= W - W A w
; - ] ] = (48)

The proof of Theorem 2 applies to the discretised system (48) as a special case. Here we
have provided a numerical stability result for a more general case and, as a side-effect, for
the particular case in Eq. (21).

In this section an analysis of the discrete Lyapunov function which results from a
numerical discretisation of such an analytical Lyapunov function has been discussed. An
Euler scheme was applied for temporal discretisation of a system. An upwind scheme
was also applied for the spatial discretisation. The 1SS-stability for such discretised
systems was proved. In the next section, the results established here are applied to a
linear example, the Saint-Venant model and the isothermal Euler model. This section
endeavors to also demonstrate how values of the parameters in the Lyapunov function
are delimited.

Computational Applications and Results

The results of the previous section will now be tested computationally on specific
examples. We will start by presenting an example of a linear hyperbolic system of balance
laws with constant coefficients in Sect. 4.1. The second example will be a Saint-Venant
system of equations which will be discussed in Sect. 4.2. In Sect. 4.3, the isothermal Euler
equations will be discussed as a third example. The derivation of the equilibrium and the
choice of requisite parameters for such models will be discussed in detail.
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Linear Hyperbolic 2x2 Systems of Balance Laws with Uniform Coefficients and
Boundary Disturbances

To show the numerical analysis working, we analyse a 2x2 uniform linear system. For
this reason, we consider the system (1) with uniform matrix coefficients of the form

A:[l 0]‘ I‘={D'3 —0.1],
0 -1 —0.1 0.3
an initial condition of the form

{wl(w,ﬂ)] _ [_0'5] , T € (0,1),

ws(z,0) 0.5 (49)

boundary conditions (3) with m; = ms = 0.5 and the rate of the boundary disturbance
functions taken as by (t) = —b2(t) = 0.01sin(nt), t > 0. Then, the discretisation of the
system with initial condition and boundary conditions are given by (24) - (27).

Let the CFL condition, )‘.% < 1, where A = max{A;, |A2|} = 1 holds for a fixed T" > 0.
Define a positive definite discrete diagonal matrix by
P; := diag{p; exp(—pz;), p2 exp(uz;)}, p1 > 0,p2 > 0,0 >0, j=0,...,J — 1. Based

on the assumptions in Theorem 2, the parameters 1, v, K12 and kK9; can be chosen by

[A20|p2 4 AP

9 9 7

N O v SO .. B B :
2= (14 &Aapip’ 2= (14 8)Aaglpas

forall £ > 0,

:= min min 1., min ;
1 {n«:j{J 1M 0 38T 1“21}’

where m; ; and 1 ; are eigenvalues of G)ij_I, j=0,...,J —1(8;isgivenin (44)), and

Hence, we compute a comparison of the discrete ISS-Lyapunov function and its upper bound

for CFL = 0.75 and CFL = 0.99 in Tables 1 and 2, respectively.
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Table1 The comparison of the upper bound of Lyapunov function with discrete Lyapanov function

! 155 — Ll Iep — L% " n v

100 0.13921 031661 0575 033709 0.11075
200 0.13187 030186 0575 033729 0.11091
400 0.12686 029161 0575 03374 0.11099
800 0.12338 028447 0.575 033745 0.11103
1600 0.12095 027948 0.575 033747 0.11105

Under CAL = 075, Ax = &, Af = AxCAL.¢§ = 1,T = 12,xpp = a1 =075, m; = | — 2 and
my =1-xy

Table2 The comparison of the upper bound of Lyapunov function with discrete Lyapanov function

J 155 — L ipe ICEp — £l 2 p n v

100 0.11984 024123 0575 033709 0.11075
200 0.11849 0.23885 0575 03379 0.11001
400 0.11751 023712 0.575 03374 0.11099
800 0.11683 023588 0.575 033745 011103
1600 0.11634 023501 0.575 033747 011105
Under CAL. = 0.99, Ax = -;- Al=AxCAL.;§ =1.T=12, e = =075,m} = | — 2 and
my=1-x

From Tables 1 and 2 above, it can be observed that both L* and L? norms demonstrate

general decay.
Saint-Venant Equations

We consider flow of water in the presence of flow rate measurements error at the boundaries.
One of the causes of disturbances of a flow of water along an open channel can be a
measurement error at the ends of the channel. Thus, we study a flow of water along a
prismatic channel with a rectangular cross-section, a length of [ units and constant bottom
slope. We consider boundary measurements in this flow. The model of the flow is described by
Saint-Venant equations (see [1, 7]) of the form

8H + 8, (HV) =0,

2

&V +a, (l‘l«"2 +_qH) =t (OfV— —gS;,) =0, z€[0,l], t € [0,400),
2 H (50)

where H and V denote the depth and velocity of the water, respectively. Other constants, g,
Cy, and S}, represent the gravitational constant, a friction parameter and the constant bottom

slope of the channel, respectively.

We set an initial condition
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H(z,0) = Hy(z), V(z,0)=VW(z), =z e (0,l), (51)

and boundary conditions with disturbances

V(Ort) = kﬂH(Or t) AR bl (t)7 V(Ia t) = k;H(I’T t) + b2(t)1 te [01 CX)), ( 52)
where kg, k; are boundary control parameters, and b,, by are disturbance functions.

We assume H(z,t) > 0, V(z,t) > Oforallz € [0,I] and ¢ € [0, +00). A non-uniform
steady-state solution, H*(z), V *(z) to the system (50) satisfies
H(z)V'(z) = Q7,
d (V"E(w) . ) ( V*3(2) )
T +gH (:E) B Cf* —gS% | =0, =ze€ [0, E]
d 2 *
x H*(z) (53)

Clearly Q* > 0 and the system of differential Eq. (53) can be written in the following form
dH*  CsQ” — gSH" ()

dI - Qtz —gH"?'(R?) | Tec [U,I],
A Vx2( ) CfV‘S(T) g
L 3'-’( S Qb)’ z € [0,1].
dz 9Q" — V() (54)

For sub-critical flow (i.e. V2 < gH), the system (50) is linearized as follows

0 Z(z,t) + A(z)d. Z(z,t) + (% ok B(m}) Z(z,t) =0,

(55)
where (z,t) € [0,1] x [0,+00), Z(z,t) =[H — H*,V —V*]T,
Vx Ht 0 0
Alz) = [ ,] , and B(z)= CVE(z) 20 V‘(z)] :
g v |:_ FEal U
Define the Riemann coordinates by
iy i) = B2 Wi T(5) = ’ ifoh (’
Vra * (56)

where L is a matrix of left eigenvectors of A i.e.
L(z)A(z)L '(z) = Al=),
with

Alz) = [).1(:::) 0 ]= [v*(m)+0 gH*(x) 0

0 aa) V*(2) — v/gH(2)
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and

o[V

2

The system (55), the initial condition (51) and the boundary conditions (52) are expressed as
(1), (2) and (3), respectively, with

T) = T E z) | — Alz ﬁ e

1) - L) (G2 + B)) ~ A@) G | @), -
toyf 521 hy/ 551

f(:c) — wl(:g: {]), g(x) = wg(m,ﬂ'), K19 1= o TTw #£ 1, Ky 1= o B #£1,
Ltkgy [ —— 14k ——

g

my :=1— kKppand me := 1 — Ko;.

For a numerical analysis and computations, we take an example from [28]. Thus, a non-

uniform steady-state solution (H*(z), V*(z)) can be obtained from the differential Eq. (54)

=2
with H*(0) = 2m, V*(0) = 0.5m/s, Cy = 0.002, g = 9.81m/s? and 5, = *2 w(]m

an initial condition (H(z,0), V(z,0)) = (2.5,4sin(wz)) for z € [0, 1]. The rate of the
boundary disturbance functions taken as by (t) = —ba(t) = 0.01sin(nt), ¢ > 0.

. We set

In Fig. 1, it can be observed that as u increases the rate of decay of the ISS-Lyapunov function
in the presence of boundary disturbance increases. Hence, in the sense of the definition of
discrete ISS, the steady-state W'j“ =0,j=0,...,J -1, n=0,...,N — 1 of the
discretised system with the discretised boundary conditions is discrete ISS in L? —norm with
respect to discrete disturbance function ", n=1,...,N.
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Fig. 1

Log-scale of the decay of Lyapunov function for Saint-Venant equations for different values of p. The
choice of parameters are py = 1,p2 = 1, £ = 1, ky2 = 0.6, k21 = 0.8 exp(—p), mq = 1 — Kq2,
ma=1—knwithl=1,J =100and T = 5 under CFL = 0.75

Isothermal Euler Equations

Similar to the flow of water, a measurement error is a cause of disturbances of a flow of gas
through a pipeline. Thus, we study a flow of ideal gas in pipelines with a measurement error.
We denote d as a diameter of the pipe, f, as a friction factor and a as the speed of sound. The

model of the flow is described by isothermal Euler equations (see [15]) of the form

Op+ 09 =0,

2
dq + 6, (q? —|—a2p) + fgLMl =0, z €[0,], t € [0,400),

20p (58)
where p = p(z,t) is the density of the gas and g = g(x, t) is the mass flux in the pipe.
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Fig. 2

Log-scale of the decay of Lyapunov function for isothermal Euler equations for different values of p.
The choice of parametersarep; — 1,ps = 1,£ = 1, k13 — 0.6, K9y — 0.7 exp(—pu), my = 1 — Kya,
andmg =1 — kg withl =1, J = 100 and T' = 10 under CFL = 0.75

We set an initial condition

p(z,0) = po(z), 4q(2,0) = qo(x), =< (0,0), (59)
and boundary conditions with disturbances

q(0,2) = kop(0,t) + b1 (t), q(l,£) = kip(L,£) + ba(t), ¢ € [0,00), (60)
where kg, k; are parameters and by, by are disturbance functions.

We assume the flow of the gas is from z = 0 to & = [, i.e., ¢ > 0. A non-uniform steady-state

solution to the system (58) satisfies
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fart

q° = const., and (2(; =— Mp(z)ﬂ , € €[0,1].
2 4
(“ p*ﬂ(z)) (61)

For subsonic flow (i.e. % < a), the system (58) is linearised as (55) with

Z(z,t)=[p—p"qa—q']",

0 1% 0 0
A(z) = W2 72 o |, and B(z)= S fa |-

Pz o) 2p2(z)  op*(z)

Define the Riemann coordinates for the linearised isothermal Euler equations by (56)
with

L g by @B £ ta O
;_;(x)=[’“£} 1], s =TT

P 2 0 @)
and
LY(z) = A (z)Aa(z) 1 =k

A () + Az (z) }.2(1‘:} J.i:]

Then, the linearised isothermal Euler equations, initial condition (59) and the boundary

conditions (60) can be written as (1), (2) and (3), respectively with (57), f(z) := w; (=, 0),
_ ketl/M(0) £ 1, Koy _ RH1/29()

~ Tat1/2a(0) = Wi 7 bMii=1—Kpand

g(z) := wa(z,0), K12

ma = 1-—- Ka1.

We take an example p*(0) = 3,¢"(z) = 0.2, z € [0, 1] with the parameters given by

a=l,% = 1. Thus

3

p(z) = -
exp(LambertW(—L—gHE exp(z—225)) z 2_35)

Besides, we set an initial condition by wy (z,0) = ws(z,0) = cos(27z), = € (0,1) and the
rate of the boundary disturbance functions taken as b (t) = —by(t) = 0.01 sin(=t), ¢ > 0.

Again in Fig. 2, it can be observed that as u increases the rate of decay of the ISS-Lyapunov
function in the presence of boundary disturbance increases. Hence, in the sense of the
definition of discrete ISS, the steady-state W;" =0,4j=0,...,.J-1,n=0,...,N —1of
the discretised system with the discretised boundary conditions is discrete ISS in L?—norm
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with respect to discrete disturbance function b, n =1,..., N.
Conclusion

In this paper, we presented the discretisation of a linear hyperbolic system of balance laws
with boundary disturbance. For numerical discretisation, we used a finite volume method.
Specifically, we used upwind scheme. We also discretised an L2 —ISS-Lyapunov function to
investigate conditions for ISS of the discretised system. Finally, the result was applied to a
linear problem and a relevant physical problem: Saint-Venant equations and numerical
simulations are computed in order to test the results and compare with analytical results. We
also showed numerical simulation for the isothermal Euler equations. The properties that have

been proved analytically can also be established computationally.

This work leaves more questions open. There is need to analyse Lyapunov functions for
nonlinear differential equations. Analysis of numerical artefacts such as numerical viscosity
need to be carefully examined. Such numerical artefacts may have an influence on the rate of

convergence of the discrete results.
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