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Preliminaries and Analytical Results
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Remark 3
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Numerical Discretisation and Stability for a Balance Law with Boundary
Disturbance
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Remark 4

          (48)

The proof of Theorem 2 applies to the discretised system (48) as a special case. Here we
have provided a numerical stability result for a more general case and, as a side-effect, for
the particular case in Eq. (21).

In this section an analysis of the discrete Lyapunov function which results from a
numerical discretisation of such an analytical Lyapunov function has been discussed. An
Euler scheme was applied for temporal discretisation of a system. An upwind scheme
was also applied for the spatial discretisation. The ISS-stability for such discretised
systems was proved. In the next section, the results established here are applied to a
linear example, the Saint-Venant model and the isothermal Euler model. This section
endeavors to also demonstrate how values of the parameters in the Lyapunov function
are delimited.

Computational Applications and Results

The results of the previous section will now be tested computationally on specific
examples. We will start by presenting an example of a linear hyperbolic system of balance
laws with constant coefficients in Sect. 4.1. The second example will be a Saint-Venant
system of equations which will be discussed in Sect. 4.2. In Sect. 4.3, the isothermal Euler
equations will be discussed as a third example. The derivation of the equilibrium and the
choice of requisite parameters for such models will be discussed in detail.
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Linear Hyperbolic 2×2 Systems of Balance Laws with Uniform Coefficients and
Boundary Disturbances

To show the numerical analysis working, we analyse a 2×2 uniform linear system. For
this reason, we consider the system (1) with uniform matrix coefficients of the form

an initial condition of the form

     (49)
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Saint-Venant Equations

          (50)

We set an initial condition
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and boundary conditions with disturbances

 ( 52)
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         (54)
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Define the Riemann coordinates by

          (56)

where L is a matrix of left eigenvectors of A i.e.

with
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and

          (57)
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Fig. 1

Isothermal Euler Equations

          (58)
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Fig. 2

We set an initial condition

          (59)

and boundary conditions with disturbances

         (60)
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Define the Riemann coordinates for the linearised isothermal Euler equations by (56)
with

and
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Conclusion
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