Classification in high dimension using the Ledoit-Wolf shrinkage method

dc.contributor.authorLotfi, Rasoul
dc.contributor.authorShahsavani, Davood
dc.contributor.authorArashi, Mohammad
dc.date.accessioned2023-09-04T15:03:15Z
dc.date.available2023-09-04T15:03:15Z
dc.date.issued2022-11-01
dc.description.abstractClassification using linear discriminant analysis (LDA) is challenging when the number of variables is large relative to the number of observations. Algorithms such as LDA require the computation of the feature vector’s precision matrices. In a high-dimension setting, due to the singularity of the covariance matrix, it is not possible to estimate the maximum likelihood estimator of the precision matrix. In this paper, we employ the Stein-type shrinkage estimation of Ledoit and Wolf for high-dimensional data classification. The proposed approach’s efficiency is numerically compared to existing methods, including LDA, cross-validation, gLasso, and SVM. We use the misclassification error criterion for comparison.en_US
dc.description.departmentStatisticsen_US
dc.description.librarianam2023en_US
dc.description.sponsorshipThe National Research Foundation (NRF) of South Africa, SARChI Research Chair UID: 71199, the South African DST-NRF-MRC SARChI Research Chair in Biostatistics; STATOMET at the Department of Statistics at the University of Pretoria, South Africa and a grant from Ferdowsi University of Mashhad.en_US
dc.description.urihttps://www.mdpi.com/journal/mathematicsen_US
dc.identifier.citationLotfi, R.; Shahsavani, D.; Arashi, M. Classification in High Dimension Using the Ledoit–Wolf Shrinkage Method. Mathematics 2022, 10, 4069. https://doi.org/10.3390/math10214069.en_US
dc.identifier.issn2227-7390
dc.identifier.other10.3390/math10214069
dc.identifier.urihttp://hdl.handle.net/2263/92199
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectClassificationen_US
dc.subjectHigh-dimensional dataen_US
dc.subjectLedoit and Wolf shrinkage methoden_US
dc.subjectStein-type shrinkageen_US
dc.subjectLinear discriminant analysis (LDA)en_US
dc.subjectSupport vector machine (SVM)en_US
dc.titleClassification in high dimension using the Ledoit-Wolf shrinkage methoden_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lotfi_Classification_2022.pdf
Size:
595.87 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: