Butorphanol with oxygen insufflation corrects etorphine-induced hypoxaemia in chemically immobilized white rhinoceros (Ceratotherium simum)

Loading...
Thumbnail Image

Authors

Haw, Anna
Hofmeyr, Markus
Fuller, Andrea
Buss, Peter Erik
Miller, Michele
Fleming, Gregory
Meyer, Leith Carl Rodney

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central

Abstract

BACKGROUND : Opioid-induced immobilization is associated with severe respiratory depression in the white rhinoceros. We evaluated the efficacy of butorphanol and oxygen insufflation in alleviating opioid-induced respiratory depression in eight boma-managed rhinoceros. RESULTS : Chemical immobilization with etorphine, azaperone and hyaluronidase, as per standard procedure for the white rhinoceros, caused severe respiratory depression with hypoxaemia (PaO2 = 27 ± 7 mmHg [mean ± SD]), hypercapnia (PaCO2 = 82 ± 6 mmHg) and acidosis (pH =7.26 ± 0.02) in the control trial at 5 min. Compared to pre-intervention values, butorphanol administration (without oxygen) improved the PaO2 (60 ± 3 mmHg, F(3,21) =151.9, p <0.001), PaCO2 (67 ± 4 mmHg, F(3,21) =22.57, p <0.001) and pH (7.31 ± 0.06, F(3,21) =27.60, p <0.001), while oxygen insufflation alone exacerbated the hypercapnia (123 ± 20 mmHg, F(3,21) =50.13, p <0.001) and acidosis (7.12 ± 0.07, F(3,21) =110.6, p <0.001). Surprisingly, butorphanol combined with oxygen fully corrected the opioid-induced hypoxaemia (PaO2 = 155 ± 53 mmHg) and reduced the hypercapnia over the whole immobilization period (p <0.05, areas under the curves) compared to the control trial. However, this intervention (butorphanol + oxygen) did not have any effect on the arterial pH. CONCLUSIONS : Oxygen insufflation combined with a single intravenous dose of butorphanol improved the immobilization quality of boma-managed white rhinoceros by correcting the opioid-induced hypoxaemia, but did not completely reverse all components of respiratory depression. The efficacy of this intervention in reducing respiratory depression in field-captured animals remains to be determined.

Description

Keywords

Anaesthesia, Hypoxia, Hypercapnia, Acidaemia, Blood gases, Opioids, Partial-opioid antagonist

Sustainable Development Goals

Citation

Haw, A, Hofmeyr, M Fuller, A, Buss, P, Miller, M, Fleming, G & Meyer, L 2014, 'Butorphanol with oxygen insufflation corrects etorphine-induced hypoxaemia in chemically immobilized white rhinoceros (Ceratotherium simum)', BMC Veterinary Research, vol. 10, no. 253, pp. 1-9.