Determination of crop coefficients and evapotranspiration of potato in a semi-arid climate using canopy state variables and satellite-based NDVI
| dc.contributor.author | Mukiibi, Alex | |
| dc.contributor.author | Franke, A.C. | |
| dc.contributor.author | Steyn, Joachim Marthinus | |
| dc.contributor.email | martin.steyn@up.ac.za | en_US |
| dc.date.accessioned | 2024-07-12T13:18:07Z | |
| dc.date.available | 2024-07-12T13:18:07Z | |
| dc.date.issued | 2023-09-17 | |
| dc.description | This article belongs to the Special Issue titled 'Remote Sensing for Irrigation and Water Management in Agriculture'. | en_US |
| dc.description.abstract | Estimating crop coefficients and evapotranspiration (ET) accurately is crucial for optimizing irrigation. Remote sensing techniques using green canopy cover, leaf area index (LAI), and normalized difference vegetation index (NDVI) have been applied to estimate basal crop coefficients (Kcb) and ET for different crops. However, analysis of the potential of these techniques to improve water management in irrigated potato (Solanum tuberosum L.) is still lacking. This study aimed to assess the modified nonlinear relationship between LAI, Kcb and NDVI in estimating crop coefficients (Kc) and ET of potato. Moreover, Kc and ET were derived from the measured fraction of green canopy cover (FGCC) and the FAO-56 approach. ET estimated from the FAO-56, FGCC and NDVI approaches were compared with the ET simulated using the LINTUL-Potato model. The results showed that the Kc values based on FGCC and NDVI were on average 0.16 lower than values based on FAO-56 Kc during the mid-season growing stage. ET estimated from FAO-56, FGCC and NDVI compared well with ET calculated by the LINTUL-Potato model, with RMSE values of 0.83, 0.79, and 0.78 mm day−1 , respectively. These results indicate that dynamic crop coefficients and potato ET can be estimated from canopy cover and NDVI. The outcomes of this study will assist potato growers in determining crop water requirements using real-time ETo, canopy state variables and NDVI data from satellite images. | en_US |
| dc.description.department | Plant Production and Soil Science | en_US |
| dc.description.department | Plant Science | en_US |
| dc.description.sdg | SDG-02:Zero Hunger | en_US |
| dc.description.sdg | SDG-12:Responsible consumption and production | en_US |
| dc.description.sponsorship | Potatoes South Africa. | en_US |
| dc.description.uri | https://www.mdpi.com/journal/remotesensing | en_US |
| dc.identifier.citation | Mukiibi, A.; Franke, A.C.; Steyn, J.M. Determination of Crop Coefficients and Evapotranspiration of Potato in a Semi-Arid Climate Using Canopy State Variables and Satellite-Based NDVI. Remote Sensing 2023, 15, 4579. https://doi.org/10.3390/rs15184579. | en_US |
| dc.identifier.issn | 2072-4292 (online) | |
| dc.identifier.other | 10.3390/rs15184579 | |
| dc.identifier.uri | http://hdl.handle.net/2263/96995 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | en_US |
| dc.subject | Basal crop coefficient | en_US |
| dc.subject | Modified analytical approach | en_US |
| dc.subject | Canopy state variables | en_US |
| dc.subject | Irrigation water requirements | en_US |
| dc.subject | Evapotranspiration | en_US |
| dc.subject | Normalized difference vegetation index (NDVI) | en_US |
| dc.subject | Green canopy cover | en_US |
| dc.subject | Leaf area index (LAI) | en_US |
| dc.subject | SDG-02: Zero hunger | en_US |
| dc.subject | SDG-12: Responsible consumption and production | en_US |
| dc.title | Determination of crop coefficients and evapotranspiration of potato in a semi-arid climate using canopy state variables and satellite-based NDVI | en_US |
| dc.type | Article | en_US |
