A-transvections and Witt’s theorem in symplectic A-modules
dc.contributor.author | Ntumba, Patrice P. | |
dc.contributor.author | Anyaegbunam, Adaeze Christiana | |
dc.contributor.email | patrice.ntumba@up.ac.za | en_US |
dc.date.accessioned | 2011-04-18T06:33:56Z | |
dc.date.available | 2011-04-18T06:33:56Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Building on prior joint work by Mallios and Ntumba, we study transvections (J. Dieudonn´e), a theme already important from the classical theory, in the realm of Abstract Geometric Algebra, referring herewith to symplectic A-modules. A characterization of A-transvections, in terms of A-hyperplanes (Theorem 1.4), is given together with the associated matrix definition (Corollary 1.5). By taking the domain of coefficients A to be a PID-algebra sheaf, we also consider the analogue of a form of the classical Witt’s extension theorem, concerning A-symplectomorphisms defined on appropriate Lagrangian sub-A-modules (Theorem 2.3 and 2.4). | en |
dc.identifier.citation | Ntumba, PP & Anyaegbunam, AC 2011, 'A-transvections and Witt’s theorem in symplectic A-modules', Mediterranean Journal of Mathematics, doi:10.1007/s00009-010-0102-8. [http://www.springer.com/birkhauser/mathematics/journal/9] | en |
dc.identifier.issn | 1660-5446 (print) | |
dc.identifier.other | 1660-5454 (online) | |
dc.identifier.other | 10.1007/s00009-010-0102-8 | |
dc.identifier.uri | http://hdl.handle.net/2263/16309 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | © Springer-Verlag 2010. The original publication is available at www.springerlink.com. | en_US |
dc.subject | A-homothecy | en |
dc.subject | A-hyperplane | en |
dc.subject | A-transvection | en |
dc.subject | A-transvection of classical type | en |
dc.subject | Transvection matrix | en |
dc.subject | Symplectic A-module | en |
dc.subject | PID-algebra sheaf | en |
dc.subject | Orthogonally convenient pairing | en |
dc.subject.lcsh | Orthogonalization methods | en |
dc.title | A-transvections and Witt’s theorem in symplectic A-modules | en |
dc.type | Postprint Article | en |