An advance adsorbent coated adsorption cycle performance

dc.contributor.authorShahzad, Muhammad Wakilen
dc.contributor.authorAng, Lien
dc.contributor.authorBurhan, Muhammaden
dc.contributor.authorNg, Kim Choonen
dc.date.accessioned2017-09-19T12:48:19Z
dc.date.available2017-09-19T12:48:19Z
dc.date.issued2017en
dc.descriptionPapers presented at the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia on 17-19 July 2017 .en
dc.description.abstractWaste heat driven adsorption (AD) cycle has been employed in the industries for cooling and desalination because of their simple operation and low OPEX. In conventional AD cycle, the granular adsorbent are packed in the form of cake in heat exchangers, results larger foot print and lower performance due to poor heat transfer from heat source to adsorbent. The heat transfer rate of an adsorbent embedded heat exchanger can be significantly improved by using powder adsorbent coated by binder on the fin surfaces of exchangers. This work will evaluate the performance of adsorbent coated heat exchanger adsorption cycle. We focuses on a common adsorbent-adsorbate pair utilized in the AD cycle, i.e. silica gel-water and hydroxyethyl cellulose (HEC) binder. We presented that overall heat transfer coefficient can be improved to almost two folds by coating techniques as calculated experimentally. We also showed that binder have minimal effect on pore surface area of adsorbent. We developed detailed mathematical model to simulate, using FORTRAN, adsorbent coated heat exchanger AD cycle performance and to compare it with conventional cycle. The results showed that, advance adsorbent coating technique can improve AD cycle performance to two folds as compared to conventional granular packed bed technology. With coated bed AD cycle, system can produce double the amount of desalinated water or cooling effect with same amount of waste heat available.en
dc.description.sponsorshipInternational centre for heat and mass transfer.en
dc.description.sponsorshipAmerican society of thermal and fluids engineers.en
dc.format.extent5 pagesen
dc.format.mediumPDFen
dc.identifier.urihttp://hdl.handle.net/2263/62329
dc.language.isoenen
dc.publisherHEFATen
dc.rightsUniversity of Pretoriaen
dc.subjectAdsorption cycle performanceen
dc.titleAn advance adsorbent coated adsorption cycle performanceen
dc.typePresentationen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shahzad_Advance_2017.pdf
Size:
527.61 KB
Format:
Adobe Portable Document Format
Description:
Presentation