Veralgemeende Sylvester-Gallai Stelling
dc.contributor.author | Swanepoel, Konrad Johann | |
dc.contributor.author | Pretorius, Lou M. (Lourens Martin) | |
dc.date.accessioned | 2007-06-21T06:19:40Z | |
dc.date.available | 2007-06-21T06:19:40Z | |
dc.date.issued | 2007-03 | |
dc.description.abstract | Ons gee 'n algoritmiese bewys vir die kontrapositief van die volgende stelling wat onlangs deur die outeurs bewys is: Laat S 'n eindige versameling van punte in die vlak wees, met elke punt rooi, blou of met beide kleure gekleur. Veronderstel dat daar vir enige twee verskillende punte A en B in S wat 'n kleur k deel, 'n derde punt in S is wat (o.a.) die kleur anders as k het en wat saamlynig met A en B is. Dan is al die punte in S saamlynig. Hierdie stelling is 'n gemeenskaplike veralgemening van die Sylvester-Gallai Stelling en die Motzkin-Rabin Stelling. ENGLISH: We give an algorithmic proof for the contrapositive of the following theorem that has recently been proved by the authors: Let S be a finite set of points in the plane, with each point coloured red, blue or with both colours. Suppose that for any two distinct points A and B in S sharing a colour k, there is a third point in S which has (inter alia) the colour different from k and is collinear with A and B. Then all the points in S are collinear. This theorem is a generalization of both the Sylvester-Gallai Theorem and the Motzkin-Rabin Theorem. | afr & en |
dc.format.extent | 81720 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Swanepoel, KJ & Pretorius, LM 2007, ''n Veralgemeende Sylvester-Gallai Stelling', Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, vol. 26, no. 1, pp. 8-13. [http://www.journals.co.za/ej/ejour_aknat.html] | afr |
dc.identifier.issn | 0254-3486 | |
dc.identifier.uri | http://hdl.handle.net/2263/2791 | |
dc.language.iso | Afrikaans | afr |
dc.publisher | Suid Afrikaanse Akademie vir Wetenskap & Kuns | afr |
dc.rights | Suid Afrikaanse Akademie vir Wetenskap & Kuns | afr |
dc.subject | Sylvester-Gallai Theorem | en |
dc.subject | Motzkin-Rabin Theorem | en |
dc.subject.lcsh | Algorithms | |
dc.title | Veralgemeende Sylvester-Gallai Stelling | en |
dc.type | Article | afr |