Capacity building for GIS-based SDG indicators analysis with global high-resolution land cover datasets

dc.contributor.authorOxoli, D.
dc.contributor.authorReyes, S.R.
dc.contributor.authorBrovelli, M.A.
dc.contributor.authorCoetzee, Serena Martha
dc.contributor.authorIvanova, I.
dc.contributor.authorLeonardi, J.A.
dc.contributor.authorRawal, D.
dc.contributor.authorRawal, G.
dc.contributor.authorVacca, G.
dc.contributor.authorZlatanova, S.
dc.contributor.emailserena.coetzee@up.ac.zaen_US
dc.date.accessioned2024-07-31T10:48:21Z
dc.date.available2024-07-31T10:48:21Z
dc.date.issued2023
dc.description.abstractThe support of geospatial data and technologies for the United Nations Sustainable Development Goals (SDG) framework is critical for assessing and monitoring key indicators, revealing the planet’s trajectory towards sustainability. The availability of global open geospatial datasets, especially high-resolution land cover datasets, provides significant opportunities for computing and comparing indicators across different regions and scales. However, barriers to their proficient use remain due to a lack of data awareness, management and processing capacities using geographic information systems software. To address this, the ”Capacity Building for GIS-based SDG Indicator Analysis with Global High-resolution Land Cover Datasets” project created open training material on discovering, accessing, and manipulating global geospatial datasets for computing SDG indicators. The material focuses on water and terrestrial ecosystems, urban environments, and climate, by leveraging world-class global geospatial datasets and using the Free and Open Source Software QGIS. The training material is released under a Creative Commons Attribution 4.0 License, ensuring broad accessibility and facilitating continuous improvement.en_US
dc.description.departmentGeography, Geoinformatics and Meteorologyen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-02:Zero Hungeren_US
dc.description.sdgSDG-06:Clean water and sanitationen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sdgSDG-11:Sustainable cities and communitiesen_US
dc.description.sdgSDG-12:Responsible consumption and productionen_US
dc.description.sdgSDG-13:Climate actionen_US
dc.description.sdgSDG-14:Life below wateren_US
dc.description.sdgSDG-15:Life on landen_US
dc.description.sponsorshipThe Educational and Capacity Building Initiative 2022 of the International Society for Photogrammetry and Remote Sensing (ISPRS).en_US
dc.description.urihttps://www.isprs.org/publications/archives.aspxen_US
dc.identifier.citationOxoli, D., Reyes, S.R., Peng, S. et al. 2023, 'Capacity building for GIS-based SDG indicators analysis with global high-resolution land cover datasets', The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-1, no. W2, pp. 559-564. DOI :10.5194/isprs-archives-XLVIII-1-W2-2023-559-2023.en_US
dc.identifier.issn1682-1750
dc.identifier.other10.5194/isprs-archives-XLVIII-1-W2-2023-559-2023
dc.identifier.urihttp://hdl.handle.net/2263/97360
dc.language.isoenen_US
dc.publisherInternational Society for Photogrammetry and Remote Sensingen_US
dc.rights© Author(s) 2023. CC BY 4.0 License.en_US
dc.subjectCapacity buildingen_US
dc.subjectGlobal land coveren_US
dc.subjectOpen geospatial dataen_US
dc.subjectFree and open-source softwareen_US
dc.subjectSustainable development goals (SDGs)en_US
dc.subjectGeographic information system (GIS)en_US
dc.subjectSDG-02: Zero hungeren_US
dc.subjectSDG-06: Clean water and sanitationen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectSDG-11: Sustainable cities and communitiesen_US
dc.subjectSDG-12: Responsible consumption and productionen_US
dc.subjectSDG-13: Climate actionen_US
dc.subjectSDG-14: Life below wateren_US
dc.subjectSDG-15: Life on landen_US
dc.titleCapacity building for GIS-based SDG indicators analysis with global high-resolution land cover datasetsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Oxoli_Capacity_2023.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: