Developing machine learning algorithms to predict the dissolution of zinc oxide nanoparticles in aqueous environment

dc.contributor.authorYalezo, Ntsikelelo
dc.contributor.authorMusee, Ndeke
dc.contributor.authorDaramola, Michael Olawale
dc.contributor.emailmichael.daramola@up.ac.zaen_US
dc.date.accessioned2025-02-10T08:21:55Z
dc.date.issued2024-12
dc.descriptionDATA AVAILABILITY : Data will be made available on request.en_US
dc.description.abstractPlease read abstract in the article.en_US
dc.description.departmentChemical Engineeringen_US
dc.description.embargo2025-09-05
dc.description.librarianhj2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sponsorshipThe University of Pretoria, the Water Research Commission and the National Research Foundation, South Africa.en_US
dc.description.urihttps://www.elsevier.com/locate/enmmen_US
dc.identifier.citationYalezo, N., Musee, N. & Daramola, M.O. 2024, 'Developing machine learning algorithms to predict the dissolution of zinc oxide nanoparticles in aqueous environment', Environmental Nanotechnology, Monitoring and Management, vol. 22, art. 101000, pp. 1-13, doi : 10.1016/j.enmm.2024.101000.en_US
dc.identifier.issn2215-1532
dc.identifier.other10.1016/j.enmm.2024.101000
dc.identifier.other10.1016/j.enmm.2024.101000
dc.identifier.urihttp://hdl.handle.net/2263/100635
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. Notice : this is the author’s version of a work that was accepted for publication in Environmental Nanotechnology Monitoring and Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in Environmental Nanotechnology Monitoring and Management, vol. 22, art. 101000, pp. 1-13, doi : 10.1016/j.enmm.2024.101000.en_US
dc.subjectMachine learningen_US
dc.subjectnZnO dissolutionen_US
dc.subjectSurface transformationen_US
dc.subjectAqueous environmenten_US
dc.subjectMeta-analysisen_US
dc.subjectZinc oxide nanoparticles (nZnO)en_US
dc.subjectEngineered nanoparticle (ENP)en_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleDeveloping machine learning algorithms to predict the dissolution of zinc oxide nanoparticles in aqueous environmenten_US
dc.typePostprint Articleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: